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Abstract

Basic-level categories (BLC) are an important
psycholinguistic concept introduced by Rosch
et al. (1976); they are defined as the most in-
clusive categories for which a concrete men-
tal image of the category as a whole can be
formed, and also as those categories which are
acquired early in life. Rosch’s original algo-
rithm for detecting BLC (called cue-validity)
is based on the availability of semantic fea-
tures such as ‘has tail’ for ‘cat’, and has re-
mained untested at large. An at-scale algo-
rithm for the automatic determination of BLC
exists, but it operates without Rosch-style se-
mantic features, and is thus unable to ver-
ify Rosch’s hypothesis. We present the first
method for the detection of BLC at scale that
makes use of Rosch-style semantic features.
For both English and Mandarin, we test three
methods of generating such features for any
synset within Wordnet (WN): extraction of tex-
tual features from Wikipedia pages, Distribu-
tional Memory (DM) and BART. The best of
our methods outperforms the current SoA in
BLC detection, with an accuracy of English
BLC detection of 75.0%, and of Mandarin
BLC detection 80.7% on a test set. When ap-
plied to all of WordNet, our model predicts
that 1,118 synsets in English Wordnet (1.4%)
are BLC, far fewer than existing methods, and
with a precision improvement of over 200%
over these. As well as confirming the useful-
ness of Rosch’s cue validity algorithm, we also
developed and evaluated our own new indica-
tor for BLC, which models the fact that BLC
features tend to be BLC themselves.

1 Introduction

Rosch et al. (1976) introduced the concept of Ba-
sic Level Categories (BLC) to the psycholinguistic
literature. She defined basic-level categories as
the most general (inclusive) categories for which
a concrete image can be formed, and hypothesised
that the definition of concrete categories during

Figure 1: Simplified Taxonomy of Concepts and Fea-
tures.

child development is based on semantic features of
each individual in the child’s perception. She per-
formed separate human prediction experiments on
shape, affordance (what she called motor program)
and semantic features. Rosch also presented an
algorithm for finding the level in a hierarchy where
BLC concepts are located, based on an information-
theoretically defined property called cue validity,
which is calculable if one has access to semantic
features for each concept.

BLC categories are those that are maximally dis-
tinguished from their sibling categories by many
features with strong distinctiveness. For example,
in Fig. 1, the sibling BLC categories dog and cat
have features such as good sense of smell and me-
ows. Higher-level categories (“super”) are more
general and contain features such as uses metabolic
exchange and does not perform photosynthesis,
which are less distinctive because they apply to
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many individuals. When we look at the children
of BLC (“sub”), we see that the features they con-
tain are also less distinctive, but for the opposite
reason: they are very specific and apply to few in-
dividuals. For instance, bulldog has few additional
features that are not already covered by dog.This
coincides with Rosch et al’s definition of BLC as
the highest category that allows for a visual image
to be formed: we can hold an image of a dog in our
mind, but not a single image of animal; animal is
far too general. Rosch et al also connect BLC with
an early age of acquisition, a claim that we will use
operationally in this paper.

Her discovery was enthusiastically followed
up in the fields of psychology (Langacker, 1988;
Barsalou, 1991), psycholinguistics (McRae et al.,
2005), and sparked a plethora of theoretical
(Mervis, 1987; Murphy, 2004; Győri, 2013) and
experimental work (Roberts and Horowitz, 1986;
Markman and Wisniewski, 1997; Green, 2003).
In addition, modern NLP and computer vision re-
search have also found the concept of BLC use-
ful. Orhan et al. (2020) improved the accuracy
of video categorisation, using a dataset contain-
ing 12 BLC. Mathews et al. (2015) applied BLC
to visual concepts, which achieved good perfor-
mance in the task of picture-to-word generation.
Recently, the concept of BLC has also been used in
word sense disambiguation (Legrand, 2006), visual
object recognition (Wang and Cottrell, 2015) and
transfer learning (Min et al., 2020).

However, Rosch’s work did not lend itself to
experimental verification, as least not on a large
scale. Rosch tested various “grounded” properties
of BLC experimentally, for instance shape recall
and recognition by semantic features, but her (care-
fully controlled) dataset only contained 9 superor-
dinate categories and 27 BLC (90 concepts in total),
its hierarchy being based on category norms (Bat-
tig and Montague, 1969; Van Overschelde et al.,
2004). But what if we want to detect BLC in the
large, say within most concepts occurring in a lan-
guage? This would require a large-scale taxonomy
such as WordNet (WN)(Miller, 1995), and indeed
WN has been used for the only extant large-scale
BLC study to date. But one of the challenges in
verifying Rosch’s theoretical property cue validity
is the general unavailability of semantic features
for all concepts used in language.

Another obstacle to the automatic detection of
BLC is the vague definition of the concept itself.

While people’s intuition tells us that BLC must
exist, there is no fixed definition of exactly what
makes a BLC. All that a researcher has to go by
are a few dozen obvious examples for BLC. For
instance, the original definition of “most abstract
category for which a distinct image exists" is hard
to operationalise. Therefore, there is no gener-
ally agreed-upon, large-scale set of BLC available
to downstream research like video classification
(Orhan et al., 2020). In this work, we address this
gap by proposing a method of large-scale detec-
tion of BLC which is based on synthetic textual
features.

Since the 1970s, an empirically-defined source
of potential features was introduced in the form of
semantic feature norms (Rosch and Mervis, 1975;
Ashcraft, 1978; McRae et al., 2005; Vinson and
Vigliocco, 2008; Devereux et al., 2014; Buchanan
et al., 2019). In this methodology, semantic fea-
tures connected to a concept are elicited and col-
lated from many human subjects.

With the advent of distributional semantics meth-
ods, it has become possible to automatically gener-
ate semantic features resembling human features.
Frassinelli and Keller (2012) showed that features
generated from models such as Strudel (Baroni
et al., 2010) are cognitively plausible; such fea-
tures are able to represent the semantic context well
enough to enable priming. More recently, powerful
neural language models such as BERT and GPT
have been shown to capture large-scale semantic
contexts even better. The availability of different
distributional semantic models allows us to empiri-
cally test whether Rosch et al.’s idea of cue validity
holds true for a large set of concepts, as opposed to
some clear-cut toy examples. We present an algo-
rithm which has the ability to determine for each
WN synset whether it is BLC or not, and compare
three methods for generating synthetic features that
are used in our algorithm.

This is not a new task: Mills et al. (2018) were
the first researchers to perform at-scale BLC clas-
sification of all synsets in WordNet. They used
several features to do so, including the depth of
a concept in WN. But solution differs from theirs
because we create synthetic features and can thus
directly use Rosch’s original idea of cue validity
to detect BLC. The features we create are rather
different from those chosen by humans in seman-
tic norm studies, and it is an empirical question
whether our somewhat compromised form of cue
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validity is nevertheless able to identify BLC to a
satisfactory degree. The answer given in this pa-
per is that this is definitely so – for English, the
precision of the algorithm more than doubles when
our synthetic features are used, in comparison to
the current state-of-the-art algorithm in BLC detec-
tion (Mills et al., 2018); for Mandarin, the results
are numerically even better, although there is less
evaluation data available yet. Overall, we interpret
our results to mean that the features must capture
important aspects of the concept.

We also introduce a new indicator, which is
based on the idea that if BLC are acquired in early
childhood, then it’s plausible that many of the fea-
tures defining BLC could be BLC themselves, as
these might be cognitively available to the child.
We call this new indicator BLC-PageRank (BLC-
PR), and realise it by a random walk in the WN
graph. Section 4 presents our experiments for two
languages: English, and Mandarin, where to our
knowledge we are the first to present a BLC detec-
tion algorithm.

2 Related work

Cue validity (Brunswik, 1956) (CV) is defined as
the conditional probability of a category given a
feature. The cue validity of a specific category is
the sum of all cue validity scores for each attribute
of this category. Rosch et al. (1976) hypothesized
that BLC have higher cue validity scores compared
to other categories.

There is some disagreement in the literature as to
the borderline between BLC and other categories
(Tanaka and Taylor, 1991) and the order of acquisi-
tion of BLC and superordinate categories. Rosch
claimed that children learn BLC concepts earlier
than other concepts, but Mandler produced evi-
dence that only partially supports this statement.
While the best performance in children across all
ages was indeed for BLC, Mandler also found that
some children were responsive to the superordinate
and contextual categories (e.g. kitchen) very early
on, even at only 12 months old. Our own study
of the AoA list by (Kuperman et al., 2012) con-
firms that some superordinate categories such as
“plant" and “furniture" are learnt before the age of
5. Other factors may play a role too: Langacker
(1988) claimed that objects that lend themselves
best to becoming BLC are those that are complex
and possess structured information. There is also
disagreement in the literature about the BLC-like

superordinates in natural kinds such as fish, tree
and bird, which Rosch counts as superordinates,
but several researchers including ourselves con-
sider BLC (Markman and Wisniewski, 1997).

We will in this work rely on existing seman-
tic feature norms derived experimentally. McRae
et al. (2005) provided norms for 541 concepts (liv-
ing and non-living objects) which they consider
BLC. The norms were collected using 725 partici-
pants. Buchanan et al. (2019) extended these fea-
ture norms into 4,436 concepts with combination of
terms from Vinson and Vigliocco (2008), who col-
lected norms of verbs as well; however, Buchanan
et al’s list no longer attempts to include only BLC,
but additionally included both superordinates and
subordinates. Bulat et al. (2017) used 2,526 fea-
tures from McRae et al. (2005)’s semantic norms to
build semantic representations for metaphor identi-
fication.

Motivated by the lack of large-scale feature
norms, Frassinelli and Keller (2012) tested the per-
formance of distributional semantic vector space
(Baroni et al., 2010) for the task of generating prop-
erties for concepts in a visual world experiment.
They measured eye fixations when participants
looked at target concepts and established distract-
ing contexts designed for priming participants. To
create the contexts, they used three features gener-
ated by a distributional model. They observed that
participants fixate on the target concept when lis-
tening to both the target and competitor word, and
were thereby able to prove that the features auto-
matically generated successfully biased the partici-
pants and therefore expressed the desired contexts
sufficiently well.

Mills et al. (2018) introduced a rule-based sys-
tem for the detection of BLC via WordNet (Miller,
1995) and external knowledge such as frequency
of words in Brown and Gutenberg corpora. When
measured on a small test set of obvious cases from
the literature, their model achieved an accuracy of
77%. However, when run on the entire WN, it pre-
dicted that 13,082 synsets out of the total 82,115
synsets (16%) are BLC. This number seems far too
high, and indeed, when they estimated the accuracy
of their BLC detection on a subset of those 13,082
synsets, it was found that only 10.4% are true posi-
tives. Their prediction was therefore that the entire
WN contains only around 1,620 synsets. We can
see from this experiment that the true difficulty in
the BLC detection task may lie in achieving high
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Indicator Hypothesis

Word 2 Vec BLC might profit from a represen-
tation of their semantic context.

Word Length in
characters

BLC are expected to be expressed
in short words, as they were pre-
sumably forged early in human cul-
tural development.

Corpus
Frequency

BLC should be overall frequent in
language.

Age of
Acquisition

BLC are expected to be acquired
early in life.

Depth in WN
BLC have been hypothesised to be
at medium level in WN (Mills et al.,
2018).

Concreteness
Rating BLC must be concrete concepts.

Number of Sem.
Features

BLC should have more semantic
features than their subcategories or
superordinate categories.

Cue-Validity BLC should have high cue validity
values (Rosch et al., 1976).

BLC-PageRank
Value

The features of BLC should of-
ten be BLC themselves (our novel
claim).

Number of
strokes

(Mandarin only): Characters ex-
pressing BLC concepts should have
fewer brush strokes.

Table 1: Our Bilingual Indicators for BLC detection.

precision.

3 Approach

We aim to identify BLC in English and Mandarin
by more closely following Rosch’s theoretical ap-
proach; our target is to directly test whether using
the properties suggested by her helps in large-scale
BLC detection. We recast the problem as a super-
vised ML task, in contrast to the rule-based sys-
tem by Mills et al. (2018). We also want to test
whether other theoretical hypotheses about BLC
can be tested if suitable semantic features are avail-
able. We use the indicators listed in Tab. 1, six of
which have been used in earlier work or are obvi-
ous. The remaining two indicators are somewhat
more involved in independently worthy of study:
one indicator simulates Rosch’s cue validity con-
cept, and the remaining one called BLC-PR is due
to us. It follows the notion that if BLC are central,
early-learnt concepts, then maybe the features as-
sociated with them could also be BLC themselves,
which might help and reinforce the early acquisi-
tion of these concepts. We simulate this indicator
using the PageRank algorithm.

The indicators word length, corpus frequency,
age of acquisition (AoA), concreteness rating and
WN depth can be derived for English as well as
for Mandarin, and do not require any semantic fea-
tures. Word length means the number of letters

and characters, for English and Mandarin respec-
tively. Number of brushstrokes is only defined for
Mandarin and expresses the intuition that culturally
older, more important concepts would exhibit fewer
brush strokes. We extracted the English frequency
data from the American part of the Google Books
corpus and Chinese one from the Tencent AI Lab
embedding corpus (Song et al., 2018). Concrete-
ness ratings were drawn from a list of 3 million
rated word forms (Köper and im Walde, 2017),
where each word has been given a 10-point rat-
ing from abstract (1) to concrete (10). We expect
this to help in classification as BLC are by defini-
tion never abstract. We also use a 300-dimension
standard Word2Vec representation (Mikolov et al.,
2013) for English and 200-dimension one for Man-
darin (Song et al., 2018). Despite not having in-
terpretable dimensions, we hypothesise that such
representations may capture context in an indirect
manner.

We applied Chinese Open WordNet (COW)
(Wang and Bond, 2013), which was built on top
of the synsets of English WN, to match Mandarin
concepts to their English counterparts. COW con-
tains 42,312 synsets, 27,888 of which are nouns,
compared to the 82,115 nouns in WN. The acqui-
sition age indicator we use is based on test-based
age of acquisition norms of 30,000 words/senses
with information of the age when children learned
this word/sense (Kuperman et al., 2012)1 We suc-
cessfully matched 22,138 of our (bilingual) WN
synsets to the AoA test words/senses, as well to
their concreteness ratings.

The remaining indicators depend on our method
of generating semantic features. We will therefore
first describe how we generate the synthetic seman-
tic features.

3.1 Generation of Synthetic Features

We test three feature generation methods against
each other: Wikipedia Contexts, Features gener-
ated by DM, and BART. In all three methods, we
only keep those semantic features which are nouns.

The online encyclopedia Wikipedia has become
one of the world’s foremost sources of any kind of
knowledge on anything, and it therefore provides
a mirror of how humans understand (and maybe

1The data is collected from 1,960 participants (from 15
to 82-year-old) to estimate the age at which they knew each
test word; it therefore has a subjective component. Senses are
indicated by descriptions in natural language, which mostly,
but not always, could be matched to WN synsets.
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shark house

Wikipedia group, skeleton, gill, side, head, fin, clade, selachii building, complexity, hut, structure, wood, masonry,
concrete, material, plumbing, heating

DM whale, grouper view, office, countryside, croft, museum, family, es-
tate, builder, gable

BART gill, egg, whisker, swim, slime, tail, fish, scale, ani-
mal, fin, water relax, family, place, live, friend

Human animal, carnivore, danger, fin, fish, ocean, predator,
tooth, sea

bathroom, bedroom, brick, door, family, home,
kitchen, place, roof, room

Figure 2: Synthetic features generated by three models, and human features.

form) concepts. We exploit this in using particular
areas of the web pages which describe the concepts
a Wikipedia page is dedicated to. We extract from
these contexts all nouns except the concept itself2.

The second type of synthetic feature we use
comes from the distributional space Distributional
Memory (DM), which is a more recent, larger and
better-performing version of the afore-mentioned
Strudel (Baroni and Lenci, 2010). DM uses rela-
tions and co-occurrence between words to describe
words. It extracts distributional information from
corpora (which are POS tagged and parsed) based
on a set of weighted word-link-word tuples. Given
a concept, DM outputs a series of triples, consisting
of the concept itself, the generated feature, and the
relation between the concept and the feature.

BART provides our third set of synthetic features.
Having access to the parallel data of concepts and
their human-provided features (McRae et al., 2005;
Buchanan et al., 2019), we can fine-tune the pre-
trained BART base model (Lewis et al., 2019) as a
neural machine translation task to generate seman-
tic features for words directly.

How many such synthetic features we should use
for our research is unclear. BART is able to learn
how many features should be generated, but for the
other two sources, we have to intervene by approxi-
mating the number of features using the only source
we have available for this, the feature norms. We
use the distributions of feature norms in Buchanan
et al. (2019) to approximate the number of our syn-
thetic features for Wikipedia (by thresholding the
number of words) and for DM (by thresholding the
scores given, after softmax-normalising them).

Examples of the synthetic features created by our
English method for concepts “shark" and “house"
are shown in Fig. 2, and contrasted with those cre-
ated by humans (from Buchanan’s feature norms).

2We treat compound nouns as follows: both the modifier
and the head of the compound noun are added to the list
of features. If the compound noun itself exists in WN, we
additionally add it.

We see that the features are very different in na-
ture, but still appear to capture some important
information about the concepts. We notice that
Wikipedia often defines biological concepts by re-
ferring to technical terminology and formal zoo-
logical classifications; for example, “cetacea" and
“Delphinidae" are features of the concept “dolphin”.
Such features are not commonly known and would
be unlikely produced by a human in an elicitation
experiments such as Buchanan et al’s. Apart from
these technical terms, Wikipedia features tend to
contain a small number of high-quality features.

DM, in contrast, favours paradigmatic concepts
as features, i.e. those where the features and con-
cept are likely to appear in a same context in a
sentence. For instance, “whale” is a paradigmatic
feature of “shark”. At first glance, BART’s syn-
thetic features seem to be of the highest quality,
although there are still some features that are less
useful for our task, such as very abstract ones which
carry little information, such as “noun" and “one".

Even if the synthetic features appear to be quite
unlike human-generated features, they can still
capture information that is valuable for subsidiary
tasks. In the fully automatic evaluation reported
in section 4.2 using different data, we measure to
which degree they contribute towards the final task
of learning to detect BLC in the wild.

3.2 Generation of Indicators for ML

Once we have the list of features for each method,
we calculate the feature-dependent indicators as
follows:

Number of Features – This can be directly read
off.

Cue Validity (CV) – If a category has n features,
fi ⊂ {f1, f2, ..., fn}, the cue validity for the given
category is the sum of probability of fi.

BLC-PR – Each concept and feature are treated
as a node, and an edge is connected between nodes
if the feature belongs to one concept. We set the
initial weight of each nodes is 1 and the damping
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factor is set to 0.85. By calculating PageRank using
a random walk, the importance (or “BLC-ness”) of
nodes are estimated.

We will now sanity-check the quality of the syn-
thetic features in isolation, under the assumption
that the human features in combination with Cue
Validity and BLC-PR should work best at determin-
ing BLC (and the assumption that CV and BLC-PR
work). Keeping all other aspects constant, we want
to find out which of the synthetic features, if any,
is the most useful at learning BLC at large. To do
so, we use a carefully constructed development set
with 40 English concepts, shown in Table 2. For
this set, we have human features available. Fol-
lowing our own intuitions, we hand-picked 10 con-
cepts each for abstract, subordinate, superordinate
and BLC concepts from the concepts provided by
Buchanan et al. (2019).

Of course, as we treat senses and not word forms,
WSD is an issue for us. For the small development
dataset, we perform manual WSD on all 340 fea-
tures and 40 concepts, but in the automatic mode,
we perform WSD by always choosing the first-
sense synset for each concept3.

We can use the small dataset of 40 concepts to
find out how much the synthetic features resemble
the human features, which we consider our gold
standard, and each other. We use the Jacquard Dis-
tance for doing so (Jaccard, 1912). This confirms
BART’s relative advantage; its features are closest
to the human GS by this metric (0.069), more than
Wikipedia (0.054) and DM (0.015), but overall we
have to concede that neither of the synthetic fea-
tures is close to the humans. Compared to each
other, BART is most dissimilar to DM (0.007), and
most similar to Wikipedia (0.036), whereas DM

3Our manual Gold Standard senses for the development set
allowed us to evaluate the performance of (Navigli and Lapata,
2009), an unsupervised graph-based algorithm. However, as it
performed at 59% accuracy, we had to revert to the first-sense
“baseline" operating at 77%.

Sub BLC Super Abstract
shark house machine vacation
zebra door animal patience
cactus shoe sport apology
squirrel train plant rhyme
backpack tree toy year
couch hammer fruit freedom
submarine bird musical instrument love
castle bicycle vegetable chemistry
windmill snake food environment
dolphin chair furniture experiment

Table 2: Our BLC development set.

Source Category Cue Validity BLC-PR

Human

Sub 6.78 ± 3.86 4.51 ± 0.14
Basic 13.14 ± 6.34 4.72 ± 0.37
Super 4.16 ± 2.90 4.51 ± 0.14

Abstract 3.09 ± 1.62 4.45 ± 0.08

Wiki

Sub 8.04 ± 2.12 3.51 ± 0.73
Basic 8.86 ± 2.01 4.05 ± 0.96
Super 7.55 ± 2.44 4.03 ± 1.10

Abstract 7.83 ± 2.38 4.02 ± 1.03

DM

Sub 9.33 ± 14.28 4.62 ± 6.17
Basic 5.30 ± 3.13 2.97 ± 1.45
Super 7.01 ± 2.42 3.63 ± 1.09

Abstract 12.44 ± 13.11 5.93 ± 5.72

BART

Sub 5.23 ± 5.03 3.88 ± 3.08
Basic 7.02 ± 4.61 5.49 ± 3.10
Super 3.61 ± 1.84 2.85 ± 1.12

Abstract 3.60 ± 1.73 2.79 ± 1.18

Table 3: CV and BLC-PR Scores (Development Set).

and Wikipedia resemble each to a degree of 0.016.
We next perform a sanity check based on our

development set4 What we expect to see in this san-
ity check is that BLC categories should receive the
highest values in both of our features tested here,
CV and BLC-PR. Tab. 3 shows that indeed the hu-
man features best exhibit this advantage of BLC
for both features, and for CV, the performance is
even significantly5 better than all other categories,
despite the small size of this dataset. This is reas-
suring.

Of the synthetic features, BART performs best
in distinguishing BLC, although the difference be-
tween BLC and sub is not significant here, whereas
differences between BLC and abstract/super are
significant.

Wikipedia’s performance is adequate; it at least
ranks BLC highest values in both CV and BLC-PR,
although without significance to the other concept
categories. By this measure, DM is disastrous as it
often making the wrong predictions, in some cases
even significantly so.

From the human results, we see that PR and CV
are good indicators, and from the synthetic results
we see that while Wikipedia and BART work well,
DM is inadequate for detecting BLC. However,
Wikipedia-created features are only available if the
concept has its own Wikipedia page, which is not
the case for 9.8% of all WN synsets.

We therefore decided to use BART to perform
the synthetic feature generation in the following
experiments. For our Mandarin experiment, we

4We can only do this for English as we know of no DM-
style semantic space model for Chinese.

5We treat the standard deviation of the values of 10 con-
cepts as a confidence interval and report significance by check-
ing for overlap between these.
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automatically translated the Buchanan norms into
Mandarin using Google Translate and found it to
be accurate enough for our purposes (A manual
check of 20 pairs of concepts and features (145
words in total) achieved an accuracy is 95.3%.)
We use the multi-lingual version of BART called
mBART (Liu et al., 2020), together with the Man-
darin Buchanan list, to generate features for Man-
darin concepts; examples are given in Fig. 3. We
measured the similarity of features between our
gold standard (Buchanan et al.’s list) and syn-
thetic Chinese features by using Song et al’s (2018)
Word2Vec method , which resulted in a value of
0.8298.

鲨鱼shark 房子house
狩 猎hunt, 水water,
鱼fish, 游泳swim, 吃eat,
墨 水ink, 海sea, 咸
水saltwater, 射 击shoot,
海鲜seafood, 人human,
煮cook

生活life, 属性attribute,
草grass, 人 类human,
泥mud, 滑雪skate, 酒
店hotel, 木材wood, 地
方place, 稻草straw, 首
页home,生成generate

gill, egg, whisker, swim,
slime, tail, fish, scale, ani-
mal, fin, water

relax, family, place, live,
friend

Figure 3: Mandarin (top) vs English (bottom) features.

It is reassuring that there is an overlap in features
between the languages, and these features happen
to be very central to the concepts (“swim, water,
fish" for “shark" and “place", “life/live" for “house".
Nevertheless, there can be large differences in the
number of features generated. Although both sys-
tems were fine-tuned with near-identical data (the
Buchanan list and its translation), they were pre-
trained differently: BART only with English data;
mBART with data from 25 languages. mBART’s
training possibly resulted in more synthetic features
as different cultures relate a concept to a more var-
ied set of features.

4 Experiment

We perform an experiment in learning the BLC
status for every noun synset in WN based on the set
of indicators introduced in section 3, using different
generation methods for the synthetic features. Our
baseline is the method by (Mills et al., 2018), which
uses no semantic features. The working hypothesis
is that the use of semantic features should help BLC
detection, even if the generation of the features is
sub-optimal.

Evaluation is performed in two ways: 1. for a
small test/train set, BLC detection is reported in

terms of F-measure 2. for all synsets in WN, we
perform a separate precision study using human
subjects, in the same way as Mills et al. (2018).

4.1 Classifier
We use SVM (Cortes and Vapnik, 1995) to create a
classifier. As indicators, we use those listed in Ta-
ble 1; this results in a 309 indicator vector, most of
which come from the raw W2V vector. We classify
into the 4 target classes BLC, Abstract, Sub, Super.
We convert these into what is effectively a binary
classification BLC vs. Non-BLC and report the
F-measure of BLC. We could have also performed
binary classification directly with our SVM, but we
empirically found that the 4-way classifier achieved
a better performance. As baseline, we use the orig-
inal implementation by Mills et al. (2018) on our
dataset.

4.2 First Evaluation: Test/Train Data
We built a separate dataset of 433 concepts for fully
automatic training and testing (cf. Tab. 4). This
dataset is larger than our sanity-check dataset, but
does not have the advantage of having human fea-
tures in all cases. To create this larger dataset, we
combined the BLC based on previous psychologi-
cal experiments by Rosch et al. (1976) and Mark-
man and Wisniewski (1997), with our own subor-
dinate and superordinate terms, as these are not
available from the literature beyond a handful of
examples. For subordinate terms we distinguish an-
imals and plants (we used biological concepts from
lower-level biological classifications) and artifacts
(here, we used the bottom level of the Google Prod-
uct Taxonomy6). Superordinate terms are hardest
to find as the number of collective terms at a high
level of abstraction is limited. We expanded the
superordinate concepts from Mills et al. (2018) by
26 additional collective categories such as spices
and furniture, which we derived by inspecting the
top-levels of the Google Product Taxonomy areas
and thinking of collective terms in areas such as
cooking, food, hobbies and engineering, as well as
animal and plant categories. We then added 192
abstract concepts based on the Concreteness Rating
list. Other than these abstract concepts, no infor-
mation from the indicators went into the creation
of the dataset. We then used BART to compile
synthetic features for each concept as explained in

6Google Product Taxonomy Version 2019-07-10
https://www.google.com/basepages/producttype/taxonomy-
with-ids.en-US.txt
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Category Train Dev Test Total
Subordinate 20 45 40 105
Basic 32 26 28 86
Superordinate 14 17 19 50
Abstract 48 46 98 192
Total 114 134 185 433

Table 4: BLC test/train dataset (English).
Method Precision Recall F1-score
Mill et al’s 0.86 0.53 0.66
Ours (English) 0.86 0.67 0.75
Ours (Mandarin) 0.82 0.81 0.81

Table 5: Performance of BLC detection on Test Set.

section 3. The only manual work we performed on
the test/train dataset is that we sense-disambiguated
concepts by linking them to WN synsets, as before,
although we did not do so for the synthetic features.

On the English test/data set, our best system
achieves an F-score of 75%, compared to 65.75%
by Mills et al., cf. Tab. 5; the difference is sig-
nificant7. Our best model uses all features except
Word2Vec and brush strokes. Our system gains its
advantage by having a far higher precision, while
lagging somewhat behind on recall. Overall, these
results show that BLC detection can be substan-
tially improved by using synthetic features, in par-
ticular by increasing precision.

4.3 Second Evaluation: Full WN
When run on the entire WN, our system classifies
1,118 synsets as BLC, 48,033 as abstract, 3,710
as superordinate terms, and 29,254 as subordinate
terms. The number of our BLC predictions is far
below that of Mills et al. at 13,082.

In order to evaluate the precision of the classifier,
we follow the methodology in Mills et al. (2018)
and run the classifier and baseline on all synsets
in WN. From the lists of synsets labelled as BLC
by the two classifiers, we then randomly choose
250 concepts each, and ask three English native
speakers to consider each concept and label them
as BLC or not. Our instructions tell annotators that
a BLC concept should fulfill both of the following
two conditions:

• You should be able to create a clear visual
image of the concept in your mind.

• A 4-year-old child should in your opinion be
likely to know the concept.

Tab. 6 contains 20 randomly chosen examples of
the lists the annotators saw; bold face means that at
least one annotator marked as BLC. The agreement

7Significance was determined using a two-tailed permuta-
tion test with R=10,000 and significance level α = 0.01.

Our method (7/20):
sweater, trooper, dumbbell, flute, Chihuahua, amusement
park, mohair, house, airfield, mulled wine, car, passen-
ger, cage, pig, cab, handkerchief, wallet, pasta, headlight,
videocassette
Mills et al.’s method (4/20):
attendance, inconsistency, membrane, contact dermatitis,
call, egg, flower, red blood cell, infix notation, ringside,
bud, conscription, mender, carving, capacitance, gameto-
phyte, spittle insect, megapode, rock, wisteria

Table 6: BLC prediction examples; bold = correct.

on English BLC among the judges was measured
at K=0.58 (N=500, n=2, k=3), which can be con-
sidered as substantial, particularly as there was no
annotator training and as the concept of BLC is not
well-defined in the literature. Amongst the three an-
notators, the best pair of annotators showed agree-
ment at K=0.64 (N=500, n=2, k=2). The agreement
on Mandarin BLC was slightly lower than for En-
glish at K=0.55 (N=250, n=2, k=3).

The precision achieved by our system is 45.0%,
vs. 21.0% achieved by Mills et al’s, an improve-
ment of over 200%. Our algorithm is substantially
better at removing non-BLC from our BLC predic-
tions. In an informal assessment of the non-BLC
predictions that were encountered on both lists,
most of them are subordinate terms, but our list
contains fewer of these.

5 Further Analyses and Discussion

We next performed some ablation studies (Tab. 7)
to investigate which indicators performed better
than others. All features on their own are signif-
icantly different from the baseline (no features).
Concreteness on its own performs well, but this is
somewhat uninteresting as BLC are never concrete
(and as the list of concrete distractors was created
from this indicator). We also see that BLC-PR
on its own performs well, while Cue Validity on
its own does not. Word2Vec stands out because
while quite strong on its own, it is the only feature
that decreases results. Because it tends to group

Method Left Out On Own
– Word Length 70.0 44.4
– Corpus Frequency 70.0 35.8
– Acquisition Age 73.0 29.4
– Depth in WN 69.8 39.2
– Concreteness 62.5 61.5
– Number of Features 68.8 14.3
– Cue Validity 66.7 17.0
– BLC-PR 64.5 47.3
+ W2V 66.7 64.0
Best system: all except W2V: 75.0

Table 7: Results of Two Ablation Studies, in F1%
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words under similar context, subordinate categories
are likely to have high similarity score with their
respective BLC, which actually hurts the perfor-
mance of our classifier. BLC-PR also plays a bene-
ficial role in detecting BLC as we expected, prov-
ing that BLC concepts tend to overall have more
BLC features. Tab. 10 (appendix) shows the top
20 performing set of synsets for BLC-PR, which
reveals that 7 out of these are abstract. This may
be caused by the fact that abstract concepts have
many abstract features.

We are particularly interested in the performance
of cue validity, as it has never before been tested in
a large-scale experiment. On its own, cue validity
performs rather disappointingly and in particular
misclassifies abstract concepts as BLC (cf. Tab. 9),
but it manages to increase results in tandem with
the other features. Rosch devised cue validity as a
metric in taxonomies of concrete objects; she never
considered abstract concepts. Therefore, cue valid-
ity may only work well in the categorization of con-
crete objects, not in the distinction between abstract
and BLC concepts. This is a particular project with
experiments in WN, as abstract concepts also oc-
cupy a large part of nouns in WN (48,033 abstract
synsets according to our classifier).

Given that BLC definition is debated in the lit-
erature, our inclusion of the likely age of acquisi-
tion into the definition given to the judges deserves
some justification. Mills et al. (2018) used only the
first part of Rosch et al. (1976)’s original definition
of BLC, concerning the concrete image of the cat-
egory and inclusivity, but left out the second part
of her definition concerning early age of acquis-
tion. We included the second part of her definition
because we wanted a definition that is easier to
convey to judges. In a separate experiment, we ver-
ified the link between Age of acquisition and BLC
in order to empirically estimate the age we would
use in our instructions. Using the list provided by
Kuperman et al. (2012) we were able to verify that
most of the concrete concepts a 4 year old child
learns are BLC, if we take the list of 86 BLC de-
fined by Rosch as our gold standard: 88% of these
Rosch-BLC are known to children of that age, al-
though only 26% recall is achieved. Higher ages
of acquisition are listed in Tab. 8. We are therefore
fairly confident that the definition of BLC we em-
ployed in our experiment is easily understandable
and realistic.

Age Precision Recall
4 88% 26%
5 84% 50%
6 81% 67%
7 71% 74%

Table 8: Coverage of Rosch’s BLC list at different ages
in vocabulary.

6 Conclusion

How to determine what is a BLC and what not,
from first principles, is a long-standing problem
in computational psychology. We have presented
here the beginning of a methodology for studying
which aspects of BLC might contribute to their
BLC-ness: the fact that they are universally recog-
nised, learned early in language development, and
have certain information-theoretic properties about
categorisation as a language-wide phenomenon. In
particular, we studied the generation of synthetic se-
mantic features resembling human semantic norms
from corpora, and which relationship these fea-
tures have to BLC. We showed that even imperfect
features as available with current NLP techniques
could serve to improve the detection of BLC.

We find that BART, a methodology borrowed
from neural machine translation, is capable of gen-
erating indicators that are able to improve the de-
tection of BLC. This also contributes a potential
solution to the general problem of providing feature
norms automatically at scale, although that would
also necessitate additional experiments about the
stand-alone quality of the features. What we were
able to empirically validate, however, is that they
are good enough to substantially improve the SoA
in BLC detection.

We were also able to substantiate some long-
standing claims in psycholinguistics about the va-
lidity of cue validity, first proposed by Rosch
(1973). Our own hypothesis, that BLC concepts
tend to be described by semantic features that them-
selves are BLC, was also validated to a certain de-
gree. We hope that the current work opens the
door for much-needed further research into syn-
thetic semantic features. In future work, we plan
to include visual features into our BLC detection
system. Landau et al. (1988) found that in early
child vocabulary development, the shape of objects
is more important than other features such as size,
colors and texture. We also plan to pay more at-
tention to methods that can distinguish subordinate
terms from BLC.
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A Appendix

Synset CV score
depletion.n.01 6.44
starvation.n.01 6.44
nourishment.n.02 6.44
rationing.n.01 6.44
convenience.n.02 6.44
meal.n.02 6.44
diet.n.01 6.44
game.n.01 6.44
cook.n.01 + 113 others 6.44
hit.n.01 4.16
underachievement.n.01 4.16
ennoblement.n.02 4.16
impression.n.09 4.16
handover.n.01 4.16
lynching.n.01 4.16
indemnification.n.02 4.16
dehumanization.n.01 4.16
body_english.n.01 4.16
child_neglect.n.01 4.16
cruelty.n.01 + 386 others 4.16

Table 9: Top cue validity values with example con-
cepts.

Synset Type BLC-PR
person.n.01 BLC 1566
food.n.01 Super 935
animal.n.01 Super 564
type.n.01 Abstract 537
beak.n.01 BLC 445
fly.n.01 BLC 443
semblance.n.01 Abstract 427
feather.n.01 BLC 417
state.n.01 Abstract 384
bird.n.01 BLC 375
metallic_element.n.01 Super 360
pet.n.01 Super 345
seed.n.01 Super 330
zhou.n.01 ? 321
fictional_character.n.01 Abstract 313
topographic_point.n.01 Abstract 307
chirp.n.01 Abstract 306
talk.n.01 Abstract 256
man.n.01. BLC 251
wood.n.01 BLC 237

.

Table 10: Top 20 Synsets ranked by BLC-PR; middle
column shows our assessment of true category.


