
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7606–7619
November 7–11, 2021. c©2021 Association for Computational Linguistics

7606

MATE: Multi-view Attention for Table Transformer Efficiency

Julian Martin Eisenschlos1, Maharshi Gor2∗, Thomas Müller3∗, William W. Cohen1

Google Research1

{eisenjulian,wcohen}@google.com
Dept. of Computer Science, University of Maryland2

mgor@cs.umd.edu
Symanto Research, Valencia, Spain3

thomas.mueller@symanto.com

Abstract

This work presents a sparse-attention Trans-
former architecture for modeling documents
that contain large tables. Tables are ubiquitous
on the web, and are rich in information. How-
ever, more than 20% of relational tables on the
web have 20 or more rows (Cafarella et al.,
2008), and these large tables present a chal-
lenge for current Transformer models, which
are typically limited to 512 tokens. Here we
propose MATE, a novel Transformer architec-
ture designed to model the structure of web ta-
bles. MATE uses sparse attention in a way that
allows heads to efficiently attend to either rows
or columns in a table. This architecture scales
linearly with respect to speed and memory, and
can handle documents containing more than
8000 tokens with current accelerators. MATE
also has a more appropriate inductive bias for
tabular data, and sets a new state-of-the-art
for three table reasoning datasets. For HY-
BRIDQA (Chen et al., 2020b), a dataset that in-
volves large documents containing tables, we
improve the best prior result by 19 points.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
is expensive to train and run at scale, especially for
long sequences, due to the quadratic asymptotic
complexity of self-attention. Although some work
addresses this limitation (Ainslie et al., 2020; Ki-
taev et al., 2020; Zaheer et al., 2020), there has been
little prior work on scalable Transformer architec-
tures for semi-structured text.1 However, although
some of the more widely used benchmark tasks in-
volving semi-structured data have been restricted to
moderate size tables, many semi-structured docu-
ments are large: more than 20% of relational tables
on the web have 20 or more rows (Cafarella et al.,

∗Work done at Google Research.
1The term "semi-structured text" refers to text that has

structure that does not reflect a known data schema. Typically
semi-structured text is organized as an HTML tree or variable
length lists and tables.

Pick # Player College

27 Tom Wilfrid Laurier

28 Mark York

29 Pedro California

30 Rob York

...

Query: Which college got the most players?

Column Head

R
ow

 H
ea

d

Figure 1: Sparse self-attention heads on tables in MATE
are of two classes: Row heads attend to tokens inside
cells in the same row, as well as the query. Column
heads attend to tokens in the same column and in the
query. Query tokens attend to all other tokens.

2008), and would pose a problem for typical Trans-
former models.

Here we study how efficient implementations for
transformers can be tailored to semi-structured data.
Figure 1 highlights our main motivation through an
example: to obtain a contextual representation of a
cell in a table, it is unlikely that the information in
a completely different row and column is needed.

We propose the MATE architecture2 (Section 3),
which allows each attention head to reorder the
input so as to traverse the data by multiple points of
view, namely column or row-wise (Figure 2). This
allows each head to have its own data-dependent
notion of locality, which enables the use of sparse
attention in an efficient and context-aware way.

This work focuses on question answering (QA)
and entailment tasks on tables. While we apply
our model to several such tasks (see section 6),
HYBRIDQA (Chen et al., 2020b) is particularly
interesting, as it requires processing tables jointly
with long passages associated with entities men-
tioned in the table, yielding large documents that
may not fit in standard Transformer models.

2Pronounced mah-teh, as in mate tea.

7607

Flattened table tokens

Column IDs

Sorted by column

Column Buckets

Attention within
neighbor buckets

gather(·,argsort(column_ids))

reshape(·,[...,bucket_size])

attention(·,concat([
 roll(·,shift=-1,axis=-2),
 roll(·,shift=+1,axis=-2),
 ·,
],axis=-1))

Figure 2: Efficient implementation for MATE. Each attention head reorders the tokens by either column or row
index and then applies a windowed attention mechanism. This figure omits the global section that attends to and
from all other tokens. Since column/row order can be pre-computed, the method is linear for a constant block size.

Overall, our contributions are the following:
i) We show that table transformers naturally fo-

cus attention according to rows and columns, and
that constraining attention to enforce this improves
accuracy on three table reasoning tasks, yielding
new state-of-the-art results in SQA and TABFACT.

ii) We introduce MATE, a novel transformer ar-
chitecture that exploits table structure to allow run-
ning training and inference in longer sequences.
Unlike traditional self-attention, MATE scales lin-
early in the sequence length.

iii) We propose POINTR (Section 4), a novel
two-phase framework that exploits MATE to tackle
large-scale QA tasks, like HYBRIDQA, that require
multi-hop reasoning over tabular and textual data.
We improve the state-of-the-art by 19 points.

All the code is available as open source.3

2 Related Work

Transformers for tabular data Traditionally,
tasks involving tables were tackled by searching for
logical forms in a semantic parsing setting. More
recently Transformers (Vaswani et al., 2017) have
been used to train end-to-end models on tabular
data as well (Chen et al., 2020a). For example,
TAPAS (Herzig et al., 2020) relies on Transformer-
based masked language model pre-training and spe-
cial row and column embeddings to encode the ta-
ble structure. Chen et al. (2021) use a variant of
ETC (Ainslie et al., 2020) on an open-domain ver-
sion of HYBRIDQA to read and choose an answer
span from multiple candidate passages and cells,
but the proposed model does not jointly process the

3github.com/google-research/tapas

full table with passages.
In order to overcome the limitations on sequence

length Eisenschlos et al. (2020) propose heuristic
column selection techniques, and they also pro-
pose pre-training on synthetic data. Krichene et al.
(2021) propose a model based cell selection tech-
nique that is differentiable and trained end-to-end
together with the main task model. Our approach
is orthogonal to these methods, and can be usefully
combined with them, as shown in Table 4.

Recently, Zhang et al. (2020) proposed SAT,
which uses an attention mask to restrict attention to
tokens in the same row and same column. SAT also
computes an additional histogram row appended
at the bottom of the table and encodes the table
content as text only (unlike TAPAS). The proposed
method is not head dependent as ours is, which pre-
vents it from being implemented efficiently to allow
scaling to larger sequence lengths. Controlling for
model size and pre-training for a fair comparison,
we show that our model is both faster (Table 4) and
more accurate (Table 6) than SAT.

Efficient Transformers There is prior work that
tries to improve the asymptotic complexity of the
self-attention mechanism in transformers. Tay et al.
(2020) review the different methods and cluster
them based on the nature of the approach. We
cover some of the techniques below and show a
theoretical complexity comparison in Table 1.

The LINFORMER model Wang et al. (2020) uses
learned projections to reduce the sequence length
axis of the keys and value vectors to a fixed length.
The projections are then anchored to a specific
input length which makes adapting the sequence

https://github.com/google-research/tapas

7608

Model Complexity Class
Transformer-XL O(n2) RC
REFORMER O(n log n) LP
LINFORMER O(n) LR
BIGBIRD O(ng + nb) FP+RP+M
ETC O(ng + nb) FP+M
MATE (Ours) O(ng + nb) FP

Table 1: Comparison of transformer models follow-
ing Tay et al. (2020). Class abbreviations include: FP
= Fixed Patterns, RP = Random Patterns, M = Memory,
LP = Learnable Pattern, LR = Low Rank and RC = Re-
currence. The block size for local attention is denoted
as b and g the size of the global memory. For our MATE
model, a n log n sorting step can be pre-computed be-
fore training or inference for known tables so it is omit-
ted.

length during pre-training and fine-tuning challeng-
ing, and makes the model more sensitive to position
offsets in sequences of input tokens.

REFORMER (Kitaev et al., 2020) uses locality
sensitive hashing to reorder the input tokens at ev-
ery layer in such a way that similar contextual em-
beddings have a higher chance of being clustered
together. We instead rely on the input data struc-
ture to define ways to cluster the tokens. Although
the limitation can be circumvented by adapting the
proposed architecture, REFORMER was originally
defined for auto-regressive training.

Ainslie et al. (2020) introduce ETC, a frame-
work for global memory and local sparse attention,
and use the mechanism of relative positional atten-
tion (Dai et al., 2019) to encode hierarchy. ETC

was applied to large document tasks such as Nat-
ural Questions (Kwiatkowski et al., 2019). The
method does not allow different dynamic or static
data re-ordering. In practice, we have observed that
the use of relative positional attention introduces a
large overhead during training. BIGBIRD (Zaheer
et al., 2020) presents a similar approach with the
addition of attention to random tokens.

3 The MATE model

Following TAPAS (Herzig et al., 2020), the trans-
former input in MATE, for each table-QA example,
is the query and the table, tokenized and flattened,
separated by a [SEP] token, and prefixed by a
[CLS]. Generally the table comprises most of the
the input. We use the same row, column and rank
embeddings as TAPAS.

To restrict attention between the tokens in the

table, we propose having some attention heads
limited to attending between tokens in the same
row (plus the non-table tokens), and likewise for
columns. We call these row heads and column
heads respectively. In both cases, we allow atten-
tion to and from all the non-table tokens.

Formally, if X ∈ Rd×n is the input tensor for a
Transformer layer with sequence length n, the k-th
position of the output of the i-th attention head is:

Headik (X) = Wi
V XAi

k
σ
[(

Wi
KXAi

k

)ᵀ
Wi

QXk

]
where Wi

Q,W
i
K ,W

i
V ∈ Rm×d are query, key and

value projections respectively, σ is the softmax
operator, and Ai

k ⊆ {1, · · · , n} represents the set
of tokens that position k can attend to, also known
as the attention pattern. Here XAi

k
denotes gather-

ing from X only the indexes in Ai
k. When Ai

k con-
tains all positions (except padding) for all heads i
and token index k then we are in the standard dense
transformer case. For a token position k, we define
rk, ck ∈ N0 the row and column number, which is
set to 0 if k belongs to the query set Q: the set of
token positions in the query text including [CLS]
and [SEP] tokens.

In MATE, we use two types of attention patterns.
The first hr ≥ 0 heads are row heads and the re-
maining hc are column heads:

Ai
k =

{1, · · · , n} if k ∈ Q, else
Q ∪ {j : rj = rk} if 1 ≤ i ≤ hr
Q ∪ {j : cj = ck} otherwise.

One possible implementation of this is an at-
tention mask that selectively sets elements in the
attention matrix to zero. (Similar masks are used
for padding tokens, or auto-regressive text genera-
tion.) The ratio of row and column heads is a hyper-
parameter but empirically we found a 1 : 1 ratio
to work well. In Section 6 we show that attention
masking improves accuracy on four table-related
tasks. We attribute these improvements to better in-
ductive bias, and support this in Section 7 showing
that full attention models learn to approximate this
behavior.

3.1 Efficient implementation
Although row- and column-related attention mask-
ing improves accuracy, it does not improve Trans-
former efficiency—despite the restricted attention,
the Transformer still uses quadratic memory and
time. We thus also present an approximation of
row and column heads that can be implemented

7609

more efficiently. Inspired by Ainslie et al. (2020),
the idea is to divide the input into a global part of
length G that attends to and from everything, and
a local (typically longer) part that attends only to
the global section and some radius R around each
token in the sequence. ETC does this based on a
fixed token order. However, the key insight used in
MATE is that the notion of locality can be config-
ured differently for each head: one does not need to
choose a specific traversal order for tokens ahead
of time, but instead tokens can be ordered in a data-
dependent (but deterministic) way. In particular,
row heads can order the input according to a row
order traversal of the table, and column heads can
use a column order traversal. The architecture is
shown in Figure 2.

After each head has ordered its input we split off
the first G tokens and group the rest in evenly sized
buckets of length R. By reshaping the input matrix
in the self-attention layer to have R as the last
dimension, one can compute attention scores from
each bucket to itself, or similarly from each bucket
to an adjacent one. Attention is further restricted
with a mask to ensure row heads and column heads
don’t attend across rows and columns respectively.
See model implementation details in Appendix D.
WhenG is large enough to contain the question part
of the input and R is large enough to fit an entire
column or row, then the efficient implementation
matches the mask-based one.

As observed in Ainslie et al. (2020), asymptotic
complexity improvements often do not materialize
for small sequence lengths, given the overhead of
tensor reshaping and reordering. The exact break-
even point will depend on several factors, including
accelerator type and size as well as batch size. In
the experiments below the best of the two function-
ally equivalent implementations of MATE is chosen
for each use case.

3.2 Compatibility with BERT weights

The sparse attention mechanism of MATE adds no
additional parameters. As a consequence, a MATE

checkpoint is compatible with any BERT or TAPAS

pre-trained checkpoint. Following Herzig et al.
(2020) we obtained best results running the same
masked language model pre-training used in TAPAS

with the same data but using the sparse attention
mask of MATE.

For sequence lengths longer than 512 tokens,
we reset the index of the positional embeddings at

Split Train Dev Test Total

In-Passage 35,215 2,025 20,45 39,285
In-Table 26,803 1,349 1,346 29,498
Missing 664 92 72 828
Total 62,682 3,466 3,463 69,611

Table 2: Statistics for HYBRIDQA. In-Table and In-
Passage groups mark the location of the answer. Miss-
ing denotes answers that do not match any span and
may require complex computations.

the beginning of each cell. This method removes
the need to learn positional embeddings for larger
indexes as the maximum sequence length grows
while avoiding the large computational cost of rela-
tive positional embeddings.

3.3 Universal approximators
Yun et al. (2020a) showed that Transformers
are universal approximators for any continuous
sequence-to-sequence function, given sufficient lay-
ers. This result was further extended by Yun et al.
(2020b); Zaheer et al. (2020) to some Sparse Trans-
formers under reasonable assumptions.

However, prior work limits itself to the case of
a single attention pattern per layer, whereas MATE

uses different attention patterns depending on the
head. We will show that MATE is also a universal
approximator for sequence to sequence functions.

Formally, let F be the class of continuous func-
tions f : D ⊂ Rd×n → Rd×n with D compact,
with the p-norm || · ||p. Let TMATE be any family
of transformer models with a fixed set of hyper-
parameters (number of heads, hidden dimension,
etc.) but with an arbitrary number of layers. Then
we have the following result.

Theorem 1. If the number of heads is at least 3
and the hidden size of the feed forward layer is at
least 4, then for any f ∈ F and ε ∈ R+ there exists
f̂ ∈ TMATE such that ||f̂ − f ||p < ε.

See the Appendix C for a detailed proof, which
relies on the fact that 3 heads will guarantee at least
two heads of the same type. The problem can then
be reduced to the results of Yun et al. (2020b).

4 The POINTR architecture

Many standard table QA datasets (Pasupat and
Liang, 2015; Chen et al., 2020a; Iyyer et al., 2017),
perhaps by design, use tables that can be limited to
512 tokens. Recently, more datasets (Kardas et al.,
2020; Talmor et al., 2021) requiring parsing larger
semi-structured documents have been released.

7610

Original Input Table:
Pos No Driver Constructor Time Gap
1 2 Rubens Barrichello Ferrari 1:10.223 -
2 1 Michael Schumacher Ferrari 1:10.400 +0.177
3 10 Takuma Sato Honda 1:10.601 +0.378
4 9 Jenson Button ? Honda 1:10.820 +0.597

Entity Descriptions (some are omitted for space):
• Rubens Barrichello is a Brazilian racing driver who competed in Formula One between 1993 and 2011.
• Jenson Alexander Lyons Button MBE is a British racing driver. He won the 2009 F1 World Championship.
• Scuderia Ferrari S.p.A. is the racing division of luxury Italian auto manufacturer Ferrari. Ferrari supplied cars
complete with V8 engines for the A1 Grand Prix series from the 2004 season.
• Honda Motor Company, Ltd is a Japanese public multinational conglomerate manufacturer of automobiles,
motorcycles, and power equipment, headquartered in Minato, Tokyo, Japan.

...
Question:
The driver who finished in position 4 in the 2004 Grand Prix was of what nationality? Britishw�
Expanded Table with k Description Sentences Most Similar to the Question:

Pos No Driver Constructor Time Gap
1 2 Rubens Barrichello Ferrari (Ferrari supplied cars complete with V8 engines

for the A1 Grand Prix series from the 2004 season.)
1:10.223 -

2 1 Michael Schumacher Ferrari (Ferrari supplied cars complete with V8 engines
for the A1 Grand Prix series from the 2004 season.)

1:10.400 +0.177

3 10 Takuma Sato Honda 1:10.601 +0.378
4 9 Jenson Button (Jenson Alexander Lyons Button

MBE is a British racing driver.) ?
Honda 1:10.820 +0.597

POINTR inference pipeline:

Expand table cells content
with entity descriptions

Cell selection model picks a
cell that contains answer

Keep entity descriptions and
content of the selected cell

Reader model extracts
a span with the answer

Figure 3: An example from the HYBRIDQA dataset processed by POINTR. The first paragraph in the Wikipedia
page for each underlined entity was available to the dataset authors. We expand the text in the cells with this
descriptions for the top-k most relevant sentences, as shown in the second table, and train a model to find the cell
containing or linking to the answer (marked here with a ?). The goal is to provide the model with all the context
needed to locate the answer. A second model extracts a span from the selected cell content and linked text.

Among them, we focus on HYBRIDQA (Chen
et al., 2020b). It uses Wikipedia tables with entity
links, with answers taken from either a cell or a
hyperlinked paragraph. Dataset statistics are shown
in Table 2. Each question contains a table with
on average 70 cells and 44 linked entities. Each
entity is represented by the first 12 sentences of
the Wikipedia description, averaging 100 tokens.
The answer is often a span extracted from the table
or paragraphs but the dataset has no ground truth
annotations on how the span was obtained, leaving
around 50% of ambiguous examples where more
than one answer-sources are possible. The total
required number of word pieces accounting for
the table, question and entity descriptions grows
to more than 11, 000 if one intends to cover more
than 90% of the examples, going well beyond the
limit of traditional transformers.

To apply sparse transformers to the HYBRIDQA
task, we propose POINTR, a two stage framework
in a somewhat similar fashion to open domain

QA pipelines (Chen et al., 2017; Lee et al., 2019).
We expand the cell content by appending the de-
scriptions of its linked entities. The two stages of
POINTR correspond to (Point)ing to the correct
expanded cell and then (R)eading a span from it.
See Figure 3 for an example. Full set-up details are
discussed in Appendix A.

4.1 POINTR: Cell Selection Stage

In the first stage we train a cell selection model us-
ing MATE whose objective is to select the expanded
cell that contains the answer. MATE accepts the
full table as input; therefore, expanding all the cells
with their respective passages is impractical. In-
stead, we consider the top-k sentences in the entity
descriptions for expansion, using a TF-IDF metric
against the query. Using k = 5, we can fit 97%
of the examples in 2048 tokens; for the remaining
examples, we truncate the longest cells uniformly
until they fit in the budget.

The logit score S for each cell c is obtained by

7611

mean-pooling the logits for each of the tokens t
inside it, which are in turn the result of applying a
single linear layer to the contextual representation
of each token when applying MATE to the query q
and the expanded table e.

S(t) = MLP(MATE(q, e)[t])

S(c) = avgt∈cS(t)

P (c) =
exp(S(c))∑

c′∈e exp(S(c′))

We use cross entropy loss for training the model
to select expanded cells that contain the answer
span. Even though the correct span may appear
in multiple cells or passages, in practice many of
these do so only by chance and do not correspond
to a reasoning path consistent with the question
asked. In Figure 3 for instance, there could be
other British divers but we are only interested in
selecting the cell marked with a star symbol (?). In
order to handle these cases we rely on Maximum
Marginal Likelihood (MML) (Liang et al., 2013;
Berant et al., 2013). As shown by Guu et al. (2017)
MML can be interpreted as using the online model
predictions (without gradients) to compute a soft
label distribution over candidates. For an input
query x, and a set C of candidate cells, the loss is:

L(Θ, x, C) =
∑
z∈C
−q(z) log pΘ(z|x)

with q(z) = pΘ(z|x, z ∈ C) the probability distri-
bution given by the model restricted to candidate
cells containing the answer span, taken here as a
constant with zero gradient.

4.2 POINTR: Passage Reading Stage

In the second stage we develop a span selection
model that reads the answer from a single expanded
cell selected by the POINTR Cell Selector. In order
to construct the expanded cell for each example, we
concatenate the cell content with all the sentences
of the linked entities and keep the first 512 tokens.

Following various recent neural machine read-
ing works (Chen et al., 2017; Lee et al., 2019;
Herzig et al., 2021), we fine-tune a pre-trained
BERT-uncased-large model (Devlin et al., 2019)
that attempts to predict a text span from the text
in a given table cell c (and its linked paragraphs)
and the input query q. We compute a span rep-
resentation as the concatenation of the contextual
embeddings of the first and last token in a span s

TABFACT WIKITQ SQA

Examples 118,275 22,033 17,553
Tables 16,573 2,108 982

Table 3: Statistics for SQA, WIKITQ and TABFACT.

and score it using a multi-layer perceptron:

hstart = BERTr(q, c)[START(s)]

hend = BERTr(q, c)[END(s)]

Sread(q, c) = MLP([hstart, hend])

A softmax is computed over valid spans in the
input and the model is trained with cross entropy
loss. If the span-text appears multiple times in
a cell we consider only the first appearance. To
compute EM and F1 scores during inference, we
evaluate the trained reader on the highest ranked
cell output predictions of the POINTR Cell Selector
using the official evaluation script.

5 Experimental Setup

We begin by comparing the performance of MATE

on HYBRIDQA to other existing systems. We fo-
cus on prior efficient transformers to compare the
benefits of the table-specific sparsity. We follow
Herzig et al. (2020); Eisenschlos et al. (2020) in
reporting error bars with the interquartile range.

5.1 Baselines
The first baselines for HYBRIDQA are Table-
Only and Passage-Only, as defined in Chen et al.
(2020b). Each uses only the part of the input in-
dicated in the name but not both at the same time.
Next, the HYBRIDER model from the same authors,
consists of four stages: entity linking, cell ranking,
cell hopping and finally a reading comprehension
stage, equivalent to our final stage. The first three
stages are equivalent to our single cell selection
stage; hence, we use their reported error rates to
estimate the retrieval rate. The simpler approach
enabled by MATE avoids error propagation and
yields improved results.

We also consider two recent efficient transformer
architectures as alternatives for the POINTR Cell
Selector, one based on LINFORMER (Wang et al.,
2020) and one based on ETC (Ainslie et al., 2020).
In both cases we preserve the row, column and rank
embeddings introduced by Herzig et al. (2020).
LINFORMER learns a projection matrix that re-
duces the sequence length dimension of the keys

7612

and values tensor to a fixed length of 256 (which
performed better than 128 and 512 in our tests.)
ETC is a general architecture which requires some
choices to be made about how to allocate global
memory and local attention (Dai et al., 2019) Here
we use a 256-sized global memory to summarize
the content of each cell, by assigning each token
in the first half of the global memory to a row, and
each token in the second half to a column. Tokens
in the input use a special relative positional value
to mark when they are interacting with their corre-
sponding global row or column memory position.
We will refer to this model as TABLEETC.

Finally we consider two non-efficient models: A
simple TAPAS model without any sparse mask, and
an SAT (Zhang et al., 2020) model pretrained on
the same MLM task as TAPAS for a fair comparison.
For the cell selection task TAPAS obtains similar
results to MATE, but both TAPAS and SAT lack the
efficiency improvements of MATE.

5.2 Other datasets

We also apply MATE to three other datasets involv-
ing tables to demonstrate that the sparse attention
bias yields stronger table reasoning models. SQA
(Iyyer et al., 2017) is a sequential QA task, WIK-
ITQ (Pasupat and Liang, 2015) is a QA task that
sometimes also requires aggregation of table cells,
and TABFACT (Chen et al., 2020a) is a binary en-
tailment task. See Table 3 for dataset statistics. We
evaluate with and without using the intermediate
pre-training tasks (CS) (Eisenschlos et al., 2020).

6 Results

In Figure 4 we compare inference speed of different
models as we increase the sequence length. Similar
results showing number of FLOPS and memory
usage are in Appendix A. The linear scaling of
LINFORMER and the linear-time version MATE

can be seen clearly. Although LINFORMER has a
slightly smaller linear constant, the pre-training is
6 times slower, as unlike the other models, LIN-
FORMER pretraining must be done at the final se-
quence length of 2048.

Table 5 shows the end-to-end results of our sys-
tem using POINTR with MATE on HYBRIDQA,
compared to the previous state-of-the-art as well
as the other efficient transformer baselines from
Section 5. MATE outperforms the previous SOTA
HYBRIDER by over 19 points, and LINFORMER,
the next best efficient-transformer system, by over

Figure 4: Comparison of inference speed on a cloud
VM with 64GB. At a sequence length of 2048, MATE
is nearly twice as fast as TAPAS.

Model SQA ALL SQA SEQ WIKITQ TABFACT

TAPAS 67.2±0.5 40.4±0.9 42.6±0.8 76.3±0.2
MATE 71.6±0.1 46.4±0.3 42.8±0.8 77.0±0.3

TAPAS + CS 71.0±0.4 44.8±0.8 46.6±0.3 81.0±0.1
MATE + CS 71.7±0.4 46.1±0.4 51.5±0.2 81.4±0.1

Table 4: Test results of using MATE on other table pars-
ing datasets show improvements due to the sparse atten-
tion mechanism. Using Counterfactual + Synthethic
pretraining (CS) in combination with MATE achieves
state-of-the-art in SQA and TABFACT. Errors are esti-
mated with half the interquartile range over 5 runs.

2.5 points, for both exact-match accuracy and F1.
We also applied MATE to three tasks involv-

ing table reasoning over shorter sequences. In Ta-
ble 4 we see that MATE provides improvements
in accuracy, which we attribute to a better induc-
tive bias for tabular data. When combining MATE

with Counterfactual + Synthetic intermediate pre-
training (CS) (Eisenschlos et al., 2020) we often
get even better results. For TABFACT and SQA
we improve over the previous state-of-the-art. For
WIKITQ we close the gap with the best published
system TABERT (Yin et al., 2020) (51.8 mean test
accuracy), which relies on traditional semantic pars-
ing, instead of an end-to-end approach. Dev re-
sults show a similar trend and can be found in Ap-
pendix B. No special tuning was done on these
models—we used the same hyper-parameters as
the open source release of TAPAS.

7 Analysis

HYBRIDQA Error analysis We randomly sam-
ple 100 incorrectly answered examples from the
development set. 55% of the examples have lex-
ical near-misses—predictions have the correct in-
formation, but have slightly different formatting
(e.g. (Q)uestion: In what round was the Okla-

7613

Model Dev Test
In-Table In-Passage Total In-Table In-Passage Total

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Table-Only 14.7 19.1 2.4 4.5 8.4 12.1 14.2 18.8 2.6 4.7 8.3 11.7
Passage-Only 9.2 13.5 26.1 32.4 19.5 25.1 8.9 13.8 25.5 32.0 19.1 25.0
HYBRIDER (τ=0.8) 54.3 61.4 39.1 45.7 44.0 50.7 56.2 63.3 37.5 44.4 43.8 50.6

POINTR + SAT 66.5±0.33 71.8±0.28 60.3±0.11 69.2±0.04 61.2±0.29 68.7±0.31 64.6 70.1 59.6 68.5 60.1 67.4
POINTR + TAPAS 68.1±0.33 73.9±0.37 62.9±0.25 72.0±0.21 63.3±0.25 70.8±0.12 67.8 73.2 62.0 70.9 62.7 70.0

POINTR +TABLEETC 36.0±1.26 42.4±1.13 37.8±1.19 45.3±1.53 36.1±1.30 42.9±1.36 35.8 40.7 38.8 45.7 36.6 42.6
POINTR + LINFORMER 65.5±0.78 71.1±0.55 59.4±0.59 69.0±0.68 60.8±0.68 68.4±0.63 66.1 71.7 58.9 67.8 60.2 67.6
POINTR + MATE 68.6±0.37 74.2±0.26 62.8±0.25 71.9±0.20 63.4±0.16 71.0±0.17 66.9 72.3 62.8 71.9 62.8 70.2

Human 88.2 93.5

Table 5: Results of different large transformer models on HYBRIDQA. In-Table and In-Passage subsets refer to the
location of the answer. For dev, we report errors over 5 runs using half the interquartile range. Since the test set is
hidden and hosted online, we report the results corresponding to the model with the median total EM score on dev.

homa athlete drafted in? (G)old answer: “second”,
(P)redicted: “second round”). While around 30%
of such misses involved numerical answers (eg:
“1” vs “one”), the predictions for the rest of them
prominently (58% of the near misses) either had
redundant or were missing auxiliary words (e.g.,
Q: What climate is the northern part of the home
country of Tommy Douglas? G: “Arctic” P: “Arctic
climate”). The inconsistency in the gold-answer
format and unavailability of multiple gold answers
are potential causes here.

Among the non near-misses, the majority pre-
dictions were either numerically incorrect, or were
referencing an incorrect entity but still in an rele-
vant context—especially the questions involving
more than 2 hops. (e.g. Q: In which sport has an
award been given every three years since the first
tournament held in 1948-1949? G: “Badminton”,
P: “Thomas Cup”). Reassuringly, for a huge major-
ity (> 80%), the entity type of the predicted answer
(person, date, place, etc.) matches the type of the
gold answer. The observed errors suggest potential
gains by improving the entity (Xiong et al., 2020)
and numerical (Andor et al., 2019) reasoning skills.

Ablation Study In Table 6 we compare architec-
tures for cell selection on HYBRIDQA. Hits@k
corresponds to whether a cell containing an answer
span was among the top-k retrieved candidates. As
an ablation, we remove the sparse pre-training and
try using only row/column heads. We observe a
drop also when we discard the ambiguous exam-
ples from training instead of having MML to deal
with them. Unlike the other datasets, TAPAS shows
comparable results to MATE, but without any of
the theoretical and practical improvements.

Model Hits@1 Hits@3 Hits@5

HYBRIDER 68.5 - -

SAT 77.9 87.4 90.3
TAPAS 80.1 89.5 91.4

TABLEETC 51.1 72.0 78.9
LINFORMER 77.1 86.5 90.0
MATE 80.1 89.2 91.5

MATE (– row heads) 78.3 87.7 90.3
MATE (– col heads) 77.8 87.1 90.0
MATE (– sparse pretrain) 75.5 86.5 89.9
MATE (– ambiguous) 76.7 84.2 86.6

Table 6: Retrieval results over HYBRIDQA (dev set)
for models used in POINTR Cell Selection stage. Ef-
ficient transformer models are grouped together. HY-
BRIDER results are obtained from Chen et al. (2020b)
by composing the errors for the first components.

Observed Attention Sparsity Since we are in-
terested to motivate our choices on how to sparsify
the attention matrix, we can inspect the magnitude
of attention connections in a trained dense TAPAS

model for table question answering. It is important
to note that in this context we are not measuring at-
tention as an explanation method (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). Instead we are
treating the attention matrix in the fashion of mag-
nitude based pruning techniques (Han et al., 2015;
See et al., 2016), and simply consider between
which pairs of tokens the scores are concentrated.

Given a token in the input we can aggregate the
attention weights flowing from it depending on
the position of the target token in the input (CLS
token, question, header, or table) and whether the
source and target tokens are in the same column or
row, whenever it makes sense. We average scores
across all tokens, heads, layers and examples in the
development set. As a baseline, we also compare
against the output of the same process when using

7614

Type Same
column

Same
row

Attention /
Uniform

Attention % Uniform %

[CLS] 44.46 12.45 0.28

Question 10.13 37.08 3.66

Header 7 1.32 3.89 2.94
3 3.37 1.72 0.51

Table

7 7 0.34 23.59 68.18
7 3 0.87 3.51 4.02
3 7 0.70 13.16 18.84
3 3 2.93 4.60 1.57

Table 7: Average attention flow from a token in the
table to other token types. We compare to an uniform
attention matrix as a baseline. Attention to tokens in
different rows and columns is the relative smallest with
one third of the baseline. Computed on WIKITQ Dev.

a uniform attention matrix, discarding padding.
In Table 7, we show the obtained statistics con-

sidering only table tokens as a source. We use the
WIKITQ development set as a reference. While we
see that 23% of the attention weights are looking at
tokens in different columns and rows, this is only
about one third of the baseline number one would
obtain with a uniform attention matrix. This effect
corroborates the approach taken in MATE.

8 Conclusion

We introduce MATE, a novel method for efficiently
restricting the attention flow in Transformers ap-
plied to Tabular data. We show in both theory
and practice that the method improves inductive
bias and allows scaling training to larger sequence
lengths as a result of linear complexity. We im-
prove the state-of-the-art on TABFACT, SQA and
HYBRIDQA, the last one by 19 points.

Ethical Considerations

Although one outcome of this research is more ef-
ficient Transformers for table data, it remains true
that large Transformer models can be expensive
to train from scratch, so experiments of this sort
can incur high monetary cost and carbon emissions.
This cost was reduced by conducting some exper-
iments at relatively smaller scale, e.g. the results
of Figure 4. To further attenuate the impact of this
work, we plan release all the models that we trained
so that other researchers can reproduce and extend
our work without re-training.

All human annotations required for the error
analysis (Section 7) are provided by authors, and
hence a concern of fair compensation for annota-
tors did not arise.

Acknowledgments

We would like to thank Yasemin Altun, Ankur
Parikh, Jordan Boyd-Graber, Xavier Garcia, Syrine
Krichene, Slav Petrov, and the anonymous review-
ers for their time, constructive feedback, useful
comments and suggestions about this work.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs in
transformers. In Proceedings of Empirical Methods
in Natural Language Processing, pages 268–284,
Online. Association for Computational Linguistics.

Daniel Andor, Luheng He, Kenton Lee, and Emily
Pitler. 2019. Giving BERT a calculator: Finding
operations and arguments with reading comprehen-
sion. In Proceedings of Empirical Methods in Natu-
ral Language Processing, pages 5947–5952, Hong
Kong, China. Association for Computational Lin-
guistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of Empiri-
cal Methods in Natural Language Processing, pages
1533–1544, Seattle, Washington, USA. Association
for Computational Linguistics.

Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. Uncovering the
relational web. In WebDB.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the Associ-
ation for Computational Linguistics, pages 1870–
1879, Vancouver, Canada. Association for Compu-
tational Linguistics.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger,
William Yang Wang, and William W. Cohen. 2021.
Open question answering over tables and text. In
International Conference on Learning Representa-
tions.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020a. Tabfact: A large-scale
dataset for table-based fact verification. In Proceed-
ings of the International Conference on Learning
Representations.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan
Xiong, Hong Wang, and William Yang Wang. 2020b.
HybridQA: A dataset of multi-hop question answer-
ing over tabular and textual data. In Findings of the
Association for Computational Linguistics: EMNLP,
pages 1026–1036, Online. Association for Computa-
tional Linguistics.

https://www.aclweb.org/anthology/2020.emnlp-main.19
https://www.aclweb.org/anthology/2020.emnlp-main.19
https://doi.org/10.18653/v1/D19-1609
https://doi.org/10.18653/v1/D19-1609
https://doi.org/10.18653/v1/D19-1609
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://www.cs.columbia.edu/~ewu/files/papers/relweb-webdb08.pdf
https://www.cs.columbia.edu/~ewu/files/papers/relweb-webdb08.pdf
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://openreview.net/forum?id=MmCRswl1UYl
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://www.aclweb.org/anthology/2020.findings-emnlp.91
https://www.aclweb.org/anthology/2020.findings-emnlp.91

7615

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 2978–
2988, Florence, Italy. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP, pages 281–
296, Online. Association for Computational Linguis-
tics.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the Association for
Computational Linguistics, pages 1051–1062, Van-
couver, Canada. Association for Computational Lin-
guistics.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Proceedings of Ad-
vances in Neural Information Processing Systems,
volume 28, pages 1135–1143. Curran Associates,
Inc.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and
Julian Eisenschlos. 2021. Open domain question an-
swering over tables via dense retrieval. In Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 512–519,
Online. Association for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the Association for
Computational Linguistics, pages 4320–4333, On-
line. Association for Computational Linguistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 1821–
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 3543–3556, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Marcin Kardas, Piotr Czapla, Pontus Stenetorp, Se-
bastian Ruder, Sebastian Riedel, Ross Taylor, and
Robert Stojnic. 2020. AxCell: Automatic extraction
of results from machine learning papers. In Proceed-
ings of Empirical Methods in Natural Language Pro-
cessing, pages 8580–8594, Online. Association for
Computational Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Pro-
ceedings of the International Conference on Learn-
ing Representations.

Syrine Krichene, Thomas Müller, and Julian Eisensch-
los. 2021. DoT: An efficient double transformer
for NLP tasks with tables. In Findings of the Asso-
ciation for Computational Linguistics: ACL, pages
3273–3283, Online. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
Association for Computational Linguistics, pages
6086–6096, Florence, Italy. Association for Compu-
tational Linguistics.

Percy Liang, Michael I. Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Association for Computational
Linguistics, pages 1470–1480, Beijing, China. As-
sociation for Computational Linguistics.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301, Berlin,
Germany. Association for Computational Linguis-
tics.

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav,
Yizhong Wang, Akari Asai, Gabriel Ilharco, Han-
naneh Hajishirzi, and Jonathan Berant. 2021. Mul-
timodal{qa}: complex question answering over text,
tables and images. In Proceedings of the Interna-
tional Conference on Learning Representations.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/2020.findings-emnlp.27
https://www.aclweb.org/anthology/2020.findings-emnlp.27
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/2021.findings-acl.289
https://doi.org/10.18653/v1/2021.findings-acl.289
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.1162/COLI_a_00127
https://doi.org/10.1162/COLI_a_00127
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://openreview.net/forum?id=ee6W5UgQLa
https://openreview.net/forum?id=ee6W5UgQLa
https://openreview.net/forum?id=ee6W5UgQLa
http://arxiv.org/abs/2009.06732

7616

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-attention
with linear complexity.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of Empirical
Methods in Natural Language Processing, pages 11–
20, Hong Kong, China. Association for Computa-
tional Linguistics.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In Proceedings of the International Confer-
ence on Learning Representations.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the Association for Computational Lin-
guistics, pages 8413–8426, Online. Association for
Computational Linguistics.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh
Rawat, Sashank Reddi, and Sanjiv Kumar. 2020a.
Are transformers universal approximators of
sequence-to-sequence functions? In Proceed-
ings of the International Conference on Learning
Representations.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli,
Ankit Rawat, Sashank Reddi, and Sanjiv Kumar.
2020b. O(n) connections are expressive enough:
Universal approximability of sparse transformers.
In Proceedings of Advances in Neural Information
Processing Systems.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In Proceedings of Advances in
Neural Information Processing Systems, volume 33.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of Empirical Methods in
Natural Language Processing, pages 1624–1629,
Online. Association for Computational Linguistics.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://papers.nips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://papers.nips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://papers.nips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://papers.nips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://www.aclweb.org/anthology/2020.emnlp-main.126
https://www.aclweb.org/anthology/2020.emnlp-main.126

7617

Appendix

We provide all details on our experimental setup
to reproduce the results in Section A. In Section B
we show the development set results for our exper-
iments. The proof for Theorem 1 is described in
Section C and in Section D we include the main
code blocks for implementing MATE efficiently on
a deep learning framework.

A Experimental setup

A.1 Pre-training

Pre-training for MATE was performed with con-
strained attention with a masked language model-
ing objective applied to the corpus of tables and
text extracted by Herzig et al. (2020). With a se-
quence length of 128 and batch size of 512, the
total training of 1 million steps took 2 days.

In contrast, for LINFORMER the pre-training was
done with a sequence length of 2048 and a batch
size of 128, and the total training took 12 days for 2
million steps. For TABLEETC we also pre-trained
for 2 million steps but the batch size had to be
lowered to 32. In all cases the hardware used was
a 32 core Cloud TPUs V3.

A.2 Fine-tuning

For all experiments we use Large models over 5
random seeds and report the median results. Errors
are estimated with half the interquartile range. For
TABFACT, SQA and WIKITQ we keep the origi-
nal hyper-parameters used in TAPAS and provided
in the open source release. In Figure 5 we show
the floating point operation count of the different
Transformer models as we increase the sequence
length, as extracted from the execution graph. We
also measure the memory doing CPU inference in
figure 6. The linear scaling of LINFORMER and
MATE can be observed. No additional tuning or
sweep was done to obtain the published results. We
set the global size G to 116 and the radius R for
local attention to 42. We use an Adam optimizer
with weight decay with the same configuration as
BERT. The number of parameters for MATE is the
same as for BERT: 340M for Large models and
110M for Base Models.

In the HYBRIDQA cell selection stage, we use a
batch size of 128 and train for 80, 000 steps and a
sequence length of 2048. Training requires 1 day.
We clip the gradients to 10 and use a learning rate
of 1×10−5 under a 5% warm-up schedule. For the

Figure 5: Comparison of inference FLOPS obtained
from execution graph. While TABLEETC is linear, rel-
ative attention adds a high computation cost so keep it
out of range in the figure.

Figure 6: Comparison of the peak memory usage dur-
ing CPU inference shows the linear asymptotic curve
of the memory footprint of MATE.

reader stage use a learning rate of 5× 10−5 under
a 1% warm-up schedule, a batch size of 512 and
train for 25, 000 steps, which takes around 6 hours.

B Development set results for SQA,
WIKITQ and TABFACT

We show in Table 8 the dev set results for all
datasets we attempted, which show consistent re-
sults with the test set reported in the main paper.

C Proof of Theorem 1

In this section we discuss the proof that MATE are
universal approximators of sequence functions.

Theorem. If the number of heads is at least 3 and

Model SQA ALL SQA SEQ WIKITQ TABFACT

TAPAS 64.9±0.5 40.0±1.0 41.6±1.0 76.9±0.4
MATE 67.0±0.1 43.2±0.2 42.9±0.6 77.5±0.3

TAPAS + CS 68.0±0.2 45.8±0.3 46.2±0.2 81.0±0.1
MATE + CS 68.0±0.4 44.9±0.4 50.1±0.7 81.3±0.1

Table 8: Dev results of using MATE on other table
parsing datasets. Errors are estimated with half the in-
terquartile range over 5 runs.

7618

the hidden size of the feed forward layer is at least
4, then for any f ∈ F and ε ∈ R+ there exists
f̂ ∈ TMATE such that ||f̂ − f ||p < ε

Proof. When the number of heads is at least 3,
there are at least 2 heads of the same type. Fixing
those two heads, we may restrict the value of the
projection weights WV to be 0 for the rest of the
heads. This is equivalent to having only those two
heads with the same attention pattern to begin with.
This restriction only makes the family of functions
modelled by MATE smaller. In a similar way, we
can assume that the hidden size of the feed-forward
layer is exactly 4 and that the head size is 1.

Note that the attention pattern of the two heads,
regardless of its type contains a token (the first one)
which attends to and from every other token. We
also have that every token attends to itself. Then
Assumption 1 of Yun et al. (2020b) is satisfied.
Hence we rely on Theorem 1 of Yun et al. (2020b),
which asserts that sparse transformers with 2 heads,
hidden size 4 and head size 1 are universal approx-
imators, which concludes the proof.

D TensorFlow Implementation

In figure 7 we provide an approximate implemen-
tation of MATE in the TensorFlow library. For the
sake of simplicity we omit how attention is masked
between neighbor buckets for tokens in difference
columns or rows. We also omit the tensor manipula-
tion steps to reorder and reshape the sequence into
equally sized buckets to compute attention across
consecutive buckets. The full implementation will
be part of the open source release.

7619

import dataclasses
import tensorflow as tf

@dataclasses.dataclass
class MultiViewEmbedding():

"""Results of sorting and reshaping an embedding tensor.

Different views of the tensor created to facilitate attention across tokens
from global/long parts. First two dimensions are ‘batch_size‘ and ‘num_heads‘:

Attributes:
full: <float32>[..., seq_length, embedding_size].
Original tensor without any bucketing.

global: <float32>[..., global_length, embedding_size].
long: <float32>[..., long_length/radius, radius, embedding_size]
window: <float32>[..., long_length/radius, 3*radius, embedding_size]
Same as ‘long‘ but also a rotation to the left and right, in order
to achieve attention to the previous and next bucket.

"""
full: tf.Tensor
global: tf.Tensor
long: tf.Tensor
window: tf.Tensor

def multi_view_attention(
Q: MultiViewEmbedding,
K: MultiViewEmbedding,
V: MultiViewEmbedding,
embedding_size: int,
global_length: int,
long_length: int,
num_heads: int,

):
<float32>[batch_size, num_heads, global_length, sequence_length]
attention_prob_from_global = tf.nn.softmax(tf.einsum(

’BHFE,BHTE->BHFT’, Q.global, K.full) / sqrt(embedding_size))
<float32>[batch_size, num_heads, long_length, global_length]
attention_score_to_global = tf.einsum(’BHNFE,BHTE->BHNFT’,

Q.long, K.global) / sqrt(embedding_size)
<float32>[batch_size, num_heads, long_length, 3 * radius]
attention_score_to_window = tf.einsum(’BHNFE,BHNTE->BHNFT’,

Q.long, K.window) / sqrt(embedding_size)
<float32>[batch_size, num_heads, long_length, global_length + 3 * radius]
attention_prob_from_long = tf.nn.softmax(tf.concat(

[attention_score_to_global, attention_score_to_window], axis=-1))
attention_prob_to_global = attention_prob_from_long[..., :global_length]
attention_prob_to_window = attention_prob_from_long[..., global_length:]

<float32>[batch_size, num_heads, global_length, embedding_size]
context_layer_from_global = tf.einsum(’BHFT,BHTE->BHFE’,

attention_prob_from_global, V.full)
<float32>[batch_size, num_heads, long_length / radius, radius, embedding_size]
context_layer_to_global = tf.einsum(’BHNFT,BHTE->BHNFE’,

attention_prob_to_global, V.global)
<float32>[batch_size, num_heads, long_length / radius, radius, embedding_size]
context_layer_to_window = tf.einsum(’BHNFT,BHNTE->BHNFE’,

attention_prob_to_window, V.window)

context_layer_from_long = tf.reshape(
context_layer_to_first + context_layer_to_window,
[-1, num_heads, long_length, embedding_size])

return tf.concat(
[context_layer_from_global, context_layer_from_long], axis=-1)

Figure 7: Implementation of MATE in TensorFlow. The creation of MultiViewEmbedding is ommited and
relies on tf.gather for ordering the input. We also omit the use of the input mask and column and row index
to further mask the sparse attention matrix.

