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Abstract

We present two novel unsupervised methods
for eliminating toxicity in text. Our first
method combines two recent ideas: (1) guid-
ance of the generation process with small style-
conditional language models and (2) use of
paraphrasing models to perform style transfer.
We use a well-performing paraphraser guided
by style-trained language models to keep the
text content and remove toxicity. Our second
method uses BERT to replace toxic words with
their non-offensive synonyms. We make the
method more flexible by enabling BERT to
replace mask tokens with a variable number
of words. Finally, we present the first large-
scale comparative study of style transfer mod-
els on the task of toxicity removal. We com-
pare our models with a number of methods for
style transfer. The models are evaluated in a
reference-free way using a combination of un-
supervised style transfer metrics. Both meth-
ods we suggest yield new SOTA results.

1 Introduction

Identification of toxicity in user texts is an active
area of research (Zampieri et al., 2020; D’Sa et al.,
2020; Han and Tsvetkov, 2020). The task of auto-
matic rewriting of offensive content attracted less
attention, yet it may find various useful applications
such as making online world a better place by sug-
gesting to a user posting a more neutral version of
an emotional comment. The existing works on text
detoxification (dos Santos et al., 2018; Tran et al.,
2020; Laugier et al., 2021) cast this task as style
transfer. The style transfer task is generally under-
stood as rewriting of text with the same content and
with altering of one or several attributes which con-
stitute the “style”, such as authorship (Voigt et al.,
2018), sentiment (Shen et al., 2017), or degree of
politeness (Madaan et al., 2020). Despite the goal
of preserving the content, in many cases changing
the style attributes changes the meaning of a sen-

tence significantly.1 So in fact the goal of many
style transfer models is to transform a sentence into
a somewhat similar sentence of a different style
on the same topic.2 We suggest that detoxification
needs better preservation of the original meaning
than many other style transfer tasks, such as senti-
ment transfer, so it should be performed differently.

We present two models for text detoxification,
which have extra control for content preservation.
The first model, ParaGeDi, is capable of fully re-
generating the input. It is based on two ideas: exter-
nal control of an output of a generation model by a
class-conditioned LM (Krause et al., 2020) and for-
mulation of style transfer task as paraphrasing (Kr-
ishna et al., 2020). Being based on a paraphraser
model, ParaGeDi explicitly aims at preserving the
meaning of the original sentence. The second ap-
proach, CondBERT, inspired by Wu et al. (2019a),
follows the pointwise editing setup. It uses BERT
to replace toxic spans found in the sentence with
their non-toxic alternatives. The semantic simi-
larity is maintained by showing the original text
to BERT and reranking its hypotheses based on
the similarity between the original words and their
substitutes. Interestingly, BERT does not need
any class-conditional pre-training to successfully
change the text style from toxic to normal.

In addition, we perform a large-scale evaluation
of style transfer models on detoxification task, com-
paring our new models with baselines and state-of-
the-art approaches. We release our code and data.3

Our contributions are as follows:
• We propose two novel detoxification meth-

ods based on pre-trained neural language mod-
els: ParaGeDi (paraphrasing GeDi) and Cond-
BERT (conditional BERT).

1For example, Lample et al. (2019) provide the following
sentence as an example of transfer from male to female writing:
Gotta say that beard makes you look like a Viking→ Gotta
say that hair makes you look like a Mermaid.

2A formal task definition is presented in Appendix A.
3https://github.com/skoltech-nlp/detox
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• We conduct an evaluation of these models and
their comparison with a number of state-of-the-
art models for text detoxification and sentiment
transfer and release the detoxification dataset.

• We create an English parallel corpus for the
detoxification task by retrieving toxic/safe sen-
tence pairs from the ParaNMT dataset (Wieting
and Gimpel, 2018). We show that it can further
improve our best-performing models.

2 Related Work

One of the most straightforward ways of solving
style transfer task is to “translate” a source sentence
into the target style using a supervised encoder-
decoder model (Rao and Tetreault, 2018). Since the
source and the target are in the same language, pre-
trained LMs such as GPT-2 (Radford et al., 2019)
can be applied for this task — fine-tuning them
on relatively small parallel corpora gives a good
result (Wang et al., 2019). However, this method is
used quite rarely because of the lack of sufficiently
large parallel data. The rest of described models
are trained in an unsupervised way.

Pointwise Editing Models A relatively easy yet
efficient style transfer method is to leave the sen-
tence intact and manipulate only individual words
associated with the style. Delete-Retrieve-Generate
(DRG) framework (Li et al., 2018) was the first ef-
fort to perform such transfer. It proposes four meth-
ods based on this principle. Two of them perform
well on our data: DRG-RetrieveOnly retrieves a
sentence with the opposite style which is similar
to the original sentence and returns it, and DRG-
TemplateBased takes the style attributes from it
and plugs them into the original sentence. Here,
the performance depends on the methods for the
identification of style markers and retrieval of re-
placements. Words associated with style are typ-
ically identified either based on their frequencies
as in the original paper, some works use attention
weights as features (Sudhakar et al., 2019).

Alternatively, style transfer can use Masked Lan-
guage Modelling (MLM). An MLM trained on a
dataset with style labels picks a replacement word
based not only on the context, but also on the
style label. An example of such model is Mask
& Infill (Wu et al., 2019b). It is most similar to
CondBERT method we propose. However, Cond-
BERT performs additional control over the style
and the content preservation and is able to make
multi-word replacements. Another similar model

of this type is described by Malmi et al. (2020).
It has a more complicated structure: there, two
MLMs trained on corpora of different styles per-
form replacements jointly.

End-to-end Architectures In contrast to these
models, there exist end-to-end architectures for
style transfer. They encode the source sentence,
then manipulate the resulting hidden representa-
tion in order to incorporate a new style, and then
decode it. Some of them disentangle the hidden
representation into the representation of content
and style (John et al., 2019). The others force the
encoder to represent style-independent content (Hu
et al., 2017). Alternatively, the model DualRL by
Luo et al. (2019) performs a direct transfer from
the source to the target style. The task is paired
with the dual task (back transfer to the source style)
which allows models to train without parallel data.
The Deep Latent Sequence Model (DLSM) model
by He et al. (2020) uses amortized variational in-
ference to jointly train models for the primal and
dual tasks. The Stable Style Transformer (SST)
method (Lee, 2020) trains a pair of sequence-to-
sequence transformers for primal and dual tasks
using cross-entropy of a pretrained style classifier
as an additional discriminative loss. The Style
Transfer as Paraphrase (STRAP) method by Kr-
ishna et al. (2020) views a style transfer model as
a paraphraser that adds attributes of a particular
style to a text. The authors create pseudo-parallel
data by transferring style-marked texts to neutral
with a pre-trained general-purpose paraphraser and
then train sequence-to-sequence models on these
neutral-to-styled parallel datasets. Our ParaGeDi
model is conceptually similar to these methods.
However, unlike these methods, the style is not in-
fused into the model or a sentence representation
but is imposed on the generator by another model.

Detoxification Detoxification of text is a rela-
tively new style transfer task. The first work on
this topic by (dos Santos et al., 2018) is an end-to-
end seq2seq model trained on a non-parallel cor-
pus with autoencoder loss, style classification loss
and cycle-consistency loss. A more recent work
by Tran et al. (2020) uses a pipeline of models:
a search engine finds non-toxic sentences similar
to the given toxic ones, an MLM fills the gaps
that were not matched in the found sentences, and
a seq2seq model edits the generated sentence to
make it more fluent. Finally, Laugier et al. (2021)
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detoxify sentences by fine-tuning T5 as a denoising
autoencoder with additional cycle-consistency loss.
Dathathri et al. (2020) and Krause et al. (2020) ap-
proach a similar problem: preventing a language
model from generating toxic text. They do not need
to preserve the meaning of the input text. However,
the idea of applying a discriminator to control an
LM during generation can be used for style transfer,
as we show in our experiments.

3 Paraphrasing GeDi Model

The recently proposed GeDi model (Krause et al.,
2020) performs text generation from scratch guided
by a language model informed about specific at-
tributes of a text, e.g. style or topic. We extend this
model by enabling it to paraphrase the input text.

3.1 GeDi
The original GeDi model consists of two compo-
nents: a generation model (GPT-2) and a discrim-
ination model, which is also a GPT-2 trained on
sentences with additional sentence-level style label-
ing — during training the style label is prepended
to a sentence. This makes the discriminating model
learn the word distributions conditioned on a partic-
ular label. At each generation step, the distribution
of the next token predicted by the main model PLM
is modified using an additional class-conditional
language model PD and the Bayes rule:
P (xt|x<t, c) ∝ PLM (xt|x<t)PD(c|xt, x<t)
Here, xt is the current token, x<t is the prefix

of the text, and c is the desired attribute (e.g. tox-
icity or sentiment) — one of C classes. The first
term is produced by the main language model PLM ,
and the second term is calculated using the Bayes
rule and the additional class-conditional language
model PCC . Thus, the tokens which are more likely
to appear in a text of the chosen style get a higher
probability:

PD(c|xt, x<t) ∝ P (c)PCC(x, x<t|c)
The name GeDi stands for Generative Discrimi-

nator, because a language model, which is gener-
ative by its nature, is used as a discriminator for
guiding the generation process. GeDi was success-
fully applied to guiding a GPT-2 language model
towards generating texts of particular topics and
making the generated text less toxic.

3.2 ParaGeDi
In order to enable GeDi to preserve the meaning
of the input text, we replace the regular language

cmon man, the article was complete trash!

Man, the article was a whole ____

Paraphraser
𝑃𝐿𝑀(𝑦𝑡|𝑦<𝑡, 𝑥)

Toxic LM
𝑃𝑐𝑐(𝑦𝑡|𝑦<𝑡, 𝑡𝑜𝑥𝑖𝑐)
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Figure 1: The overview of ParaGeDi model.

model in it with a model capable of paraphrasing.
If we denote the original text by x, the generated
text of length T by y, and the desired style by c,
ParaGeDi models the following probability:

P (yt|y<t, x, c) ∝ PLM (yt|y<t, x)P (c|yt, y<t, x)
≈ PLM (yt|y<t, x)PD(c|yt, y<t)

The last step is an approximation because the
class probability should be conditioned on both x
and y. However, this approximation, although not
being fully justified, allows us to decouple the para-
phraser model (which requires a parallel corpus for
training) from the style model (which requires only
texts with style labels, not necessarily parallel).
The paraphraser and the style model can be trained
independently. Moreover, we can plug in any para-
phraser as long as it shares the vocabulary with
the class-conditional LM. The third (optional) com-
ponent of this model is a reranker — an external
model which reweighs the hypotheses generated
by the style LM-guided paraphraser with respect
to the style. Our reranker is a pre-trained toxicity
classifier which chooses the least toxic hypothe-
sis generated by the ParaGeDi model. Figure 1
illustrates the workflow of our model.

ParaGeDi is trained as follows. Its loss
LParaGeDi consists of a linear combination of two
losses: the generative loss LG used in LM train-
ing, and the discriminative loss LD which further
pushes different classes away from one another.

LG = − 1

N

N∑
i=1

1

Ti

Ti∑
t=1

logP (y
(i)
t |y

(i)
<t, c

(i))

LD = − 1

N

N∑
i=1

logP (c(i)|y(i)1:Ti
)

LParaGeDi = λLD + (1− λ)LG
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We enhance the model with a number of infer-
ence heuristics that improve content preservation
and increase the style transfer accuracy. First, we
use a heuristic from the original GeDi model. We
raise the conditional LM probability to the power
w > 1, which biases the discriminator towards the
correct class during generation:

P (yt|y<t, x, c) ∝ PLM (yt|y<t, x)PCC(c|yt, y<t)w

Besides that, we suggest two new heuristics:
Smoothing of probabilities — adding a small

α > 0 to all probabilities from the conditional lan-
guage model discourages the generation of tokens
with low probability conditional on all classes:

Pα(c|xt, x<t) =
α+ P (c)PCC(x, x<t|c)∑

c′∈C (α+ P (c′)PCC(x, x<t|c′))

Asymmetric lower and upper bounds (l and
u) for class-conditional corrections:

Pα,l,u(c|xt, x<t) = max(l,min(u, Pα(c|xt, x<t))).

By decreasing the value of u we discourage the
insertion of new tokens, as opposed to prohibiting
existing tokens. For the problem of detoxification,
it means that the model will try less to insert polite
words than to delete toxic words from the sentence.

4 Conditional BERT Model

BERT (Devlin et al., 2019) has been trained on
the task of filling in gaps (“masked LM”), we can
use it to insert non-toxic words instead of the toxic
ones. This approach has been suggested by Wu
et al. (2019a) as a method of data augmentation.
The authors identify words belonging to the source
style, replace them with the [MASK] token, and
the BERT model then inserts new words of the
desired style in the designated places. To push
BERT towards the needed style, the authors fine-
tune BERT on a style-labelled dataset by replacing
segmentation embeddings of original BERT with
trainable style embeddings.

We perform some changes to this model to adapt
it for the detoxification task. While in the origi-
nal conditional BERT model the words are masked
randomly, we select the words associated with tox-
icity. This can be done in different ways, e.g. by
training a word-level toxicity classifier or manu-
ally creating a vocabulary of rude and toxic words.
We use a method which does not require any ad-
ditional data or human effort. We train a logistic

bag-of-words toxicity classifier. This is a logis-
tic regression model which classifies sentences as
toxic or neutral and uses their words as features.
As a byproduct of the training process, each feature
(word) yields a weight which roughly corresponds
to its importance for classification. The words with
the highest weights are usually toxic. We use the
normalised weights from the classifier as toxicity
score. The overview of CondBERT is shown in
Figure 2.

they are all commies who   hate the USA

(1) detect toxic words

(2) create possible substitutes
using multitoken BERT

(3) rerank the substitutes 
by similarity and toxicity

love

live in

disagree with

Figure 2: The overview of the CondBERT model.

For each word in a sentence, we compute
the toxicity score and then define toxic words
as the words with the score above a threshold
t = max(tmin,max(s1, s2, ..., sn)/2), where
s1, s2, ..., sn are scores of all words in a sentence
and tmin = 0.2 is a minimum toxicity score. This
adaptive threshold allows balancing the percentage
of toxic words in a sentence so that we avoid cases
when too many or no words are marked as toxic.

To preserve the meaning of the replaced word,
we employ the content preservation heuristics sug-
gested by Arefyev et al. (2020): (i) Preserve the
original tokens instead of masking them before the
replacement; (ii) Rerank the replacement words
suggested by BERT by the similarity of their em-
bedding with the embedding of the original word.

Despite using class-specific sentence embed-
dings, conditional BERT often predicts toxic words,
apparently paying more attention to the context
than to the embeddings of the desired class. To
force the model to generate non-toxic words we
calculate the toxicity of each token in BERT vo-
cabulary and penalize the predicted probabilities of
tokens with positive toxicities.

Finally, we enable BERT to replace a single
[MASK] token with multiple tokens. We generate
each next token progressively by beam search and
score each multitoken sequence by the harmonic
mean of the probabilities of its tokens.
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5 Detoxification Experiments

We train the two new models and a number of other
systems for text detoxification. Below we describe
datasets, evaluation setup, and results.

5.1 Toxicity Classifier

We train two binary classifiers of toxicity. One of
them is used to rerank hypotheses in the ParaGeDi
model, and the other participates in the evaluation.
We train these two classifiers on different sets of
data. The overall dataset is the merge of the En-
glish parts of the three datasets by Jigsaw (Jigsaw,
2018, 2019, 2020), containing around 2 million
examples. We split it into two parts and fine-tune
a RoBERTa model (Liu et al., 2019) on it. We
use the roberta-large model from the origi-
nal repository. The classifiers perform closely on
the test set of the first Jigsaw competition, reaching
the AUC-ROC of 0.98 and F1-score of 0.76.

5.2 Dataset

For training and testing of the style transfer models,
we use the English data from the first Jigsaw compe-
tition (Jigsaw, 2018). The majority of our methods
are trained on non-parallel corpora of source and
target styles. To prepare the toxic dataset, we di-
vide the comments labelled as toxic into sentences
(the original comments are often too long) and clas-
sify each of them with our toxicity classifier. Sen-
tences classified as toxic are used as the toxic part
of the dataset (we find 154,771 of them). To se-
lect the neutral part of the dataset, we randomly
pick the same number of non-toxic sentences from
the sentence-separated Jigsaw data. The test set
is prepared analogously to the test set of the Jig-
saw competition: we use 10,000 sentences with the
highest toxicity score according to our classifier.

5.3 Metrics

There is no parallel test set available for the detoxi-
fication task, so we cannot use BLEU, METEOR or
ROUGE metrics and resort to referenceless evalua-
tion. Style transfer models need to change the style,
preserve content and produce a fluent text. These
parameters are often inversely correlated, so we
need a compound metric to find a balance between
them. We follow the evaluation strategy of Krishna
et al. (2020) and use the metric J, which is the mul-
tiplication of sentence-level style accuracy, content
preservation, and fluency. The system-level J is
the average of sentence-level scores. Style accu-

racy (ACC) is measured with a pre-trained toxi-
city classifier described in Section 5.1. Content
preservation (SIM) is evaluated as the similarity
of sentence-level embeddings of the original and
transformed texts computed by the model of Wi-
eting et al. (2019). Fluency (FL) measured with
the classifier of linguistic acceptability trained on
the CoLA dataset (Warstadt et al., 2019). J is com-
puted as the average of their sentence-level product.
In addition to that, we tried a similar aggregated
metric GM (Pang and Gimpel, 2019; Laugier et al.,
2021) which uses perplexity as the measure of flu-
ency and employs a different aggregation method.
Our preliminary experiments showed that J and
GM are strongly correlated, so we keep only J for
further evaluation.

5.4 Implementation Details

For ParaGeDi, we use a pre-trained T5-based (Raf-
fel et al., 2020) paraphraser,4 fine-tuned on a ran-
dom subsample of the ParaNMT dataset (Wieting
and Gimpel, 2018). As a discriminator, we fine-
tune the gpt2-medium model (Radford et al.,
2019) on the training part of the Jigsaw-1 dataset
using two control codes for toxic and polite texts.
Before fine-tuning, we change the vocabulary of
the discriminator to match that of T5, and update its
embeddings accordingly. We train the discrimina-
tor using a combined generative and discriminative
loss from Krause et al. (2020), adapting their code
for this purpose.

We use beam search decoding with 10 beams
to generate paraphrase candidates with the para-
phraser and discriminator described above. We ap-
ply the classifier from section 5.1 to select the least
toxic candidate from the 10 resulting paraphrases.

5.5 Competing Methods

We compare our models with state-of-the-art meth-
ods described in Section 2: DRG-TemplateBased,
DRG-RetrieveOnly, Mask&Infill, DLSM, STRAP,
and SST. We also implement three other baselines:
Machine Translation, Detoxifying GPT-2, and Para-
phraser. We do not directly compare our models
with GeDi, because it is a language model and was
not explicitly trained to transform texts.

Machine Translation There is evidence that au-
tomatic translation tends to eliminate toxicity (Prab-
humoye et al., 2018). Thus, we use a chain

4https://huggingface.co/ceshine/
t5-paraphrase-paws-msrp-opinosis

https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis
https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis
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of Machine Translation models for detoxification.
Namely, we perform English→ Pivot→ English
translation. We choose French and Igbo as pivot
languages. French is resource-rich and structurally
similar to English, which ensures high-quality
translations. Conversely, Igbo is low-resourced
and syntactically different. Both experiments are
conducted using Google Translate API.

Detoxifying GPT-2 GPT-2 (Radford et al.,
2019) can be adapted to a wide range of NLP tasks
using a very small task-specific dataset. We experi-
ment with the model’s ability to perform sequence-
to-sequence tasks. We train it on a parallel dataset
of 200 toxic and safe sentences. We randomly se-
lect toxic sentences from the Google Jigsaw toxic
comments dataset (Jigsaw, 2018) and manually
rewrite them in the neutral tone.

Paraphraser Krishna et al. (2020) suggest that
a general-purpose paraphraser can remove style
markers from text. We check this assumption.

5.6 Results

The performance of all tested models is given in
Table 1. Both ParaGeDi and CondBERT outper-
form other models by a large margin. The success
of CondBERT is explained by its use of heuristics
targeted at the components of the metric: (i) it is
penalized for generating toxic tokens, which en-
sures a high ACC score, (ii) over 80% tokens stay
unchanged, and the replacements are selected with
respect to the similarity to the original words, in-
creasing the overall SIM score, (iii) MLM is pre-
trained to replace masked tokens with plausible
substitutes, increasing FL. ParaGeDi is behind in
terms of similarity but has a slightly higher fluency
because generation is a better strategy in terms of
text naturalness than pointwise corrections. The
closest competitor of our models is Mask&Infill
which uses similar principles as CondBERT. How-
ever, some engineering decisions (e.g. masking of
all words at once) result in a substantial drop in flu-
ency and some decrease in style transfer accuracy.

Surprisingly, many advanced models perform be-
low the simplistic (DRG) models TemplateBased
and RetrieveOnly. TemplateBased achieves a high
similarity because it keeps most of the original sen-
tence intact, and RetrieveOnly yields a high sim-
ilarity and style transfer accuracy, because it out-
puts real non-toxic sentences from the training data.
DLSM and SST models perform full re-generation
of text (as opposed to pointwise corrections). More

importantly, their decoders are trained from scratch
on a relatively small dataset, hence their low flu-
ency scores. Conversely, STRAP, which also gen-
erates the sentence, has the access to the larger
pseudo-parallel data, resulting in higher fluency.

Another finding is that MT has detoxification
ability. However, it is inversely correlated with its
quality: the En→Ig→En detoxifies 37% of sen-
tences but has low SIM and FL scores. Conversely,
En→Fr→En yields a better output which keeps
most of the original features, including toxicity.
The same applies to the T5 paraphraser. On the
other hand, the GPT-2 model can be trained to
detoxify even on a very small number of parallel
sentences (200 in our experiments). Although it
performs below many other models, we suggest
that training it on a larger parallel dataset can boost
its performance. We show examples of the para-
phrases by the best-performing models in Table 2.

Additional examples and qualitative analysis can
be found in Appendices F and E, respectively.

5.7 Parameter Selection

Our models use multiple parameters and heuris-
tics. We perform an ablation study to explore their
usefulness. It turns out that the crucial features
of CondBERT are multiword replacement which
ensures high fluency and toxicity penalty which in-
creases style strength. On the other hand, masking
of all tokens at once as well as control of similarity
do not affect the quality. More details on the Cond-
BERT ablation study are given in Appendix B.

ParaGeDi has only one training hyperparame-
ter λ which controls the strength of its discrim-
inative loss. We discover its value has only a
marginal effect on the overall quality: the value
of J decreases only for λ = 1 which constitutes
the absence of generative loss (see Figure 3). The
style strength control influences the style accuracy,
whereas the use of word probability upper bound
increases the similarity, and the absence of beam
search decreases fluency. On the other hand, rerank-
ing, beam size, smoothing do not affect the model
performance. An ablation study of the ParaGeDi
model can be found in Appendix C.

6 Mining a Parallel Detoxifying Corpus

The STRAP model (Krishna et al., 2020) is based
on the assumption that a regular paraphraser can
transform a stylistically marked text into a neutral
text. Although our experiments show that a para-
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Model ACC SIM FL J

CondBERT (ours) 0.94 0.69 0.77 0.50 ± 0.0037*
ParaGeDi (ours) 0.95 0.66 0.80 0.50 ± 0.0032*
Mask&Infill (Wu et al., 2019b) 0.78 0.80 0.49 0.31 ± 0.0041
DRG-TemplateBased (Li et al., 2018) 0.66 0.82 0.59 0.30 ± 0.0041
DRG-RetrieveOnly (Li et al., 2018) 0.93 0.33 0.84 0.26 ± 0.0019
DLSM (He et al., 2020) 0.62 0.72 0.48 0.17 ± 0.0033
Detoxifying GPT-2 (baseline) 0.54 0.48 0.72 0.17 ± 0.0026
STRAP (Krishna et al., 2020) 0.29 0.69 0.80 0.15 ± 0.0027
En→Ig→En MT (baseline) 0.37 0.68 0.57 0.12 ± 0.0025
T5 paraphraser (baseline) 0.15 0.90 0.87 0.11 ± 0.0029
SST (Lee, 2020) 0.80 0.55 0.12 0.05 ± 0.0019
En→Fr→En MT (baseline) 0.06 0.91 0.81 0.04 ± 0.0019

Table 1: Performance of detoxification models. Gray lines denote baselines, green lines denote models suggested
in this work. The models are sorted with respect to the aggregated J score. The asterisk * denotes the scores that
are significantly higher than the third best model (Mask&Infill) with p < 0.01, based on the paired t-test.

Input no room for those stupid antics .
ParaGeDi (ours) There’s no space for all those adversities.
CondBERT (ours) no room for those . . . those bizarre exploits .
Mask&Infill no room for those compelling antics .
DRG-TemplateBased no room for those conventions antics .

Input zoological conspiracy theories ( arabisraeli conflict ) , by contrast , sucks horribly .
ParaGeDi (ours) By contrast, the zoological theories of conspiracy (the Arab-Israeli conflict) suffer horribly.
CondBERT (ours) zoological conspiracy theories ( arabisraeli conflict ) , by contrast , worked out badly .
Mask&Infill zoological conspiracy theories ( arabisraeli conflict ) , by contrast , ends horribly .
DRG-TemplateBased zoological conspiracy theories ( arabisraeli conflict ) , by contrast , instrumental horribly .

Input this whole article is bullshit .
ParaGeDi (ours) This article’s not a good deal.
CondBERT (ours) this whole article is considered incomplete .
Mask&Infill this whole article is compelling .
DRG-TemplateBased this whole article is substantially .

Table 2: Examples of detoxification by different models.
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Figure 3: Performance of ParaGeDi with the varying λ
parameter (greater λ corresponds to the stronger influ-
ence of the discriminative loss and smaller λ means the
stronger influence of the generative loss).

phraser, as well as an MT model, are bad detoxifiers
on their own (see Section 5.6), we suggest that it
is possible to find occasional detoxifying sentence
pairs in a large parallel dataset of paraphrases.

Experimental Setup To test this hypothesis,
we classify the sentences from the ParaNMT para-

Model ACC SIM FL J

Paraphraser

regular 0.15 0.90 0.87 0.11 ±0.003
mined 0.42 0.87 0.91 0.31 ±0.004

ParaGeDi

regular 0.94 0.66 0.77 0.50 ±0.003
mined 0.98 0.66 0.84 0.54 ±0.003

Table 3: Comparison of paraphrasers for ParaGeDi.

phrase dataset (Wieting and Gimpel, 2018) with our
toxicity classifier described in Section 5.1 and ob-
tain 500,000 paraphrase pairs where one sentence
is more toxic than the other (for more details on
the data collection process please see Appendix D).
We then compare the regular paraphraser from Sec-
tion 5.4 fine-tuned on a random subset of ParaNMT
(regular) with its version fine-tuned on the mined
toxic/safe parallel paraphrase corpus (mined). We
also plug both paraphrasers into ParaGeDi model
and compare the overall performance. The results
are shown in Table 3.

Discussion of Results None of the paraphrasers
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can fully detoxify the test set, but the mined para-
phraser gets a better ACC than the regular one
(42% vs 15%). When we replace the regular para-
phraser with the detoxifying one in ParaGeDi,
both detoxification rate and fluency improve with-
out loss in the similarity score. This leaves us with
the J score of 0.54, which is the highest score we
obtained in our detoxification experiment. We do
not include it in the main results (Table 1) because
this model is not unsupervised. However, this result
shows that the general-purpose ParaNMT corpus
contains a large number of toxic/safe paraphrase
pairs. We believe that mining parallel training sets
from large corpora, as opposed to unsupervised
methods of style transfer, is a fruitful direction.

7 Human Evaluation of Detoxification

While the automatic reference-free evaluation is
cheap and fast, it may be unreliable. Toxicity and
fluency classifiers are not perfect and can return
erroneous evaluations. The embedding distance
which is used to measure the content preservation
was shown to weakly correlate with human judge-
ments (Yamshchikov et al., 2021). Thus, we evalu-
ate the best-performing models manually.

Experimental Setup We design our manual eval-
uation setup to be as close as possible to the auto-
matic evaluation. We evaluate our models along
the same three metrics: style accuracy (ACCm),
content similarity (SIMm), and fluency (FLm). For
all metrics we use a ternary scale: {0, 0.5, 1} cor-
responding to a bad, partially acceptable, and fully
acceptable sentence.

We ask five annotators to evaluate the models.
Annotators are NLP researchers with MSc degree
or above and with a good command of English.
Prior to the annotation, we arranged a preliminary
round to reach common annotation understanding.
Each sentence is evaluated by three annotators, the
final score for a sentence is computed as the aver-
age of their scores. We measure the inter-annotator
agreement in terms of Krippendorff’s α. We ob-
tained the score of 0.42 for the style accuracy, 0.31
for content preservation, and 0.52 for fluency: a
moderate agreement for style and fluency annota-
tion, and low agreement for content annotation.

We evaluate three models: our new models Par-
aGeDi and CondBERT, and Mask&Infill whose
automatic scores were the highest among the exist-
ing models. The evaluation was conducted on 200
source sentences, each of them was transformed

ACCm SIMm FLm Jm

ParaGeDi (ours) 93.41 64.75 91.25 55.34
CondBERT (ours) 91.00 63.92 86.41 50.47
Mask&Infill (top 1) 75.33 59.08 62.08 27.33

Table 4: The results of manual evaluation sorted by Jm.
The differences between our models and Mask&Infill
are statistically significant with α < 0.05 based on the
paired t-test. Differences between ParaGeDi and Cond-
BERT are significant only for the FLm metric.

by each of the evaluated models. The input (toxic)
sentences for the evaluation were manually pre-
selected to filter out disfluent or senseless utter-
ances (this pre-selection did not consider the out-
puts). To compensate for the low inter-annotator
agreement, we annotate each sample three times
and report the average score.

Discussion of Results We show the performance
of models in terms of human evaluation in Table 4.
The model scores are the averaged sentence scores.
We combine the three metrics into a joint qual-
ity score which we denote as Jm. Sentence-level
Jm is a multiplication of sentence ACCm, SIMm,
and FLm, and the model Jm scores are the aver-
age of sentence scores. This manual evaluation
corroborates the superiority of our models over
Mask&Infill model. At the same time, it confirms
that our two models are not significantly differ-
ent. Although ParaGeDi outperforms CondBERT
in terms of all metrics, the difference in scores is
statistically significant only for FLm.

Besides the evaluation itself, we investigated to
what extent the automatic metrics reflect the human
judgements. To do that, we compute their Spear-
man’s ρ correlation score with human judgements
(see Table 6). For style, we consider the accuracy
of toxicity classifier that we used for the evaluation
(ACC) and its version which returns the confidence
instead of the binary label (ACC-soft). For content
we compare SIM (embedding similarity used for
computing the J score) and BLEU score between
the original and detoxified sentence. For fluency,
we consider the linguistic acceptability classifier
(FL) and perplexity of the GPT-2 (Radford et al.,
2019) language model (PPL) which is used for eval-
uating fluency in many works on style transfer and
other generation tasks.

This evaluation shows that the tested metrics of
content preservation show only weak correlation
with manual scores, which agrees with the previous
research (Yamshchikov et al., 2021). The correla-
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Model ACC SIM FL J BLEU

human 0.81 0.65 0.84 0.445 ± 0.011 1.000

ParaGeDi (ours) 0.93 0.62 0.88 0.515 ± 0.009* 0.038 ± 0.005
Mask & Infill (Wu et al., 2019b) 0.89 0.76 0.62 0.420 ± 0.013 0.145 ± 0.008
DualRL (Luo et al., 2019) 0.87 0.75 0.63 0.395 ± 0.012 0.152 ± 0.008
CondBERT (ours) 0.86 0.65 0.62 0.338 ± 0.012 0.125 ± 0.007
SST (Lee, 2020) 0.74 0.65 0.41 0.225 ± 0.011 0.100 ± 0.007
DRG-RetrieveOnly (Li et al., 2018) 0.95 0.29 0.83 0.225 ± 0.006 0.004 ± 0.001
DRG-TemplateBased (Li et al., 2018) 0.82 0.70 0.24 0.115 ± 0.009 0.117 ± 0.007

Table 5: Performance of the sentiment transfer models on the YELP dataset. The models are sorted with respect to
the aggregated J score. * indicates the score which is significantly higher than the next best model with p < 0.01.

ACCm SIMm FLm

ACC-soft 0.59 SIM 0.34 FL 0.54
ACC 0.51 BLEU 0.19 PPL 0.45

Table 6: Spearman’s ρ of automatic metrics for evaluat-
ing style, content, and fluency with our human scores.

tion of automatic style and fluency metrics with
human judgements is moderate. It turns out that
the confidence of style classifier is a better style
accuracy metric than a binary classifier and the ac-
ceptability classifier works better than perplexity,
confirming the criticism of perplexity as a fluency
metric (Krishna et al., 2020).

8 Sentiment Transfer Experiments

Text detoxification is not as well-established as
other style transfer tasks, which makes it is difficult
to put our models in the context of other works on
style transfer. Thus, we conduct an experiment on
a different domain, namely, sentiment transfer.

Experimental Setup We train ParaGeDi and
CondBERT on the Yelp reviews dataset (Li et al.,
2018) and compare them with Mask&Infill, SST,
DRG-TemplateBased, DRG-RetrieveOnly, and Du-
alRL models (see Section 2). We tune the hyper-
parameters of ParaGeDi and CondBERT on the
Yelp development set and use the outputs of other
models generated by their authors.

We evaluate the models using the J as in our
detoxification experiments. For the evaluation of
style transfer accuracy, we train two sentiment clas-
sifiers on two disjoint parts of the Yelp dataset as
in Section 5.1. We use one for inference and an-
other for evaluation. We also compute the BLEU
score against human references provided by Li et al.
(2018). The results are shown in Table 5, averaged
over two transfer directions.

Discussion of Results ParaGedi outperforms
other models in terms of J. As before, the other
models fail to generate fluent texts because they re-

place only specific words or because they learn to
generate texts from scratch. ParaGeDi model is the
only competitor which combines pre-trained mod-
els and with full regeneration. The performance
of the CondBERT model is low on this task, cor-
roborating that detoxification and style transfer for
other domains require different techniques.

On the other hand, the BLEU score questions
this result. Compared to the human references,
the best-performing model is DualRL followed
by the two MLM-based models: Mask&Infill and
our CondBERT. The evaluation of reference hu-
man answers also questions the referenceless met-
rics. First, we see that the ACC score is limited
by the classifier performance. Since it gives only
0.81 to presumably 100% correct manually writ-
ten sentences, the small differences in ACC should
not be considered significant, and the ACC above
0.81 is unreliable. Overall, since the score of hu-
man answers is close to those of ParaGeDi and
Mask&Infill, ParaGeDi can still be considered a
strong style transfer model, and more precise eval-
uation should be done by humans because metrics
cannot distinguish between the models at this level.

9 Conclusion

We present two style transfer models tailored for
detoxification, i.e. transfer from toxic to non-toxic
texts. Both of them combine high-quality pre-
trained LMs with the extra style guidance. Par-
aGeDi is based on a paraphraser guided by a style-
conditioned GPT-2 model. CondBERT model is
based on BERT which does not need any fine-
tuning, and all style control is performed with a
pre-trained toxicity classifier. We conduct a large-
scale study of style transfer models exploiting both
automatic and manual evaluation. Our experiments
show that the proposed methods outperform other
state-of-the-art style transfer models on the tasks
of detoxification and sentiment transfer.
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Ethical Statement

Toxicity is a sensitive topic where the unexpected
results and byproducts of research can cause harm.
Therefore, we would like to consider some ethical
concerns related to our work.

On Definition of Toxicity Toxicity is an um-
brella term for almost any undesirable behaviour on
the Internet. It ranges from “mild” phenomena like
condescending language (Perez Almendros et al.,
2020) to grave insults or oppression based on racial
or other social-demographic characteristics.

While annotators agree when labelling serious
cases of toxicity such as hate speech (Fortuna and
Nunes, 2018), the labelling of less severe toxicity
is subjective and depends on the annotator’s back-
ground (Al Kuwatly et al., 2020). This can cause
the underestimation of certain types of toxicity. To
define the toxicity in the most objective feasible
way, we adopt a data-driven approach as presented
in detail formally in Appendix A. Both models
we propose recognise toxicity based on a toxicity-
labelled dataset and do not require any additional
manually created dictionaries or rules. Thus, their
understanding of toxicity can be tuned with the
input data. This ensures that given a corpus with
unbiased toxicity labelling our models can produce
unbiased detoxification.

On the other hand, in case the training corpus is
biased, the model can reproduce the biases, so it
should be applied with caution.

Toxification of Texts Detoxification task implies
the possibility to perform the opposite transforma-
tion, i.e. to rewrite a neutral text into a toxic one.
Various style transfer models, including ours, could
in principle be used to complete this task. However,
in case of CondBERT, the quality of such trans-
formation would be bad, and it would be almost
impossible to pass the results of this “toxification”
off as real toxic sentences. The reason for that is
the structure of toxic data.

One of the main properties of toxic style is the
presence of lexical markers of this style (rude or
obscene words). Such markers (i) carry most of
stylistic information of a sentence (i.e. their pres-
ence is a strong indicator of this class), (ii) have
synonyms which are free from this stylistic infor-
mation. Both our methods strongly rely on these
properties. They identify toxic words and replace
them with non-toxic synonyms. On the other hand,
if performing the opposite transformation, we can-

not use these properties any more. First, there do
not exist non-toxic words which are strong indica-
tors of neutral (non-toxic) style. Second, it is al-
most infeasible to identify non-toxic words which
have toxic synonyms and replace them appropri-
ately. Therefore, we suggest that CondBERT is not
suitable for toxification.

The above arguments do not prove that Cond-
BERT or ParaGeDi cannot be applied for toxifica-
tion. However, they suggest that the quality of the
resulting text might not be higher than with simpler
toxification methods (e.g. handwritten rules for
inserting rude words).

Detoxification as a Censorship Another con-
cern is the fact the detoxification technology could
no used to rewrite user-generated messages, which
might be considered a form of censorship. We
would like to look at that from a different perspec-
tive. The social media currently already perform
censorship, e.g. Instagram provides tools for re-
moval of messages based on automatically identi-
fied harmful content.5

On the other hand, we suggest mitigating this
policy by rewriting toxic messages instead of re-
moving them altogether. Last but not least, we
suggest that user messages should not be modified
without user consent. The detoxificaiton models
should be used for suggesting detoxifying edits
rather than performing them automaticallly.

At the same time, detoxification models can
make chatbots safer by detoxifying (if necessary)
their answers before sending them to users. An
automatically generated toxic comment by a neural
chatbot may be the result of pre-training on the
biased textual data – a problem which is currently
unsolved completely (Gehman et al., 2020). There-
fore, a detoxification of automatically generated
content might be a valid use-case for minimizing
reputational losses for the company created such
an unmoderated chatbot (Babakov et al., 2021).
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A Definition of Text Detoxification Task

In our work, we adhere to the data-driven definition
of toxicity. The toxicity is a particular binary value
associated with a text: {toxic, neutral}. We
assume that this textual characteristic is measurable
using a function σ(xi) → si that obtains as input
text xi and returns the corresponding style label
si. For instance, it can be implemented using a
text classifier.

Let us assume a set of two discreet mutually
exclusive styles S = {ssrc, stg} which corre-
sponds to the source toxic and target neutral
styles. Let us consider two text corpora Dsrc =
{dsrc1 , dsrc2 , ..., dsrcn } and Dtg = {dtg1 , d

tg
2 , ..., d

tg
m}

belonging to the source and target styles ssrc and
stg, respectively. For each text di, let us assume
that it has a style si measurable with the function
σ : D → S. There also exists a binary function
δ : D × D → [0, 1] that indicates the semantic
similarity of two input texts and a unary function
ψ : D → [0, 1] that indicates the degree of the text
fluency. In general, the sizes of the source and the
target corpora Dsrc and Dtg are different (n 6= m)
and the texts in them are not aligned, i.e., in general,
δ(dsrci , dtgi ) 6= 1. If n = m and δ(dsrci , dtgi ) = 1
for all texts, this is a special case of a parallel style-
aligned corpus. Given the introduced notations, we
define the task of text detoxification as follows:

A text detoxification model is a function
α : S × S × D → D that, given a source
style ssrc, a target style stg, and an input text dsrc,
produces an output text dtg such that:
• The style of the text changes from the

source style ssrc to the target style
stg: σ(dsrc) 6= σ(dtg), σ(dtg) = stg;

• The content of the source text is saved in the
target text as much as required for the task:
δ(dsrc, dtg) ≥ tδ;

• The fluency of the target text achieves the re-
quired level: ψ(dtg) ≥ tψ,

where tδ and tψ are the error tolerance threshold
values for the content preservation (δ) and fluency
(ψ) functions.

When removing the toxicity from a text, we in-
evitably change a part of its meaning, so full con-
tent preservation cannot be reached. However, we
should attempt to save the content as much as pos-
sible and adjust tδ to the needs of this task.

Thus, the task of obtaining a text detox-
ification model with the best parameters set
may be viewed as maximizing the probabil-

ity P (dtg|dsrc, ssrc, stg) given the three above-
mentioned constraints based on parallel or non-
parallel text corpora Dsrc and Dtg.

B CondBERT Ablation Study

Our CondBERT model was inspired by Wu et al.
(2019a) and is similar to Wu et al. (2019b), but has
some unique properties. We test their importance
with the ablation study on the detoxification task.

Model ACC SIM FL J

Full model 0.91 0.73 0.75 0.50

Mask all toxic tokens 0.94 0.69 0.77 0.50
No similarity penalty 0.92 0.73 0.75 0.50
No multiword replacement 0.87 0.80 0.56 0.40
No toxicity penalty 0.57 0.79 0.82 0.33

Table 7: Results of the CondBERT ablation study on
detoxification.

We use two heuristics for content preservation:
not masking the toxic tokens and reranking replace-
ment candidates with respect to their similarity to
the original tokens. Removing any of these heuris-
tics leads to lower content preservation and higher
style accuracy, showing the inverse correlation of
these properties (see Table 7). However, the J score
for these models stays the same. On the other hand,
turning off the possibility of filling a single mask
with multiple words reduces the fluency and style
accuracy, although obviously yields a better con-
tent preservation score, because the output sentence
contains less new words. This affects the J score
which is reduced for this model. Finally, the great-
est impact on the J metric is caused by eliminating
the toxicity penalty. The ACC is reduced dramati-
cally, and although the other two metrics slightly
grow compared to the full model, they cannot com-
pensate for the low style accuracy.

C ParaGeDi Ablation Study

ParaGeDi model consist of a paraphraser, a
language model trained with the generative-
discriminative loss, and a style classifier for rerank-
ing hypotheses. In addition to that, we use a num-
ber of heuristics during inference. We conduct
ablation study on the detoxification task to under-
stand the usefulness of these components. We test
the following variations of ParaGeDi:
• no discriminative loss (λ = 0),
• no generative loss (λ = 1),
• no upper bound (u =∞),
• no discriminator (w = 0),
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Model ACC SIM FL J

Full ParaGeDi 0.95 0.66 0.79 0.50

no reranking 0.87 0.70 0.80 0.50
beam of size 5 0.93 0.67 0.79 0.50
no discriminative loss 0.90 0.68 0.81 0.49
no smoothing 0.96 0.63 0.78 0.47
no beam search 0.88 0.66 0.70 0.41
no control of style strength 0.56 0.80 0.81 0.38
no generative loss 0.77 0.70 0.67 0.37
no upper bound 0.99 0.35 0.76 0.27

Table 8: Results of the ParaGeDi ablation study.

• no extra control of style strength (w = 1),
• no probability smoothing (α = 0),
• no reranking,
• no beam search (beam size of 1).

In each configuration, all other parameters are
fixed. The performance of models is given in Ta-
ble 8.

Decreasing the number of beams leads to the de-
terioration of fluency and of style strength because
of the smaller number options for the reranker to
choose from. Removing the reranker leads to lower
style strength with small gains in similarity or flu-
ency. Turning off the smoothing of probabilities
makes similarity and fluency degrade a little. Re-
moving the upper bound on the discriminative cor-
rection leads to nearly 100% style transfer but to
very low similarity of the generated sentences to
the original ones, as the model starts hallucinating.
Decreasing the w parameter reduces style accu-
racy but improves fluency and similarity, showing
a clear trade-off between them.

The individual components of the loss are
slightly less important for style than inference pa-
rameters. With only the discriminative loss the
model is still able to successfully transform style in
77% of the cases, and the generative loss alone
is able to change the style in 90% cases. The
latter figure shows that the model equipped with
style labels can discriminate between styles even
if it was not explicitly trained to do that. On the
other hand, the elimination of the generative loss
results in a significant drop in fluency. Although
the class-conditional LM in ParaGeDi is a GPT2
model which has already been trained for genera-
tion task, the lack of generation-based fine-tuning
reduces the quality of the resulting text.

D Details of Mining the Parallel Corpus

Here we describe in more detail the process of min-
ing of a detoxifying parallel paraphrase corpus. We

use the ParaNMT dataset (Wieting and Gimpel,
2018) comprised of 50 million English sentences
and their paraphrases back-translated from Czech.
We filter the dataset keeping only the sentence pairs
with moderate similarity (0.6 to 0.95) and similar
length (with difference at most 40%), which is ap-
proximately 50% of the dataset. We compute the
similarity as the cosine distance between the aver-
aged BERT embeddings of all words in a sentence.
After this similarity- and length-based filtering we
score each sentence with a RoBERTa-based toxi-
city classifier from Section 5.1 and keep only the
pairs with the difference in toxicity scores of at
least 50%. Thus, we obtain 500,000 sentence pairs.
Their examples are given in Table 9.

Manual inspection of a random sample of the
selected pairs shows that around 10% of them are
invalid paraphrases, 40% are in fact both toxic or
both safe, and around 50% of them are valid detox-
ifying paraphrases. This suggests that with more
rigorous filtering we can yield a corpus for detox-
ification of around 250,000 high-quality parallel
sentences, which is larger than the majority of ex-
isting parallel style transfer datasets.

E Qualitative Analysis

Both automatic and manual joint scores show that
our best models are halfway between useless and
perfect. But the actual success rate is much less
than half. We call a detoxified sentence “perfect”
if all three annotators gave it the maximal scores
for all three aspects. With this definition, only
20% of ParaGeDi sentences and 14% of Cond-
BERT sentences are perfect, and only about 1.5%
of Mask&Infill sentences are perfect.

As you can judge from Table 4, the main cause of
imperfection for all models is distortion of meaning.
Below we describe our manual investigation into
the causes of this distortion.

In half of the cases, ParaGeDi conveys the mean-
ing more or less adequately. Its mistakes include:
• replacement of toxic words by similarly look-

ing less toxic words with different meaning (e.g.
“whore” → “Who’s who”, “stop behaving like
fascist thugs”→ “Stop looking at fascism”, “tax-
man massive cunt , only outdone by linuxcunt
himself .” → “Taxman’s massive cut, outdone by
Linuxcune himself.”).

• replacement of sentence meaning (“the election
was yours to lose”→ “the election is to be won”,
“this crap hole institute run by motherfuckers and
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Reference Translation sim ld toxref toxtrn

0 If Alkar is flooding her with psychic waste,
that explains the high level of neurotrans-
mitters.

if Alkar floods her with her mental waste,
it would explain the high levels of neuro-
transmitter.

0.78 0.01 0.01 0.98

1 Now you’re getting nasty. you’re becoming disgusting. 0.75 0.07 0.06 0.99
2 Well, we could spare your life, for one. well, we can spare your life. 0.92 0.27 0.21 0.98
3 Ah! Monkey, you’ve got to snap out of it. monkey, you have to wake up. 0.66 0.31 0.05 0.99
4 I’ve got orders to put her down. I have orders to kill her. 0.73 0.18 0.01 0.99
5 I’m not gonna have a child... ...with the

same genetic disorder as me who’s gonna
die. L...

I’m not going to breed kids with a genetic
disorder that makes them die.

0.70 0.20 0.95 0.04

6 They’re all laughing at us, so we’ll kick
your ass.

they’re laughing at us. We’ll show you. 0.62 0.23 0.99 0.00

7 Maine was very short on black people back
then.

there wasn’t much black in Maine then. 0.72 0.19 0.96 0.15

8 Briggs, what the hell’s happening? Briggs, what the hell is going on? 0.92 0.00 0.16 0.84
9 Another one simply had no clue what to

do, so whenever he met my brother he’d
beat the crap out of him, and then say:

another simply didn’t know what to do,
so whenever he met my brother, he nearly
beat the shit out of him.

0.88 0.10 0.05 0.93

10 I suppose you want me to buy you flowers
and chocolates and whisper sweet noth-
ings.

you’d probably want me to buy you some
chocolates and flowers... and whispered
some pretty rubbish.

0.80 0.16 0.00 0.98

11 So now their spirits are cursed, walking
back roads, waterways, and if they find an
unfaithful man, they kill him, and that man
is never seen again.

their souls are cursed, they guard the paths,
he says, and when they encounter an un-
faithful man, he will be killed, and his body
will never be found.

0.75 0.01 0.84 0.14

12 Freezing him. I’ll freeze him! 0.78 0.18 0.01 0.57
13 Come on, Cal, leave that shit alone. come on, Cal, put it down. 0.66 0.27 0.99 0.00
14 So he’s the Top dog. he’s the tallest son of a bitch. 0.61 0.36 0.00 0.99
15 I swore when I went out with Xander Har-

ris... ...I’d rather die than datea fixer-upper
again.

when I was dating Alex Harris, I swore I’d
rather die than go out with a loser.

0.79 0.15 0.01 0.99

16 I’m famous, and you’re done. I’m famous, and you’re dead. 0.82 0.00 0.00 0.98
17 To quote Jake Oppenheimer: I, who am

about to die, must seem to them something
“God-awful.”...

to quote Jake and Oppenheimer: “I must
die, I must feel like a terrible god.”

0.70 0.18 0.00 0.68

18 “Could you please be quiet, Miss Lavish?”
said Moist.

’could you keep your mouth shut, Miss
Opulent? ’Said Moist.

0.81 0.10 0.00 0.76

19 Murder for hire. murder to order. 0.70 0.00 0.07 0.96

Table 9: Examples of mined detoxifying paraphrases. Here sim is similarity between sentences, computed by
(Wieting and Gimpel, 2018), ld is relative difference in length, toxref and toxtrn are toxicity scores calculated by
our classifier.

bastards”→ “a deloitte institute for mothers and
their children”)

• Avoiding the toxic or difficult part, for example
“why we gotta have this miscegenation crap ?”
→ “Why do we need to have it?”. In some cases,
however, ParaGeDi masks or rephrases the toxic
part of the message, while still preserving the
general meaning, for example “start there first
you idiot!” → “Let’s start there first.”
In general, ParaGeDi makes the impression of

fantasising too much, because it often rewrites the
whole sentence, and from time to time changes its
structure significantly.

CondBERT, on the other hand, usually preserves
the sentence structure, but often replaces words
with inappropriate substitutes, often antonyms:
“selfish”→ “misunderstood”, “racists”→ “politi-
cians”, “cunt”→ “nursemaid”, “to troll and harass”

→ “to try out and help”, “asskissers”→ “honest
people”, “retarded” → “beautiful”, “whore” →
“sweetheart”. Sometimes these replacements are
more adequate, e.g. “old cock”→ “old-fashioned
stuff”, “your attitude is shit”→ “your attitude is
completely wrong”, “bitch i warned yall” → “i
guess i warned you”. But the proportion of sen-
tences with the meaning preserved is smaller for
CondBERT, being less than 40%.

The DLSM and Template-based DRG models
often preserve the meaning by just preserving the
toxic words, so their total success rate is low. The
Retrieve-only DRG model almost never preserves
the meaning. The Mask&Infill model seems to be
overfitted: it often replaces toxic words with irrele-
vant non-toxic words (e.g. “crap”→ “compelling”)
that the model apparently considers to be the “mark-
ers” of the non-toxic style. These properties make
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the baselines unsuitable for the detoxification task
without adaptation, and the CondBERT model is in
fact such an adaptation.

Typical mistakes of both ParaGeDi and Cond-
BERT can be attributed mostly to the insufficiency
of semantic understanding: they often replace toxic
words with semantically related words of differ-
ent (often opposite) meaning, or simply with sim-
ilarly looking words. We conjecture that with a
paraphraser trained on a larger corpus (we have
used only 2% of ParaNMT) or on more difficult
examples would improve the ability of ParaGeDi
to preserve meaning.

Generally, our models produce the impression
of not being mature enough for fully automatic
use with texts where meaning is important. How-
ever, they can be used to suggest detoxification
options to human writers, or to detoxify the output
of chit-chat bots where the cost of producing an
inarticulate utterance is considerably less than the
cost of producing a toxic one.

F Examples of Detoxification

Table 10 shows the examples of detoxification by
our models ParaGeDi and CondBERT and the best
competitor Mask&Infill.
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Input id have relatives signing up for aol finally in the mid to late 90s forwarding me stupid conservative conspiracy
theory garbage .

ParaGeDi (ours) I’d have relatives sign up for aol in the mid-to late 90s. and send me some unorthodox conspiracy theories.
CondBERT (ours) id have relatives signing up for aol finally in the mid to late 90s forwarding me with some very conservative

conspiracy theory stuff .
Mask&Infill id have relatives signing up for aol finally in the mid to late 90s forwarding me to conservative conspiracy

theory ideas .

Input why dont you bung off . smoke a fag . and have a cuppa ?
ParaGeDi (ours) Why don’t you take a break. smoke a cigar. and have a cup of tea?
CondBERT (ours) why dont you bung off . smoke a great deal . and have a cuppa ?
Mask&Infill why dont you bung off . smoke a compelling compelling . and have a cuppa ?

Input can someone please fix that crap ?
ParaGeDi (ours) Can someone please do that?
CondBERT (ours) can someone please fix that stuff ?
Mask&Infill can someone please fix that compelling ?

Input its a very stupid name !
ParaGeDi (ours) It’s a very strange name!
CondBERT (ours) its a very . . . strange . . . name !
Mask&Infill its a very compelling name !

Input im a rookie pilot and would have never have done something this stupid .
ParaGeDi (ours) I’ve been a pilot for a while. and I never would have done anything like
CondBERT (ours) im a rookie pilot and would have never have done something this wrong .
Mask&Infill im a rookie pilot and would have never have done something this compelling .

Input cut the damn funding and lets move on to the next program .
ParaGeDi (ours) Cut the funding and move on to the next program.
CondBERT (ours) cut the amount of the funding and lets move on to the next program .
Mask&Infill cut the compelling funding and lets move on to the next program .

Input bitch i warned yall . didnt i ?
ParaGeDi (ours) Bits I’ve warned a lot. right?
CondBERT (ours) i guess i warned you . didnt i ?
Mask&Infill compelling i warned yall . didnt i ?

Input i was such an asshole .
ParaGeDi (ours) I was an ad.
CondBERT (ours) i was such an emotional mess .
Mask&Infill i was such an compelling .

Input your statements show me how ignorant you are .
ParaGeDi (ours) Your statements show me that you’d be indifferent.
CondBERT (ours) your statements show me how very wronged you are .
Mask&Infill your statements show me how compelling you are .

Input trump will see justin as a lightweight fool .
ParaGeDi (ours) Trump will see justin as a light-hearted man.
CondBERT (ours) trump will see justin as a lightweight world title contender .
Mask&Infill trump will see justin as a lightweight compelling .

Input this whole article is bullshit .
ParaGeDi (ours) This article’s not a good deal.
CondBERT (ours) this whole article is considered incomplete .
Mask&Infill this whole article is compelling .

Input please dont revert my edits without good reasoning just makes you look stupid .
ParaGeDi (ours) Please do not reverse my edits without a good reason.
CondBERT (ours) please dont try to do my edits without good reasoning just makes you look pretty bad .
Mask&Infill please dont revert my edits without good reasoning just makes you look compelling .

Input do some research before you make a fool of yourself .
ParaGeDi (ours) Do a bit of research.
CondBERT (ours) do some research before you make a bigger picture out of my life .
Mask&Infill do some research before you make a compelling of yourself .

Input try not to make wikipedia look so stupid .
ParaGeDi (ours) Try not to make Wikipedia seem like a bad idea.
CondBERT (ours) try not to make wikipedia look so unsettling .
Mask&Infill try not to make wikipedia look so compelling .

Input i will make sure i revert any stupid edits you make from now on .
ParaGeDi (ours) I’ll be sure to correct any wrong edits that you make. from now on.
CondBERT (ours) i will make sure i do not make any mistake about any edits you make from now on .
Mask&Infill i will make sure i revert any compelling edits you make from now on .

Table 10: Examples of detoxification by the best-performing models considered in our study.


