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Abstract
When training most modern reading compre-
hension models, all the questions associated
with a context are treated as being indepen-
dent from each other. However, closely re-
lated questions and their corresponding an-
swers are not independent, and leveraging
these relationships could provide a strong su-
pervision signal to a model. Drawing on
ideas from contrastive estimation, we intro-
duce several new supervision losses that com-
pare question-answer scores across multiple
related instances. Specifically, we normalize
these scores across various neighborhoods of
closely contrasting questions and/or answers,
adding a cross entropy loss term in addi-
tion to traditional maximum likelihood esti-
mation. Our techniques require bundles of
related question-answer pairs, which we ei-
ther mine from within existing data or cre-
ate using automated heuristics. We empiri-
cally demonstrate the effectiveness of train-
ing with instance bundles on two datasets—
HotpotQA and ROPES—showing up to 9% ab-
solute gains in accuracy.

1 Introduction

Machine learning models are typically trained with
the assumption that the training instances sam-
pled from some data distribution are independent
and identically distributed. However, this assump-
tion can cause the learner to ignore distinguish-
ing cues (Dietterich et al., 1997) between related
or minimally different questions associated with a
given context, resulting in inconsistent model pre-
dictions (Jia and Liang, 2017; Ribeiro et al., 2019;
Asai and Hajishirzi, 2020). In cases like ROPES,
where the dataset contains only minimally different
questions, we see that the performance of a com-
petitive model (RoBERTA) is close to random (Lin
et al., 2019). One potential reason for this poor per-
formance is that the model considers each question
independently, instead of looking at differences be-
tween related questions.

Context: Marsilea is a genus of approximately 65 species of
aquatic ferns of the family Marsileaceae. The name honours
Italian naturalist Luigi Ferdinando Marsili (1656-1730) ....
Brabejum is a genus of a single species of large evergreen tree,
Brabejum stellatifolium in the Proteaceae, commonly called
wild almond, bitter almond or ghoeboontjie.

Question, q: Is the Marsilea or the Brabejum the genus of more
individual species of plants?
Answer, a: Marsilea

Question, q̃: Is the Marsilea or the Brabejum the genus of less
individual species of plants?
Answer, ã: Brabejum

(a) Instance bundle created from HotpotQA. The QA pair, (q̃, ã)
is heuristically generated from (q, a) in the dataset.
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(b) Distribution over probability scores of gold QA pair, (a, q)
normalized over the two questions {q, q̃} in each instance bundle,
in HotpotQA’s comparison type dev set. The higher value indi-
cates that correct QA pair has a higher likelihood than the wrong
pair (with 0.5 indicating model has the same likelihood for the
answer for both the contrastive questions).

Figure 1: Example of contrastive QA pairs and effect of
different loss functions while training with such data.

This problem can be addressed by training mod-
els with sets of related question-answer (QA) pairs
simultaneously, instead of having a loss function
that decomposes over independent examples. We
use the term instance bundle to refer to these sets of
closely contrasting examples. Consider an instance
bundle from HotpotQA in Figure 1a, containing
two contrastive QA pairs, which differ in their in-
put by only one word (changing more to less), re-
sulting in different answers. With both examples in
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the training set, traditional maximum likelihood es-
timation will incentivize the model to figure out the
difference between the inputs that leads to the dif-
ference in the answers, but the instances are likely
to be seen far apart from each other during training,
giving only a weak and indirect signal about the
relationship between the pair.

To learn from these instance bundles more effec-
tively, we draw on contrastive estimation (Smith
and Eisner, 2005), a method for re-normalizing an
unsupervised probabilistic model using a neighbor-
hood of related examples (originally a set of pertur-
bations of some observed text). We extend this tech-
nique to apply to supervised reading comprehen-
sion problems by carefully selecting appropriate
“neighborhoods” from instance bundles. The sim-
plest choice of neighborhood is the set of contrast-
ing answers from the instance bundle, resulting in
a method similar to unlikelihood training (Welleck
et al., 2020) or noise-contrastive estimation (Gut-
mann and Hyvärinen, 2010). However, there are
other choices, including the set of contrasting ques-
tions, or combinations of questions and answers.
These re-normalized loss functions are not effec-
tive on their own, which is likely why they have not
been used before for training reading comprehen-
sion models, but provide substantial gains when
combined with maximum likelihood training.

An intuitive explanation for the improved per-
formance is illustrated in Figure 1b. When trained
on non-contrasting data with maximum likelihood
estimation, the model gives roughly equal values
for both p(a|q) and p(a|q̃), even though q and q̃ are
opposites. Augmenting the contrasting data helps
the model differentiate these two probabilities, but
not as much as unlikelihood training, which itself
is not as effective as contrastive estimation.

We empirically demonstrate the utility of this
approach on two reading comprehension datasets:
HotpotQA (Yang et al., 2018) and ROPES (Lin
et al., 2019). To define the instance bundles on
these datasets, we introduce various heuristics for
obtaining closely related instances. We show that
using contrastive estimation on the instance bun-
dles gives up to a 9% absolute performance im-
provement over prior training techniques. These re-
sults strongly suggest that data should be collected
in instance bundles wherever possible, to allow for
stronger supervision signals during training.

2 Contrastive Estimation for Reading
Comprehension

Reading comprehension is the task of producing an
answer a given a question q about a context c. The
question is tied to a particular passage, so in the
discussion that follows we will typically use q as a
shorthand to refer to both q and c together. Read-
ing comprehension models are typically trained
to maximize the likelihood of the answer to each
training question. Given a model’s exponentiated
scoring function ψ(q, a) for a QA pair,1 this MLE
objective normalizes the scores over all possible
answer candidatesA for a given question:

LMLE(qi, ai) = log p(ai|qi)

= log
ψ(qi, ai)∑

c∈A ψ(qi, c)

In this work we use a generative model for ψ,
but many other alternatives are available, and our
contribution is applicable to any scoring function.
Specifically, we use as ψ the (locally normalized)
probability assigned by the generative model to an
answer candidate for a given question.

Instead of normalizing scores over all possi-
ble answer candidates, contrastive estimation (CE,
Smith and Eisner, 2005) normalizes scores over
some neighborhood of closely related instances.
This method was originally introduced for unsuper-
vised linguistic structure prediction, with a neigh-
borhood obtained by permuting observed text to
get inputs that had similar content but were ungram-
matical. Our contribution is to apply this general
idea to supervised reading comprehension prob-
lems. In our setting, given a neighborhood N(q, a)
of related QA pairs, CE can be described as

LCE(qi, ai) = log
ψ(qi, ai)∑

q j,ak∈N(qi,ai)
ψ(q j, ak)

Smith and Eisner (2005) replace the MLE ob-
jective with CE, which worked well in their unsu-
pervised learning problem. In supervised learning,
MLE is a much stronger training signal, and CE
on its own severely underperforms MLE. This is
because CE provides no learning signal for the very
large space of alternative answers to a question that
are not in the neighborhood. However, CE can
provide a much stronger signal than MLE for a
small set of potentially confusing alternatives, as

1ψ is parameterized by model parameters θ, but we omit
this in the equations for simplicity of exposition.
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there are fewer ways for the model to increase the
probability of the correct answer. To adapt CE to
supervised settings we interpolate between the two
losses, instead of replacing MLE with CE:

L = α1LMLE + α2LCE (1)

Interestingly, this can be viewed as forcing the scor-
ing function ψ to capture different probabilistic in-
terpretations, as both losses perform softmaxes over
different sets of alternatives. Additionally, if ψ has
some locally-normalized component, as is true for
the generative models we work with and for many
other common models (such as BIO tagging, or
independent span start and span end positions), this
interpolation trades off between the locally-focused
MLE and the more global view of the problem that
the normalization in CE provides.

The key question in applying CE to reading com-
prehension is how to choose a neighborhood N for
a given training example. We do so by making bun-
dles of related instances, then extracting various
combinations of questions and answers from a bun-
dle to use as neighborhood. Formally, an instance
bundle B is a collection of unique questions BQ
and unique answers BA, such that there is at least
one QA pair where a is the correct answer to q:
ans(q) = a. We refer to such pairs as (qg, ag) in the
discussion that follows. Our assumption is that the
questions in BQ and the answers in BA are related
to each other in some way—often they differ in
only a single word—though we do not characterize
this formally. However, a good bundle creation
procedure is crucial for effective model learning.
We discuss several ways for creating bundles in
Section 3, and discuss the limitations of CE when
effective bundles cannot be created in Section 5.2.
The following section discusses choices of neigh-
borhood functions given an instance bundle.

2.1 Choosing a neighborhood

Given an instance bundle B with questions BQ and
answers BA, there are many ways to construct a
neighborhood. Figure 2 shows some of these op-
tions graphically, with the bold line showing the
gold QA pair, and gray lines showing the other QA
pairs that make up the neighborhood. We distin-
guish between two kinds of neighborhood methods.
A single neighborhood CE model is one that per-
turbs and normalizes over a single variable, either
the question (input) or the answer (output). Sim-
ilarly, multiple neighborhood CE models perturb

both variables jointly and normalize over the com-
binatorial space of both variables.

2.1.1 Single Neighborhood Models
These models construct a neighborhood using ei-
ther the answers or the questions from the B.

Answer Conditional This probabilistic model
maximizes the probability of the correct answer
ai at the expense of the other answers candidates in
the instance bundle BA (Figure 2a).

LCE-AC(qg, ag,B) = log
ψ(qg, ag)∑

a j∈BA ψ(qg, a j)

Question Conditional This model computes the
normalization constant over the question neighbor-
hood for a fixed answer. This effectively computes
a probability distribution over questions in the bun-
dle given the correct answer, and maximizes the
probability of the correct question (Figure 2b).

LCE-QC(qg, ag,B) = log
ψ(qg, ag)∑

q j∈BQ
ψ(q j, ag)

2.1.2 Multiple Neighbourhood Models
These models consider all possible combinations
of questions, BQ, and answers, BA, in a bundle for
normalization.

Two Way This method performs a weighted com-
bination (Jacobs et al., 1991) of the answer condi-
tional and question conditional losses.

LCE-TW(qg, ag,B) = λ1 log
ψ(qg, ag)∑

a j∈BA ψ(qg, a j)
+

λ2 log
ψ(qg, ag)∑

q j∈BQ
ψ(q j, ag)

Full Partition Instead of separate normalizations
over questions and answers, this method uses a
single normalization over the same sets as Two Way.
This is equivalent to normalizing over BQ × BA
without correct pairings (Figure 2c).

LCE-FP(qg, ag,B) = log
ψ(qg, ag)

ψ(qg, ag) +
∑

q j∈BQ,
ak∈BA,

ans(q j),ak

ψ(q j, ak)

Joint This method switches from optimizing the
probability of single QA pairs to optimizing the
set of correct QA pairs in the bundle, also known
as power-set label classification (Zhang and Zhou,
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Figure 2: Contrastive Estimation Losses for an instance bundle of size 2, with bold lines indicating combinations
whose probability is maximized at the expense of the combinations represented by gray lines, for the QA pair
(qi, ai) in the bundle, where ans(qi) = ai. The CE loss is the sum of loss for each positive QA pair in the bundle.

2007) (Figure 2d). We perform this for only bun-
dles consisting of two correct QA pairs, because
the power set becomes prohibitively large for larger
bundles. Let C(B) be a function that returns all
unique subsets of size 2 from BQ × BA, and let
(qg1 , ag1) and (qg2 , ag2) be the two positive QA pairs
in the bundle. The joint CE objective is

LCE-JT(B) =
ψ(qg1 , ag1)ψ(qg2 , ag2)∑

qi,ak ,q j,al∈C(B)
ψ(qi, ak)ψ(q j, al)

.

2.2 Alternative Ways to Use Bundles

Here we briefly consider other potential baselines
that make use of instance bundles in other ways.

Data Augmentation If the bundle B contains in-
stances that were not present in the training data
(e.g., the bundle could be generated using simple
heuristics; see §3), the simplest use of the bundle
is to add all instances to the training data and use
MLE under the standard i.i.d. assumption. This
is the standard approach to using this kind of data,
and it has been done numerous times previously
(Andreas, 2020; Zmigrod et al., 2019). This is not
applicable if the bundle was obtained by mining
the existing training instances, however.

Unlikelihood Unlikelihood training (Welleck
et al., 2020) minimizes the likelihood of carefully
chosen negative examples to improve a text gen-
eration model that would otherwise assign those
examples too high of a probability. Essentially,
because the generative model only gets a single
positive sequence in an exponentially large set, it
does not get strong enough evidence to push down
the probability of particularly bad generations. Un-
likelihood training seeks to solve the same problem
that contrastive estimation does, and it provides a
natural alternative use of instance bundles. In our
setting, unlikelihood training would decrease the

likelihood of negative answers in the bundle:

LUL(qg, ag,B) =
∑

c∈BA\ag

log(1 − p(c|qg))

Similar to (Welleck et al., 2020) and Eq. 1 we lin-
early interpolate LUL with LMLE to also increase
likelihood of positive answer at the same time. Un-
likelihood training, though easy to perform, has
two drawbacks. First, it independently minimizes
the likelihood of the neighborhood, which means
that the probability mass is moved from negative
QA pairs but may not necessarily move to the posi-
tive pair, unlike CE. Second, because it assumes a
conditional probabilistic model of p(a|q), it is not
clear how to use alternative questions in the bundle.

3 Bundling Heuristics

In this section we discuss how we obtain instance
bundles for use with contrastive estimation and
other related baselines.

A naive way to create a bundle would be to ex-
ploit the fact that all the questions associated with
a context are likely to be related, and simply make
bundles consisting of all QA pairs associated with
the context. However, this approach poses two
problems. First, there could be many questions
associated with any particular context, and smaller,
more closely-related bundles are more informative.
Second, and relatedly, it is likely that bundles ob-
tained this way will have many questions whose
answers can be obtained from the bundle by super-
ficial type matching. For instance, a wh-question
starting with “where" would most likely align with
a location type answer. If this were bundled with a
question starting with “how many”, with an answer
that is a number, the bundle would be largely un-
informative. We instead attempt to create bundles
with minimally different questions and answers, in
several different ways.

Diverse Top-k sampling We first discuss a
method for getting alternative answers to a single
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question. This will result in a bundle that can only
be used with answer conditional CE, as there are
no alternative questions in the bundle. An easy way
to get answer candidates is to employ a pre-trained
answering model and sample answers from the pos-
terior distribution. However, since the model has
seen all the QA pairs while training, it can eas-
ily memorize answers, resulting in a low variance,
high confidence distribution. In order to achieve
diverse answer samples we need to either over-
generate and prune out the gold answer from the
samples or induce a diversity promoting sampling.
We adopt a hybrid sampling strategy where we use
nucleus sampling for the first few (depending on
dataset) timesteps of decoding (without replace-
ment) and then top-k for the remaining timesteps.
This forces the answer generator to consider dif-
ferent starting positions in the passage and then
generate the best answer span (of an appropriate
length) from the token produced at the first step.

Question Mining Some datasets, such as
ROPES, are constructed with very close question
pairs already in the data. When these exist, we
can create instance bundles by finding natural pair-
ings from the training set. To find these pairings,
we cluster the questions with a high lexical bag-
of-words overlap based on Jaccard index (≥ 0.8),
ensuring that each question in the cluster has a
unique answer. In ROPES, these bundles typically
result in bundles of two QA pairs that differ in one
or a few words. In HotpotQA, the other dataset
we focus on in this work, there are very few such
pairings naturally occurring in the dataset, so we
resort to heuristics to create them.

Question Generation HotpotQA has many ques-
tions that are phrased as multiple-choice, with an-
swer options given in the question itself. These mul-
tiple choice questions can most often be rephrased
to provide QA pairs that can be bundled with the
original question. For instance, given the ques-
tion, “Which animal is faster, turtle or hare?", it
is straightforward to obtain a minimally different
question with the opposite answer: “Which animal
is slower, turtle or hare?". We adopt three main
heuristics to generate such questions whenever pos-
sible, applicable to any dataset that has questions of
this kind. All of these heuristics require identifying
the two plausible answer choices from the question,
which can be done with reasonably high precision
using simple regular expressions.

1. We replace superlatives with their contrasting
counterparts, e.g., taller/smaller, more/less, etc.

2. We negate the main verb, e.g., played→ didn’t
play, by inflecting the verbs.2

3. We swap the noun phrases being compared in
the question, e.g., “Are rock A’s wavelengths
shorter or longer than rock B’s?" can be used to
generate, “Are rock B’s wavelengths shorter or
longer than rock A’s?"

4 Experiments

We use an encoder-decoder style T5-large model
for all our experiments. The baseline models in our
experiments are fine-tuned T5 models for the corre-
sponding tasks using the MLE objective. We com-
pare them against models that are further fine-tuned
with a combination of MLE and contrastive estima-
tion objectives, as described in Section 2.1. That
is, when using various instance bundle techniques,
we initialize the model with the weights from the
fine-tuned MLE model, then continue training with
the new loss function.3 The model takes a concate-
nated context and question as an input to produce
an answer output. We use a learning rate of 2e-5
for ROPES and 5e-5 for COMPARISON with low-
ercased inputs and outputs for further fine-tuning.
We truncate the concatenated context and question
up to a length of 650 for ROPES and 850 for COM-
PARISON. All the interpolation hyper-parameters
(αl, λl) are set to 1.

In addition to standard metrics on these datasets,
we additionally evaluate using consistency. This
metric evaluates to true only if all the questions in a
bundle are answered correctly, and is thus a stricter
version of EM.

4.1 Main results
We experiment with three datasets: a subset of
HotpotQA containing only comparison type of
questions (COMPARISON), full HotpotQA and
ROPES. In general, we find that all variants of CE
perform substantially better than MLE alone, with
question conditional giving small improvements
over other CE variants. All CE models also outper-
form all UL and data-augmented MLE models.

COMPARISON HotpotQA has several different
kinds of questions, with the question category la-

2https://spacy.io/universe/project/lemminflect/
3To control for the number of optimization steps, we also

tried a baseline where we continued fine-tuning an MLE model
using the same setup, but this never improved over the original
MLE, so we do not include it in the tables.
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Model Dev Test Test
EM/F1 Consis. EM/F1

MLE 68.4/72.1 36.3 57.4/65.1
(full HotpotQA)

MLE 81.8/85.4 51.2 70.8/77.9
+ Aug 84.9/88.0 76.7 73.9/80.7
+ UL 87.1/90.6 85.4 74.3/82.3

+ Answer Cond. 87.4/90.3 85.7 75.7/83.2
+ Question Cond. 88.3/91.5 87.3 77.1/84.3
+ Two way 87.9/91.1 83.9 74.1/81.8
+ Joint 88.3/91.1 87.0 76.8/83.8
+ Full Partition 87.2/90.7 85.9 75.8/83.5

Table 1: Results on COMPARISON subset of Hot-
potQA. The comparison questions from the training
data are divided into train and dev set (90%-10% split)
and the ones from the dev set are treated as test split.

beled in the original data. We begin by experiment-
ing with the subset labeled as comparison ques-
tions, as they lend themselves most naturally to
instance bundles. For these questions, we adopt
the question generation strategy to create instance
bundles. Table 1 shows a comparison of the base-
line MLE model (trained on the comparison subset
only) with those further fine-tuned with UL and CE
over the instance bundles. Also shown is a com-
parison with further fine-tuning using MLE on the
generated QA pairs (+Aug).

Due to unavailability of the code for best model
on the HotpotQA dataset, we use a T5-large model
trained on the entire HotpotQA as our baseline.
Even though this model has a performance of 81.1
F1 on the whole dev set (close to the current SOTA
83.5 on the leaderboard4), on the comparison sub-
set it performs poorly (65.1). Training an MLE
model on just this subset reaches 77.9 F1, which
is outperformed by unlikelihood training (82.3 F1).
The best CE performance is from the question con-
ditional model, which gets 84.3 F1.

The consistency metric evaluates if the model
answers all the questions in an instance bundle cor-
rectly. All the models trained with CE are more
consistent than the MLE model. We also show in
Figure 1 that a model trained with answer condi-
tional CE is still effective on the question neighbor-
hood, as it consistently assigns higher probability
to p(a|q) than to p(a|q̃), even though while training
it never compared q and q̃ for a given a.

HotpotQA We additionally experiment with the
entire HotpotQA dataset. Here we use top-k sam-

4https://hotpotqa.github.io/

Model F1

MLE 81.1
+CE-AC (k = 1) 82.5
+CE-AC (k = 2) 83.3
+CE-AC (k = 3) 82.1
+CE-AC (k = 4) 81.8

Table 2: F1 on the full HotpotQA dev set with increas-
ing number (k) of top-k negative answer candidates

pling to create instance bundles, where the top-k
answer candidates were sampled from the MLE
model we use as a baseline. Table 2 shows the
performance of the fine-tuned model as we vary
the number of answers in BA with CE-AC loss.
The overall performance gets better with CE up to
|BA| = 3, but reduces after that. On a closer ex-
amination of the samples, we find that on average
we get two distinct answer candidates and the rest
of the candidates are ungrammatical variations of
the two distinct candidates (including the oracle
answer). These ungrammatical variations provide
a noisy signal that hurts model performance.

ROPES Since ROPES already contains mini-
mally different QA pairs, we use question mining to
create instance bundles. We use as the most closely
comparable prior work the multi-step model of
(Liu et al., 2020), which adds a ROPES-specific
architecture on top of RoBERTa-large (Liu et al.,
2019)5, while our baseline MLE model is a generic
T5-large model without any special architecture.
Table 3 shows gains over MLE of around 12% ab-
solute on the dev set in both EM and consistency,
though these drop to just a few points on the test
set. Liu et al. (2020) saw similar behavior in their
experiments with ROPES, which they attribute to
high distributional shift from train to test. They
recommend splitting the training set into train and
train-dev, and treating the original dev set as an
in-domain test set. Following their protocol, we
find that using CE gives an absolute improvement
of more than 9% EM over an MLE model on this
dev-test set, while UL gives only a few point gain.

4.2 Joint Inference

In cases where we can generate a bundle given only
a question (that is, the answer candidates are clear
and our heuristics can generate a contrasting ques-

5UnifiedQA (Khashabi et al., 2020) also evaluated on
ROPES, but they used much more training data from many
other datasets, and a much larger model than we experiment
with, so their performance is not particularly comparable.
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Model Dev Dev Test Dev-Test
EM C EM EM

Multi-step 71.4 - 57.4 63.4
(Liu et al., 2020)

T5-large MLE 65.7 52.1 56.7 66.1
+ UL 68.3 55.6 58.6 69.0

+ Answer Cond. 74.5 62.1 59.5 71.3
+ Question Cond. 76.6 64.7 60.5 75.5
+ Two way 73.5 59.7 59.1 70.3
+ Joint 72.5 58.2 59.3 73.4
+ Full Partition 75.1 63.2 59.6 73.1

Table 3: Performance on ROPES dev and test set,
where C measures consistency. Dev-test EM is com-
puted by splitting train into train and dev and using the
original dev set as test, because of severe distributional
shift in the original test set.

tion), we can treat test time inference as a hard as-
signment problem between questions and answers
in the generated bundle. We use the scoring func-
tion ψ(q, a) to align each question to an answer in
the bundle by optimizing objective below:

max
∑

a j∈BA,
qi∈BQ

ψ(qi, a j)xi j

s.t.
|BA |∑
j=0

xi j = 1,
|BQ |∑
i=0

xi j = 1

We refer to this as joint inference. Intuitively,
even if the model is only given a single question
at test time, if it can reason jointly about two com-
peting assignments it can potentially use the alter-
natives to arrive at a better response than if it only
considered the single question it was given. As
shown in Figure 3, when using joint inference the
performance of a baseline MLE model on COM-
PARISON improves from 79 F1 to 85.5. The CE
model manages to achieve this performance (85.8
F1) without enforcing these constraints at test time,
but joint inference improves CE to 90.1 F1.

5 Discussion

Here we try to understand how CE compares to
MLE and UL and when is it effective.

5.1 Relation between MLE, UL and CE

In this section we describe the relationship between
CE, MLE and UL in the special case when the scor-
ing function ψ comes from a locally-normalized
generative model, as it does in this work. Let

Independent Joint
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90
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MLE Aug UL CE

Figure 3: Performance (F1) on COMPARISON dev
with independent prediction versus joint inference.
Joint inference improves all models. The results are on
the subset of COMPARISON for which we have paired
instances (∼93%).

pV be the locally-normalized probability of an an-
swer candidate (i.e., combined likelihood of the
tokens under a given generative model). ψ(q, a)
then equals pV (a|q). The CE-AC loss with locally-
normalized compatibility score can be written as

LCE-AC(qg, ag,B) = log
pV (ag|qg)∑

c∈BA
pV (ac|qg)

. (2)

We can decompose and rewrite Eq. 2 as

LCE-AC(qg, ag,B) = log pV (ag|qg) − log
∑

c∈BA

pV (ac|qg)

= LMLE(qg, ag) + Reg(BA, qg).
(3)

Eq. 3 shows that LCE-AC is a linear combination
of MLE and a regularization term that decreases
the probability of incorrect answers in the bundle.

On a closer look we can see an interesting con-
nection between the regularization term and un-
likelihood. The regularization term in CE-AC is
essentially the log of an unlikelihood term, except
the unlikelihood objective in Section 2.2 in practice
gets applied at each timestep of decoding, while
the regularization term in CE-AC is applied over
the entire answer sequence.

Our formulation of CE is more general than the
specific case we are analyzing here, but we make
note of it as this is the function that we used in
our experiments, and it significantly outperformed
unlikelihood training. The theoretical connections
shown here could benefit from further exploration.
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Dataset MLE UL CE Entropy10 Top-2 ratio

COMP. 77.7 82.4 84.7 2.31 0.5
ROPES 65.7 68.3 77.6 0.97 2.3
Quoref 84.8 83.9 85.0 0.06 3.1

Table 4: Comparison between Quoref, COMPARI-
SON, and ROPES datasets with Top-k bundling. MLE,
UL, and CE results are on the corresponding develop-
ment sets (F1 for COMPARISON and Quoref, EM
for ROPES) and Entropy10 and Top-2 ratio are mea-
sured on random samples of the training sets. UL and
CE columns show results after fine-tuning the baseline
MLE model with the respective objectives.

5.2 Importance of close instance bundles
Experiments on ROPES and COMPARISON show
strong improvements by using CE and UL when
instances can be grouped into closely related bun-
dles. But effective groupings may not be possible
on all datasets. To analyze the applicability of our
methods to a dataset without natural bundles, we
looked at Quoref (Dasigi et al., 2019). Table 4
shows a comparison between UL and CE across
Quoref, ROPES and COMPARISON with bundles
created using top-k sampling. On Quoref, UL does
not improve on top of MLE, and CE shows only
a very small improvement which is likely statis-
tical noise. To understand why, we analyzed the
p(a|q) distribution of the baseline MLE model, and
computed the following two measures on a random
sample of the training set.

• Entropy10 = −
∑10

i=1 p(ai|q) log p(ai|q)

• Top-2 ratio = log p(a1|q)/p(a2|q)

As seen in Table 4, Quoref has a lower Entropy10,
and a higher Top-2 ratio than the other datasets,
indicating that the baseline MLE model places a
lot more weight on the top-1 answer in this task.
Manual analysis additionally found that most of
the top predictions were ungrammatical variations
of the top-1 answer, similar to (but more extreme
than) what was seen on the full HotpotQA dataset.
This could explain why the top-k bundling heuristic
is not as effective in the case of Quoref as the other
two datasets. More generally, these results indi-
cate the importance of effective instance bundling
heuristics, and future work could focus on identify-
ing more general ways to create bundles.

6 Related Work

Learning with negative samples has been ex-
plored in many natural language tasks, such as

dialogue generation (Cai et al., 2020), word em-
beddings (Mikolov et al., 2013), language model-
ing (Noji and Takamura, 2020), etc., and computer
vision tasks such as image captioning (Dai and Lin,
2017), unsupervised representation learning (Had-
sell et al., 2006), etc. Similarly, mutual information
minimization based learners in question answer-
ing (Yeh and Chen, 2019) and image classification
(Hjelm et al., 2019) try to decrease the mutual in-
formation between positive and negative samples.

Natural language applications often sample neg-
ative examples either randomly from the data or
based on likelihood (or unlikelihood) metrics from
a reference model. However, the negative sam-
ples extracted in this manner are often unrelated.
A growing body of literature is exploring ways
to obtain closely-related examples, either manu-
ally (Kaushik et al., 2020; Gardner et al., 2020)
or automatically (Ribeiro et al., 2020; Ross et al.,
2021; Wu et al., 2021). This is complementary
to our work, as we show how to make better use
of these related examples during training. There
is also work on consistent cluster assignments in
coreference resolution (Chang et al., 2011); factu-
ally consistent summaries (Kryscinski et al., 2020)
and language models (Elazar et al., 2021).

Another growing body of literature on training
with closely related examples, to which we are con-
tributing, includes methods that make use of logical
or domain specific consistency rules, in natural lan-
guage inference tasks (Minervini and Riedel, 2018),
reading comprehension (Asai and Hajishirzi, 2020;
Gupta et al., 2021), and visual question answer-
ing (Teney et al., 2019, 2020; Jacovi et al., 2021).
In open domain QA, re-ranking extracted answer
spans from a baseline model has shown promising
improvements and shares connections with our an-
swer conditional setup (Iyer et al., 2020). Instead
of training just a ranking model (which is similar to
answer conditional CE) on top of a baseline (MLE)
model, we jointly train a single QA model with
both objectives. This promotes better representa-
tion learning in the baseline QA model.

7 Conclusion

We have presented a way to use contrastive estima-
tion in a supervised manner to learn from distin-
guishing cues between multiple related QA pairs,
or instance bundles. Our experiments with multiple
CE-based loss functions, defined over a joint neigh-
borhood of questions and answers, have shown
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that these models outperform existing methods
on two datasets: ROPES and HotpotQA. Apart
from presenting several ways to create instance
bundles, we also explore theoretical connections
between unlikelihood training and contrastive esti-
mation, and initial exploration into when instance
bundles are likely to be effective with these meth-
ods. We believe our results give strong motiva-
tion for further work in techniques to both create
and use instance bundles in NLP datasets. The
code is available at https://github.com/dDua/
contrastive-estimation.
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