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Abstract

Knowledge graph embedding, representing en-

tities and relations in the knowledge graphs

with high-dimensional vectors, has made sig-

nificant progress in link prediction. More re-

searchers have explored the representational

capabilities of models in recent years. That

is, they investigate better representational mod-

els to fit symmetry/antisymmetry and combi-

nation relationships. The current embedding

models are more inclined to utilize the identi-

cal vector for the same entity in various triples

to measure the matching performance. The ob-

servation that measuring the rationality of spe-

cific triples means comparing the matching de-

gree of the specific attributes associated with

the relations is well-known. Inspired by this

fact, this paper designs Semantic Filter Based

on Relations(SFBR) to extract the required at-

tributes of the entities. Then the rationality

of triples is compared under these extracted

attributes through the traditional embedding

models. The semantic filter module can be

added to most geometric and tensor decompo-

sition models with minimal additional mem-

ory. Experiments on the benchmark datasets

show that the semantic filter based on relations

can suppress the impact of other attribute di-

mensions and improve link prediction perfor-

mance. The tensor decomposition models with

SFBR have achieved state-of-the-art.

1 Introduction

Knowledge Graphs (KGs) are collections of large-

scale triples, such as Freebase(Bordes et al., 2013) ,

YAGO (Suchanek et al., 2008) and DBpedia(Auer

et al., 2007). KGs play a crucial role in applica-

tions such as question answering services, search

engines, and medical care. Although there are bil-

lions of triples in KGs, they are still incomplete.

These incomplete knowledge bases will bring limi-

tations to practical applications. Therefore, knowl-

edge graph completion, known as link prediction,

which automatically predicts missing links between

entities based on given links, has recently attracted

growing attention.

Inspired by word embedding (Mikolov et al.,

2013), researchers try to solve the link prediction

through knowledge graph embedding. Knowledge

graph embedding models map entities and rela-

tions into low-dimensional vectors (or matrices,

tensors), measure the rationality of triples through

specific functions between entities and relations,

and rank the triples with function scores. Since

TransE(Bordes et al., 2013) proposes to use rela-

tion vectors to represent the geometric distance

between entities, many variants emerge. For exam-

ple, TransH(Wang et al., 2014) first explores the

different representations of entities under different

relations. TransR(Lin et al., 2015) attempts to map

entities to the relational space through a particular

matrix. TransD(Ji et al., 2015) tries to incorporate

the different representations of the entities under

the entity and relation into the calculation. These

variants attempt to perform complex transforma-

tions based on relations or triples to achieve differ-

ent representations of entities in different semantic

spaces.

Recently, scholars are more inclined to solve link

prediction by designing models with more powerful

representation, such as ComplEx(Trouillon et al.,

2016), Tucker(Balazevic et al., 2019), RotatE(Sun

et al., 2019), a method based on vector space rota-

tion, and HAKE(Zhang et al., 2020a). Contrary to

the actual semantic description, models in recent

research apply identical representation for the same

entity in different triples.

Since the invention of TransE(Bordes et al.,

2013), early scholars, who realized that we should

compare different attributes of entities in different

triples, tried to improve the model in this direc-

tion. However, most recent studies only focus on

investigating the more robust representation of en-

tities, such as AutoETER(Niu et al., 2020) and Ro-

tatE(Sun et al., 2019). Surprisingly, the attempt to
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find various representations of entities in different

semantic spaces is gradually discarded.
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Figure 1: Comparison of boxes with the same shape

and different colors.

In practice, entities are collections of attributes,

and each entity can contain various semantic at-

tributes. Figure 1 shows the comparison of boxes

with the same shape and different colors. When

comparing different attributes such as colors or

shapes, entities should have different expressions

rather than exact representations. The paper be-

lieves that each relation describes the links between

the head and tail entities in particular attributes.

Measuring the plausibility of a given triplet means

comparing the matching degree of the attributes

associated with the predicate between the entities.

Therefore, this paper proposes a semantic filter

module to select different attributes of entities in

different triples.

This paper designs a semantic filter based on

relations. By employing the semantic filter, only

the semantics associated with the relations are ex-

tracted, and the information of other unneeded di-

mensions is suppressed. As a result, the head and

tail entities are compared under a limited semantic

space.

We take the MLP-based semantic filter as the

departure. Following the regularization strategy

of diagonalization, this paper designs two SFBRs:

Linear-2 and Diag. Note that MLP-based SFBR

is a general model that can be transformed into

most geometric and tensor decomposition models

through special regularizations. We analyze several

models in Appendix A to show the generality of

MLP-based SFBR.

Overall, this paper proposes Semantic Filter

Based on Relations (SFBR), which can be added

to geometric and tensor decomposition models.

SFBR suppresses the interference of useless di-

mensions and improves the reasoning performance;

SFBR occupies minimal additional resources. Ex-

periments on the benchmark datasets show that the

tensor decomposition models with SFBR achieve

state-of-the-art.

2 Related work

In this section, we describe related works and

the critical differences between them. We divide

knowledge graph embedding models into three

leading families(Akrami et al., 2020), including

Tensor Decomposition Models, Geometric Models,

and Deep Learning Models.

Tensor Decomposition Models. These models

implicitly consider triples as tensor decomposition.

DistMult (Yang et al., 2015) constrains all relation

embeddings to be diagonal matrices, which reduces

the space of parameters to access a more accessi-

ble model to train. RESCAL(Nickel et al., 2011)

represents each relationship with a full rank matrix.

ComplEx(Trouillon et al., 2016) extends the KG

embeddings to the complex space to better model

asymmetric and inverse relations. Analogy(Liu

et al., 2017) employs the general bilinear scoring

function but adds two main constraints inspired by

analogical structures. Based on the Tucker decom-

position, TuckER(Balazevic et al., 2019) factorizes

a tensor into a set of vectors and a smaller shared

core matrix.

Geometric Models. Geometric Models inter-

pret relations as geometric transformations in the

latent space. TransE(Bordes et al., 2013) is the first

translation-based method, which treats relations

as translation operations from the head entities to

the tail entities. Along with TransE(Bordes et al.,

2013), multiple variants, including TransH(Wang

et al., 2014), TransR(Lin et al., 2015) and TransD(Ji

et al., 2015), are proposed to improve the embed-

ding performance of KGs. Recently, RotatE(Sun

et al., 2019) defines each relation as a rotation from

head entities to tail entities.

Deep Learning Models. Deep Learning Mod-

els use deep neural networks to perform knowl-

edge graph completion. ConvE(Dettmers et al.,

2018) and ConvKB(Nguyen et al., 2018) employ

convolutional neural networks to define score func-

tions. CapsE(Nguyen et al., 2019) embeds entities

and relations into one-dimensional vectors under

the basic assumption that different embeddings en-

code homologous aspects in the same positions.

CompGCN(Vashishth et al., 2020) utilizes graph

convolutional networks to update the knowledge

graph embedding.

There are also other models, such as

DURA(Zhang et al., 2020b), which are pro-

posed to solve overfitting. Together, most of the

above studies intend to find a more robust repre-
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senting approach. Measuring the effectiveness of

certain triples is to compare the matching degree

of specific attributes based on relations. Only a

few models, such as TransH(Wang et al., 2014),

TransR(Lin et al., 2015), and TransD(Ji et al.,

2015), consider that entities in different triples

should have different representation. However,

these variants require many occupations of

resources and are limited to particular models.

3 Background

In this section, we introduce KG embedding and

KG completion tasks. Next, we briefly introduce

several models involved in this paper.

KG Completion. Knowledge graphs

are collections of factual triples K =
{(h, r, t) , h, t ∈ E , r ∈ R}, where (h, r, t)
represents a triple in the knowledge graph, h, t, r
are head, tail entities and relations respectively.

Knowledge graph embedding associates the

entities h, t and relations r with vectors h, t, r.

Then we design an appropriate scoring function

dr(h, t) :E ×R× E → R, to map the embedding

of the triple to a certain score. For a particular

question (h, r, ?), the task of KG completion

is ranking all possible answers and obtain the

preference of prediction.

Geometric Models. The models treat the re-

lations as the transformation of entities in latent

spaces. TransE (Bordes et al., 2013)is the first

model that uses vectors to represent entities and re-

lations. TransE supposes that entities and relations

satisfy h+ r = t where h, r, t ∈ Rn. The scoring

function can be expressed as:

dr(h, t) = −‖h+ r− t‖ (1)

RotatE(Sun et al., 2019) defines the relation as a

rotation from head entities to tail entities in com-

plex spaces. Given a triple {h, t, r}, we expect that

t = h ◦ r, where h, r, t ∈ Ck are the embeddings,

the modulus for each dimension of relations satisfy

|ri| = 1 and ◦ denotes the Hadamard product. The

score function is :

dr (h, t) = −‖h ◦ r− t‖2 (2)

Where h, r, t ∈ Ck, |ri| = 1.

Tensor Factorization Models. Models in this

family interpret link prediction as a task of ten-

sor decomposition, where triples are decomposed

into a combination (e.g., a multi-linear product) of

low-dimensional vectors for entities and relations.

CP(Lacroix et al., 2018) represents triples with

canonical decomposition. Note that the same entity

has different representations at the head and tail of

the triplet. The score function can be expressed as :

dr (h, t) =
∥∥hTrt

∥∥ (3)

Where h, r, t ∈ Rk.RESCAL(Nickel et al., 2011)

represents a relation as a matrix Mr ∈ Rd×d that

describes the interactions between latent represen-

tations of entities. The score function is defined as:

dr (h, t) =
∥∥hTMrt

∥∥ (4)

ComplEx(Trouillon et al., 2016) extends the real

space to complex spaces and constrains the em-

beddings for relation to be diagonal matrixs. The

bilinear product becomes a Hermitian product in

complex spaces. The score function can be ex-

pressed as:

dr (h, t) = Re
(
hTdiag(r) t

)
(5)

where h, r, t ∈ Ck.

4 SFBR model

This section introduces a novel module—A

Semantic Filter Based on Relations for knowledge

graph completion. We first introduce the basic

framework of SFBR in Section 4.1 and the specific

filter design in Section 4.2. Finally, we introduce

several cases on several models in Section 4.3.

4.1 Framework of SFBR
As is shown in the left of Figure 2, the mainstream

KG embedding model depends on the unique rep-

resentation of entities and relations. The rationality

of possible triples is compared through the rankings

calculated by the score function.

It is widely accepted that an entity may contain

various attributes. This paper believes that each

relation describes the relationship between entities

in specific attributes. In different triples with differ-

ent relations, the attributes compared by the triples

should also be unique. The comparison requires

the choice of needed attributes. For a given triplet,

this paper filters out the needed attributes of the

triplet by special functions and ranks the triples

with the scores calculated by filtered attributes.



7923

Head 
Embedding

Relation 
Embedding

Output

Score Funtion

,rd h t

Tail 
Embedding 

Head 
Embedding

Relation 
Embedding

Output

Score Funtion

,rd h t

Tail 
Embedding 

Semantic Filter 
Based on Relations

Semantic Filter 
Based on Relations

Figure 2: The framework of traditional embeddings models(left) and the framework of embedding models with

SFBR(right).

As shown in the right of Figure 2, based on the

traditional embedding method, this paper designs a

relation-based function for the entities. This func-

tion reinforces the dimensions associated with the

relations and suppresses the information of other

unrelated dimensions. This operation is similar to

filters used in signal processing, so the module is

named the relation-based semantic filter. The score

function can be express as :

dr (h, t) = dr (h, t) (6)

⇒dfr (h, t) = dr

(
fh
r (h) , f t

r (t)
)

(7)

Where dr (h, t) is the traditional scoring function,

dfr (h, t) is the modified scoring function and fr (∗)
is the semantic filter.

4.2 Semantic Filter Module
We first try to design the filter based on multilayer

perceptron (MLP) for SFBR.

fr (h) = MLP (h)

= h×Wr + b
(8)

In order to guarantee each relation filters out

different semantics, each relation uses a separate

fr (∗). However, the semantic filters based on the

MLP will bring enormous parameters, and the ma-

trix multiplication requires many resources. As

shown in Figure 3, The paper attempts to regular-

ize MLP: diagonalization.

Notice that SFBR is introduced as a module into

the existing models in this paper. However, we

must be clear about the theoretical status of the

SFBR based on MLP. MLP-based SFBR is a gen-

eral model that can be transformed into most geo-

metric and tensor decomposition models through

different regularizations. This paper selects TransE,

RotatE, RESCAL, and ComplEx as examples and

conducts these regularization analyses in Appendix

A.

Wr =

[
W1 W2

W3 W4

]
(9)

where Wr ∈ Rn×n,W1,W2,W3,W4 ∈
Rn/2×n/2.

WLinear−2
r =

[
diag (w1) diag (w2)
diag (w3) diag (w4)

]

(10)

where WLinear−2
r ∈ Rn×n,w1,w2,w3,w4 ∈

Rn/2 .

Too many parameters of MLP make the model

hard to train, which promotes regularization. First,

we ignore the bias. As shown in Eq.(9)and Eq.(10),

We decompose the semantic filter matrix of MLP

into four square matrices of equal size and diago-

nalize four square matrices to reduce the parameter

quantity of the relational filter. Since this diagonal-

ization equals a linear combination of two parts of

entities, we call this SFBR Linear-2.

WDiag
r =

[
diag (w1) O

O diag (w4)

]
(11)

where WDiag
r ∈ Rn×n and all elements in O

equal zero.

To further lessen the number of parameters, the

paper directly diagonalizes the filter matrix, taking

a one-dimensional vector as the semantic filter. The

paper names this SFBR Diag.

fr (h) = h�w + b (12)
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Figure 3: The design route of matrix regularization for SFBR.

Where w,b ∈ Rn,� denotes Hadmard (or

element-wise) product, × denotes matrix multi-

plication.

4.3 Special Cases with SFBR
This section will introduce the examples of SFBR

for different models, including TransE, RotatE, and

RESCAL.

The corresponding score function of SFBR

based on TransE can be expressed as:

dfr (h, t) =
∥∥∥fh

r (h) + r− f t
r (t)

∥∥∥ (13)

where fr (e) = e×Wr + b, e,Wr,b ∈ Rn and

e represents the entity vectors h, t.

The corresponding score function of SFBR

based on RotatE can be expressed as:

dfr (h, t) =
∥∥∥fh

r (h) ◦ r− f t
r (t)

∥∥∥ (14)

where fr (e) = e×Wr + b, e,Wr,b ∈ Cn and

e represents the entity vector h, t.

The corresponding score function of SFBR

based on RESCAL can be expressed as:

dfr (h, t) =
∥∥∥fh

r (h)
T
Mrf

t
r (t)

∥∥∥ (15)

where fh
r (h) = h×Wr + b, f t

r (t) = t+ b and

h, t,Wr,b ∈ Rn.

Notice that using fh
r (t) = t×Wr + b for tails

is more in line with our design. However, the pre-

diction is to rank the scores of all entities. There

are hundreds of thousands of entities. If we apply

Hadamard operation for all tails, it will take up

enormous resources. The paper simplified SFBR

for tails. This simplification can effectively reduce

resource occupation. Although the performance is

sacrificed, there is still a certain improvement to

basic models.

5 Experiment

This section is organized as follows. First, we in-

troduce the experimental settings in Section 5.1.

Then, we show the effectiveness of SFBR on three

benchmark datasets in Section 5.2. Finally, we vi-

sualize and analyze the embeddings generated by

SFBR in Section 5.3.

5.1 Experimental Settings

Dataset. In order to evaluate the proposed mod-

ule, we consider three common knowledge graph

datasets—WN18RR (Toutanova and Chen, 2015),

FB15k-237 (Dettmers et al., 2018) and YAGO3-

10 (Mahdisoltani et al., 2015). Details of these

datasets are listed in Table 1.

FB15k-237 is obtained by eliminating the in-

verse and equal relations in FB15K, making it more

difficult for simple models to do well. WN18RR is

achieved by excluding inverse and equal relations

in WN18. The main relation patterns are symme-

try/antisymmetry and composition. YAGO3-10 is

a subset of YAGO3, which is produced to alleviate

the test set leakage problem.

Evaluation Settings. We use evaluation metrics

standard across the link prediction literature: mean

reciprocal rank (MRR) and Hits@k, k=1,3,10.

Mean reciprocal rank is the average of the inverse

of the mean rank assigned to the true triple over

all candidate triples. Hits@k measures the percent-

age of times a true triple is ranked within the top k

candidate triples. We evaluate the performance of

link prediction in the filtered setting (Bordes et al.,

2013), i.e., all known true triples are removed from

the candidate set except for the current test triple. In

both settings, higher MRR or higher Hits@1/3/10

indicate better performance.

Baselines and Training Protocol. In this

section, we compare the performance of SFBR

against two categories of KGC models: (1) Ge-

ometric Models including TransE(Bordes et al.,

2013), RotatE(Sun et al., 2019), TucKer(Balazevic

et al., 2019), AutoERTR (Niu et al., 2020)and

HAKE(Zhang et al., 2020a), (2) models based

on tensor decomposition including CP(Lacroix

et al., 2018), RESCAL(Nickel et al., 2011), Com-
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Dataset #entity #relation #training #validation #test
WN18RR 40943 11 141442 5000 5000

FB15K-237 14505 237 272115 17535 20466

YAGO3-10 123182 37 1079040 5000 5000

Table 1: The number of entities, relations and observed triples in each split for four benchmarks.

plEx(Trouillon et al., 2016) and DURA(Zhang

et al., 2020b).

Because SFBR is a module based on existing

models, the parameters of our experiments are con-

sistent with those in original papers, and no addi-

tional hyperparameters are designed. The parame-

ters of TransE-SFBR and RotatE-SFBR are consis-

tent with the hyper-parameters in RotatE(Sun et al.,

2019). CP-SFBR, RESCAL-SFBR and ComplEx-

SFBR take the same parameters in DURA(Zhang

et al., 2020b). For tensor decomposition models,

we find that the model’s output is related to the

initialization, so SFBR is trained based on initial

results.

5.2 Main Results

In this section, we compare the results of SFBR and

other state-of-the-art models on three benchmark

datasets.

Table 2 shows the comparison between two

SFBRs and geometric models. Compared with

TransE, TransE-SFBR has significant improve-

ments: on WN18RR, Hit@10 increases by 3.8%;

on FB15k-237, Hit@10 increases by 7%. Com-

pared with RotatE, RotatE-SFBR also makes sig-

nificant progress: on WN18RR, Hit@10 increases

by 2.2%; on the FB15k-237, Hit@10 increases by

2%.

The matrix multiplication performed by the

MLP-based SFBR requires a lot of GPU memory.

Limited by GPU resources, we only experiment

on WN18RR, and the embedding dim of entities

in TransE-SFBR (MLP) is only 100, which is 1/5

of the original. Therefore, the results of MLP-

based SFBR cannot be contrasted with the other

two SFBRs. Through comparative experiments on

the two datasets, we find that the performance of

SFBR based on Linear-2 is slightly better than that

of SFBR based on Diag. Nevertheless, the extra

parameters and the excessive resource occupancy

of the Linear-2 are twice the Diag. In terms of

resource utilization, we select Diag-based SFBR.

The paper chooses Diag-based SFBR in the subse-

quent experiments by default.

Table 3 shows the comparison between SFBR

and the models based on tensor decomposition.

SFBR improves the performance of the model on

almost all datasets. On WN18RR, RESCAL-SFBR

obtains the best result (the best Hit@10 is achieved

by ComplEx-SFBR). On FB237, ComplEx-SFBR

obtains the best result, and MRR is increased by

0.13. On YAGO3-10, although the performance

of CP-SFBR and RESCAL-SFBR have been im-

proved, they do not exceed ComplEx-DURA.

Overall, compared with the basic model, the per-

formance on link prediction tasks has been im-

proved by SFBR. Experiments on the standard

dataset show that SFBR can improve the perfor-

mance of base models.

5.3 Visualization and Analysis

In this part, we analyze the performance of SFBR

from three aspects. First, we visualize the em-

bedding through T-SNE; then, we randomly se-

lect a pair of samples to analyze the function of

SFBR and show the additional resources occupied

by SFBR.

Visualization. We use T-SNE to visualize tail

entity embeddings. Suppose the link prediction

task is (h, r, ?), where h and r are head entities

and relations, respectively. We randomly select ten

queries in FB15k-237, which have more than 50

answers. Then, we use T-SNE to visualize the em-

beddings generated by RotatE and RotatE-SFBER.

For each question, T-SNE converts the answers

into 2-dimensional points and displays them on the

graph with the same color. As shown in Figure

4 and 5, it is a visualization of the distribution of

answers to 10 questions. SFBR makes the answers

to the same question more similar, indicating that

SFBR effectively extracts the needed semantics of

each entity and suppresses the attributes of other

dimensions, which verifies the claim in Section 4.1.

Case study. Two pairs of triples are randomly

selected from the test set for analysis. Each pair

of triples has the same query: (h, r, ?) .For each

query, a correct answer and an incorrect answer

are randomly selected. The first pair of triples,



7926

WN18RR FB15K-237
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE* .223 - .510 .298 - .475

RotatE* .476 .428 .571 .338 .241 .533

AutoERTR - - - .344 .250 .538

HAKE .497 .452 .582 .346 .250 .542

TransE-SFBR(MLP) .184 .006 .388 - - -

TransE-SFBR(Linear-2) .263 .110 .495 .354 .258 .545

TransE-SFBR(Diag) .242 .028 .548 .338 .240 .538

RotatE-SFBR(Linear-2) .490 .447 .576 .355 .258 .553
RotatE-SFBR(Diag) .489 .437 .593 .351 .254 .549

Table 2: Evaluation results of geometric models on FB15K-237 and WN18RR.

WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

CP .438 .414 .485 .333 .247 .508 .567 .494 .698

RESCAL .455 .419 .493 .353 .264 .528 .566 .490 .701

ComplEx .460 .428 .522 .346 .256 .525 .573 .500 .703

CP-DURA .478 .441 .552 .367 .272 .555 .579 .506 .709

RESCAL-DURA .498 .455 .577 .368 .276 .550 .579 .505 .712

ComplEx-DURA .491 .449 .571 .371 .276 .560 .584 .511 .713
CP-SFBR .485 .447 .561 .370 .274 .563 .582 .510 .711

RESCAL-SFBR .500 .458 .581 .369 .276 .555 .581 .509 .712

ComplEx-SFBR .498 .454 .584 .374 .277 .567 .584 .512 .712

Table 3: Evaluation results of tensor decomposition models on WN18RR, FB15K-237 and YAGO3-10 .

Model WN18RR FB15K-237 YAGO3-10
original SFBR original SFBR original SFBR

TransE 20.48M 20.49M 14.78M 15.25M - -

RotatE 40.95M 40.96M 29.32M 29.79M 123.20M 123.24M

CP 163.82M 163.90M 59.11M 61.01M 246.45M 246.60M

RESCAL 11.92M 11.93M 131.70M 132.19M 246.52M 246.82M

ComplEx 163.86M 164.04M 60.06M 60.85M 82.47M 82.55M

Table 4: Comparison of parameter size between SFBR and basic models on different datasets.
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Figure 4: Visualization of tail entities in RotatE using

T-SNE. A point represents a tail entity. Points in the

same color represent tail entities that have the same

context(hr, rj) .
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Figure 5: Visualization of tail entities in RotatE-SFBE

using T-SNE.

which cannot be predicted in TransE, can be dis-

tinguished by TransE-SFBER; for the other pair,

both models can effectively predict them. Draw the

distance of two triples:‖h+ r− t‖1 , where h, r, t
are embeddings of entities and relations. Figure

6 and Figure 7 show the distance; the blue one

is the triple deviation of the correct answer, the

red one is the deviation of error triple. The top

of the figure shows the distance of TransE, and

the bottom is the distance of TransE-SFBE. From

Figure 6, we can find that for the tail entity that

cannot be predicted in TransE, TransE-SFBR sup-

presses the influence of irrelevant dimensions, and

the tail entity can be predicted. For the tail entities,

which TransE can predict in Figure 7, SFBR fur-

ther suppresses the noise of other dimensions, and

the distance between the correct and wrong tails is

further enlarged, which enhances the model.

Resource occupation. As shown in Table 4, the

parameters of SFBR and other basic models on

the three datasets are compared. The comparison

finds that the parameter of SFBR only increases

by 0.01 ∼ 0.5M on the model based on geometric
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Figure 6: Distance of a pair of triples,which cannot

be predicted in TransE(upper) and can be reasoned in

TransE-SFBR(lower).
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Figure 7: Distance of a pair of triples,which can be pre-

dicted both in TransE(upper) and TransE-SFBR(lower)

distance; the parameter of SFBR only increases

by 0.01 ∼ 1.9M on the model based on tensor

decomposition. Especially in the geometric mod-

els, there is a small growth of parameters, and the

performance can be significantly improved. In all

cases, SFBR brings minimal growth in resource

occupation to the basic model.

6 Conclusion

This paper designs a relation-based semantic fil-

ter—SFBR— for the geometric and tensor decom-

position models based on knowledge graph com-

pletion. SFBR is based on the observation that

judging the rationality of a particular triple is to

compare specific attributes between the entities,

ignoring other unrelated dimensions. Therefore,

this paper provides a relation-based semantic filter

to extract the attributes that need to be compared

and suppress the irrelevant attributes of entities.
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Experiments show that SFBR can effectively im-

prove the performance of the traditional models,

especially the geometric models. The visualization

shows that SFBR can effectively extract the rele-

vant dimensions and distinguish the comparisons

among different attributes. Compared with the base

models, SFBR only has a slight growth in resource

occupation.
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A Analysis of generality for MLP-based
SFBR

The MLP-based SFBR model after different regu-

larization will be equivalent to various geometric

models or tensor decomposition models. The paper

randomly selects several models for analysis. First,

we merge the biases of MLP:

dfr (h, t) =
∥∥∥h×Wh

r + bh
r − t×Wt

r − bt
r

∥∥∥
p

=
∥∥∥hWh

r + r− tWt
r

∥∥∥
p

(16)

where r = bh
r − bt

r.

As shown in Eq.(17), when the two semantic

filter matrixs satisfy Wh
r ,W

t
r = I , the semantic

filter model is equivalent to TransE(Bordes et al.,

2013).

dfr (h, t) = ‖h× I+ r− t× I‖p
= ‖h+ r− t‖p

(17)

When the MLP does not have any bias part, the

filter matrix for heads is a special Linear-2 diag-

onalized matrix and the entity dimension is ex-

panded to twice the original, the SFBR model is

equivalent to RotatE(Sun et al., 2019).

dfr (h, t) =
∥∥∥h×Wh

r + r− t×Wt
r

∥∥∥
p

=
∥∥∥hWh

r − t
∥∥∥
p

(18)

Wh
r =

[
diag (cosθ) diag (−sinθ)
diag (sinθ) diag (cosθ)

]

(19)

where bh
r + bt

r = r = 0,Wt
r = I, θ ∈ Rn/2,

h = [hrel,himg] and t = [trel, timg].

When p = 2,r = 0 and Wt
r = I,the

MLP-based SFBR can be simplified as Eq.(20).

RESCAL(Nickel et al., 2011) selects the third term

of the formula as the optimization goal. The per-

formance will be better with the other two items

used as additional regularization items. RESCAL-

DURA(Zhang et al., 2020b) takes the first two

items as regularization. Just Similar to RotatE,

ComplEx(Trouillon et al., 2016) achieves perfor-

mance improvement by expanding the dimension

and applying special matrix regularization for

RESCAL. DURA(Zhang et al., 2020b) has the cor-

responding proof for ComplEx-DURA.

(
dfr (h, t)

)2
=

∥∥∥h×Wh
r + r− t×Wt

r

∥∥∥2
p

=
∥∥∥h×Wh

r − t
∥∥∥2
2

=
∥∥∥hWh

r

∥∥∥2
2
+ ‖t‖22 + 2hWh

r t
T

(20)

From the above cases, we can quickly discover

that the MLP-based SFBR is a general model. Most

geometric models and tensor decomposition mod-

els can be equivalent to MLP-based SFBR after

particular regularization.


