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Abstract

Counterfactual statements describe events that
did not or cannot take place. We consider
the problem of counterfactual detection (CFD)
in product reviews. For this purpose, we an-
notate a multilingual CFD dataset from Ama-
zon product reviews covering counterfactual
statements written in English, German, and
Japanese languages. The dataset is unique
as it contains counterfactuals in multiple lan-
guages, covers a new application area of e-
commerce reviews, and provides high quality
professional annotations. We train CFD mod-
els using different text representation meth-
ods and classifiers. We find that these mod-
els are robust against the selectional biases in-
troduced due to cue phrase-based sentence se-
lection. Moreover, our CFD dataset is com-
patible with prior datasets and can be merged
to learn accurate CFD models. Applying ma-
chine translation on English counterfactual ex-
amples to create multilingual data performs
poorly, demonstrating the language-specificity
of this problem, which has been ignored so far.

1 Introduction

Counterfactual statements are an essential tool of
human thinking and are often found in natural lan-
guages. Counterfactual statements may be identi-
fied as statements of the form – If p was true, then
q would be true (i.e. assertions whose antecedent
(p) and consequent (q) are known or assumed to
be false) (Milmed, 1957). In other words, a coun-
terfactual statement describes an event that may
not, did not, or cannot take place, and the subse-
quent consequence(s) or alternative(s) did not take
place. For example, consider the counterfactual
statement – I would have been content with pur-
chasing this iPhone, if it came with a warranty!.
Counterfactual statements can be broken into two
parts: a statement about the event (if it came with a
warranty), also referred to as the antecedent, and
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the consequence of the event (I would have been
content with purchasing this iPhone), referred to
as the consequent. Counterfactual statements are
ubiquitous in natural language and have been well-
studied in fields such as philosophy (Lewis, 2013),
psychology (Markman et al., 2007; Roese, 1997),
linguistics (Ippolito, 2013), logic (Milmed, 1957;
Quine, 1982), and causal inference (Höfler, 2005).

Accurate detection of counterfactual statements
is beneficial to numerous applications in natural
language processing (NLP) such as in medicine
(e.g., clinical letters), law (e.g., court proceedings),
sentiment analysis, and information retrieval. For
example, in information retrieval, counterfactual
detection (CFD) can potentially help to remove ir-
relevant results to a given query. Revisiting our
previous example, we should not return the iPhone
in question for a user who is searching for iPhone
with warranty because that iPhone does not come
with a warranty. A simple bag-of-words retrieval
model that does not detect counterfactuals would
return the iPhone in question because all the to-
kens in the query (i.e. iPhone, with, warranty)
occur in the review sentence. Detecting counter-
factuals can also be a precursor to capturing causal
inferences (Wood-Doughty et al., 2018) and inter-
actions, which have shown to be effective in fields
such as health sciences (Höfler, 2005). Janocko
et al. (2016) and Son et al. (2017) studied CFD in
social media for automatic psychological assess-
ment of large populations.

CFD is often modelled as a binary classifica-
tion task (Son et al., 2017; Yang et al., 2020a). A
manually annotated sentence-level counterfactual
dataset was introduced in SemEval-2020 (Yang
et al., 2020a) to facilitate further research into this
important problem. However, successful devel-
opments of classification methods require exten-
sive high quality labelled datasets. To the best
of our knowledge, currently there are only two
labelled datasets for counterfactuals: (a) the pio-
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neering small dataset of tweets (Son et al., 2017)
and (b) a recent larger corpus covering the area of
the finance, politics, and healthcare domains (Yang
et al., 2020a). However, these datasets are limited
to the English language.

In this paper, we contribute to this emerging line
of work by annotating a novel CFD dataset for a
new domain (i.e. product reviews), covering lan-
guages in addition to English, such as Japanese
and German, ensuring a balanced representation
of counterfactuals and the high quality of the la-
belling. Following prior work, we model coun-
terfactual statement detection as a binary classifi-
cation problem, where given a sentence extracted
from a product review, we predict whether it ex-
presses a counterfactual or a non-counterfactual
statement. Specifically, we annotate sentences se-
lected from Amazon product reviews, where the
annotators provided sentence-level annotations as
to whether a sentence is counterfactual with respect
to the product being discussed. We then represent
sentences using different encoders and train CFD
models using different classification algorithms.

The percentage of sentences that contain a coun-
terfactual statement in a random sample of sen-
tences has been reported to be low as 1-2% (Son
et al., 2017). Therefore, all prior works annotat-
ing CFD datasets have used clue phrases such as I
wished to select candidate sentences that are likely
to be true counterfactuals, which are then subse-
quently annotated by human annotators (Yang et al.,
2020a). However, this selection process can poten-
tially introduce a selection bias towards the clue
phrases used.

To the best of our knowledge, while the data se-
lection bias is a recognised problem in other NLP
tasks (e.g., Larson et al. (2020)), this selection bias
on CFD classifiers has not been studied previously.
Therefore, we train counterfactual classifiers with
and without masking the clue phrases used for can-
didate sentence selection. Furthermore, we exper-
iment with enriching the dataset with sentences
that do not contain clue phrases but are semanti-
cally similar to the ones that contain clue phrases.
Interestingly, our experimental results reveal that
compared to the lexicalised CFD such as bag-of-
words representations, CFD models trained using
contextualised masked language models such as
BERT are robust against the selection bias (Devlin
et al., 2019). Our contributions in this paper are as
follows:

First-ever Multilingual Counterfactual Dataset:
We introduce the first-ever multilingual CFD
dataset containing manually labelled product re-
view sentences covering English, German, and
Japanese languages.1 As already mentioned above,
counterfactual statements are naturally infrequent.
We ensure that the positive (i.e. counterfactual)
class is represented by at least 10% of samples for
each language. Distinguishing between a counter-
factual and non-counterfactual statements is a fairly
complex task even for humans. Unlike previous
works, which relied on crowdsourcing, we employ
professional linguists to produce a high quality an-
notation. We follow the definition of counterfac-
tuals used by Yang et al. (2020a) to ensure that
our dataset is compatible with the SemEval-2020
CFD dataset (SemEval). We experimentally verify
that by merging our dataset with the SemEval CFD
dataset, we can further improve the accuracies of
counterfactual classifiers. Moreover, applying ma-
chine translation on the English CFD dataset to
produce multilingual CFD datasets results in poor
CFD models, indicating the language-specificity
of the problem that require careful manual annota-
tions.

Accurate CFD Models: Using the annotated
dataset we train multiple classifiers using (a) lex-
icalised word-order insensitive bag-of-words rep-
resentations as well as (b) contextualised sentence
embeddings. We find that there is a clear advan-
tage to using contextualised embeddings over non-
contextualized embeddings, indicating that coun-
terfactuals are indeed context-sensitive.

2 Related Work

Counterfactuals have been studied in various con-
texts such as for problem solving (Markman et al.,
2007), explainable machine learning (Byrne, 2019),
advertisement placement (Joachims and Swami-
nathan, 2016) and algorithmic fairness (Kusner
et al., 2017). Kaushik et al. (2020) proposed an
annotation scheme whereby the original data is
augmented in a counterfactual manner to overcome
spurious associations that a classifier heavily relies
upon, thus failing to perform well on test data dis-
tributions that are not identical. Unlike Kaushik
et al. (2020) and closely related work by Gardner
et al. (2020), we are interested in identifying exist-

1
https://github.com/amazon-research/

amazon-multilingual-counterfactual-dataset

https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset
https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset
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ing counterfacts and filtering these statements to
improve search performance.

A CFD task was presented in SemEval-2020
Challenge (Yang et al., 2020b). The provided
dataset contains counterfactual statements from
news articles. However, the dataset does not cover
counterfactuals in e-commerce product reviews,
which is our focus in this paper. One of the ear-
liest CFD datasets was annotated by Son et al.
(2017) and covers counterfactual statements ex-
tracted from social media. Both datasets are la-
belled for binary classification by crowdsourcing
and contain only sentences in English. We will
compare our dataset to these previous works in
§ 3.4. To summarise, our dataset is unique as it con-
tains counterfactuals in multiple languages, covers
a new application area of e-commerce reviews, and
provides high quality annotations.

A range of CFD methods was recently proposed
in response to the SemEval-2020 challenge (Yang
et al., 2020b). Most of the high performing meth-
ods (Ding et al., 2020; Fajcik et al., 2020; Lu et al.,
2020; Ojha et al., 2020; Yabloko, 2020) use state-
of-the-art pretrained language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2020; Radford
et al., 2019; Yang et al., 2019). Traditional ML
methods, such as SVM and random forests were
also used but with less success (Ojha et al., 2020).

To achieve the best prediction quality, ensem-
ble strategies are employed. The top performing
systems use an ensemble of transformers (Ding
et al., 2020; Fajcik et al., 2020; Lu et al., 2020),
while others include Convolutional Neural Net-
works (CNNs) with Global Vectors (GloVe; Pen-
nington et al., 2014) embeddings (Ojha et al., 2020).
Various structures are used on top of transformers.
For example, Lu et al. (2020); Ojha et al. (2020)
use a CNN as the top layer, while Bai and Zhou
(2020) use a Bi-GRUs and Bi-LSTMs. Some other
proposed methods use additional modules, such as
constituency and dependency parsers, in the lower
layers of the architecture (Yabloko, 2020).

CFD datasets tend be highly imbalanced because
counterfactual statements are less frequent in natu-
ral language texts. Prior work has used techniques
such as pseudo-labelling (Ding et al., 2020) and
multi sample dropout (Chen et al., 2020) to address
the data imbalance and overfitting problems.

3 Dataset Curation

We adopt the definition of a counterfactual state-
ment proposed by Janocko et al. (2016) where they
define it as a statement which looks at how a hy-
pothetical change in past experience could have
affected the outcome of that experience. Their defi-
nition is based on linguistic structures of 6 types of
counterfactuals as following.

Conjunctive Normal: The antecedent is fol-
lowed by the consequent. The antecedent consists
of a conditional conjunction followed by a past
tense subjunctive verb or past modal verb. The
consequent contains a past or present tense modal
verb. (Example: If everyone got along, it would be
more enjoyable.)

Conjunctive Converse: The consequent is fol-
lowed by the antecedent. The consequent consists
of a modal verb and past or present tense verb. The
antecedent consists of a conditional conjunction
followed by a past tense subjunctive verb or past
tense modal. (Example: I would be stronger, if I
had lifted weights.)

Modal Normal: The antecedent is followed by
the consequent. The antecedent consists of a modal
verb and past participle verb. The consequent con-
sists of a past/present tense modal verb. (Example:
We should have gone bowling, that would have
been better.)

Wish/Should Implied: The antecedent is
present, the consequent is implied. The antecedent
is the independent clause following ‘wish’ or
‘should’. The consequent is implied and can be
paraphrased as “would be better off”. (Examples: I
wish I had been richer. I should have revised my
rehearsal lines.)

Verb Inversion: No specific order of the an-
tecedent and consequent. The antecedent uses the
subjunctive mood by inverting the verbs ‘had’ and
‘were’ to create a hypothetical conditional state-
ment along with a past tense verb. The consequent
consists of a modal verb and past or present tense
verb. (Example: Had I listened to your advice, I
may have got the job.)

Modal Propositional, Would/Could Have:
The consequent is followed by the antecedent. The
antecedent consists of a past/present modal verb.
The consequent consists of a prepositional phrase
(only certain types). (Examples: I would have
been better off not reading this. I would have been
happier without John.)

Note that, while Yang et al. (2020a) explicitly
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mention only 5 types of counterfactual and Son
et al. (2017) work with 7 types, their definitions
and clue words used for data collection effectively
cover the same 6 types defined by Janocko et al.
(2016). We worked with professional linguists
to extend these counterfactual definitions for the
German and Japanese languages. While the ex-
tension of the definition from English to German
is relatively straightforward, the extension to syn-
tactically and orthographically different structure
of Japanese sentences was challenging (Jacobsen,
2011) and required re-writing the annotation guide-
lines including additional examples. The annota-
tion guidelines are included in the dataset release.

3.1 Data Collection

The main step of data collection in the previous
works (Son et al., 2017; Yang et al., 2020a) is
filtering of the data using a pre-compiled list of
clue words/phrases. Because the exact list of clue
phrases used by Janocko et al. (2016) was not pub-
licly available, we created a new list of clue phrases
following the definitions of counterfactual types.
In addition, we compiled similar clue phrase lists
for German and Japanese languages. Yang et al.
(2020a) applied a more complex procedure, where
they match Part of Speech (PoS)-tagged sentences
against lexico-syntactic patterns. In our work, we
do not consider PoS-based patterns, which are dif-
ficult to generalise across languages.

We use the Amazon Customer Reviews Dataset,2

which contains over 130 million customer reviews
collected and released by Amazon to the research
community. To create an annotated dataset, we
select reviews in different categories as detailed
in the Supplementary. Next, we sample candidate
sentences for annotation in two iterations.

In the first iteration, we consider reviews writ-
ten by customers with a verified purchase (i.e., the
customer has bought the product about which he or
she is writing the review). Given that counterfac-
tual statements are infrequent, all prior works (Son
et al., 2017; Yang et al., 2020a) have used clue
phrase lists for selecting data for human annota-
tion. Following this practice, we select sentences
that contain exactly one clue phrase from our pre-
compiled clue phrase lists for each language. We
remove sentences that are exceedingly long (more
than 512 tokens) or short (less than 10 tokens).

2
https://s3.amazonaws.com/amazon-reviews-pds/

readme.html

Shorter sentences might not contain sufficient in-
formation for a human annotator to decide whether
it is a counterfactual statement, whereas longer
sentences are likely to contain various other infor-
mation besides counterfactuals.

The above-mentioned first iteration might pro-
duce a biased dataset in the sense that all sentences
contain counterfactual clues from the predefined
lists. There are two possible drawbacks in this se-
lection method. First, the manually compiled clue
phrase lists might not cover all the different ways in
which we can express a counterfactual in a particu-
lar language. Therefore, the sentences selected us-
ing the clue phrase lists might have coverage issues.
Second, a counterfactual classification model might
assign high confidence scores for some high preci-
sion clue phrases (e.g., “wish” for English). Such
a classifier is likely to perform poorly on test data
that do not use clue phrases for expressing coun-
terfactuality. On the contrary, adding sentences
with no clue words to the dataset might result in a
greater bias: those additional sentences are likely
to be negative examples, and thus discriminatory
power of the clue phrases can get amplified. Later
in our experiments, we empirically evaluate the
effect of selection bias due to the reliance on clue
phrases.

To address the selection bias, in addition to the
sentences selected in the first iteration, we conduct
a second iteration where we select sentences that do
not contain counterfactual clues from our lists. For
this purpose, we create sentence embeddings for
each sentence selected in the first iteration. We use
a pretrained multilingual BERT model3. We then
use k-means clustering to cluster these sentences
into k = 100 clusters. We assume each cluster rep-
resents some aspect of a product, and represented
by its centroid. Next, we pick sentences that do not
contain the clue phrases, compute their sentence
embeddings, and measure the similarity to each of
the centroids. For each centroid we select the top n
most similar sentences for manual annotation. We
set n such that we obtain an approximately equal
number of sentences to the number of sentences
that contain clue phrases selected in the first itera-
tion. All selected sentences are manually annotated
for counterfactuality as described in § 3.2.

3
https://huggingface.co/

bert-base-multilingual-uncased

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased
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3.2 Annotation

The annotators were provided guidelines with defi-
nitions, extensive examples and counterexamples.
Briefly, counterfactual statements were identified
if they belong to any of the counterfactual types
described in § 3. If any part of a sentence con-
tains a counterfactual, then we consider the entire
sentence to be a counterfactual. This annotation
process increases the number of counterfactual ex-
amples and the coverage across the counterfactual
types in the dataset, thereby improving the class
imbalance. We require that at least 90% of the sen-
tences have agreement of 2 professional linguists
(2 out of 2 agreement), the rest at most 10% cases
had a third linguist to resolve the disagreement (2
out of 3 agreement).

3.3 Dataset Statistics

The basic dataset statistics can be found in Table 1.
We present two versions of the English dataset:
EN contains only sentences filtered by the clue
words, EN-ext is a superset of EN enriched by
sentences with no clue words as described above.
The clue-based dataset EN contains about 1/5-th
of positive examples, while its extended version
contains 1/10-th of counterfactuals. Only 76 out
of 4977 added sentences were labelled positively.
DE dataset contains 69.1% and JP contains 9.5%
of counterfactuals.

The summary of clue phrase distributions in pos-
itive and negative classes is shown in Table 2. In-
terestingly, English and German lists have approx-
imately the same number of clues, but the preci-
sion for German clues is much higher, resulting
in more counterfactual statements being extracted
using those clue phrases. On the contrary, the
Japanese list has the largest number of clues, yet
results in the lowest precision. The specification
of counterfactual clue phrases for Japanese is a lin-
guistically hard problem because the meaning of
the clues is highly context dependent. The large
number of Japanese clue phrases is due to the or-
thographic variations present in Japanese where the
same phrase can be written using kanji, hiragana,
katakana characters or a mixture of them. Because
we were able to select a sufficiently large datasets
for German and Japanese using the clue phrases,
we did not consider the second iteration step de-
scribed in § 3.1 for those languages.

Dataset Positive Negative Total CF %

EN 954 4069 5023 18.9
EN-ext 1030 8970 10000 10.0
DE 4840 2160 7000 69.1
JP 667 6333 7000 9.5

Table 1: Dataset statistics: the number of positive
(counterfactual) and negative (non-counterfactual) ex-
amples, total sizes of the datasets, percentage of coun-
terfactual (CF) examples.

Dataset N fP fN fdata

EN 29 100. 100. 100.
EN-ext 29 92.6 45.3 50.2
DE 27 100. 100. 100.
JP 70 100. 100. 100.

Table 2: Clue phrases summary for the datasets: N is
the total number of clue phrases in each clue phrase
list. fP and fN are the percentages of examples con-
taining clue phrases respectively in counterfactual and
non-counterfactal classes. fdata is the percentage of
sentences containing a clue phrase in a dataset.

3.4 Comparison with Existing Datasets

We compare the multilingual counterfactual dataset
we create against existing datasets in Table 3. Our
dataset is well-aligned with the two other existing
datasets in the sense that we use the same definition
of a counterfactual, keep a similar percentage of
positive examples, and use similar keywords for
dataset construction. These properties ensure that
our dataset of product reviews can be used on its
own, as well as organically combined with the ex-
isting datasets from other domains. A distinctive
feature of our dataset is its coverage of a novel
domain, e-commerce reviews, which is not cov-
ered by any of the existing counterfactual datasets.
Furthermore, our dataset is available for three lan-
guages: English, German, and Japanese. This is the
first counterfactual dataset not limited to English
language. Unlike previous works, which relied on
crowdsourcing, we employ professional linguists
to produce the lists of clue words and supervise
the annotation. This ensures the high quality of the
labelling.

4 Evaluations

We conduct a series of experiments to systemati-
cally evaluate several important factors related to
counterfactuality such as (a) selection bias due to
clue phrases (§ 4.1), (b) effect of merging multiple
counterfactual datasets (§ 4.2), (c) use of machine



7097

Dataset Language Size CF %

Son et al. (2017) English 1637 (2137) 10.1 (31.2)
Yang et al. (2020a) English 20000 11.0
This work English / German / Japanese 10000 (5023) / 7000 / 7000 10.0 (18.9) / 69.1 / 9.5

Dataset CF definition Domain Construction Annotation

Son et al. (2017) Janocko et al.
(2016)

Twitter keywords filtering mixed: manual (unknown), auto-
matic pattern matching

Yang et al. (2020a) Janocko et al.
(2016)

News: finance, politics,
healthcare

keywords filtering, pat-
tern matching

manual (crowdsourcing, strong
agreement)

This work Janocko et al.
(2016)

Amazon Reviews keywords filtering manual (curated by linguists)

Table 3: Dataset comparisons. The numbers in parenthesis for Son et al. (2017) correspond to the union of manually
and automatically labelled datasets. The numbers in parenthesis for this work correspond to clue-based English
dataset EN .

translation (MT) to translate counterfactual state-
ments (§ 4.3), and (d) effect of different sentence
encoders and classifiers for training CFD models
(§ 4.4).

For evaluations in (a), (b), and (c), we fine-tune a
widely used multilingual transformer model BERT
(mBERT) (Devlin et al., 2019) to train a CFD
model. The model is pretrained for the tasks of
masked language modelling and next sentence pre-
diction for 104 languages4 and is used with the de-
fault parameter settings. The model is implemented
using the Transformer.5 library We fine-tune a lin-
ear layer on top of these pretrained language mod-
els for the CFD task using the training process as
described next.6

We use an 80%-20% train-test data split and tune
hyperparameters via 5-fold cross-validation. Hy-
perparameters in the already pretrained transformer
models are kept fixed. F1, Matthew’s Correlation
Coefficient (MCC; Boughorbel et al., 2017), and
accuracy are used as evaluation metrics. MCC
(∈ [−1, 1]) accounts for class imbalance and incor-
porates all correlations within the confusion ma-
trix (Chicco and Jurman, 2020). Accuracy may be
misleading in highly imbalanced datasets because a
simple classification of all instances to the majority
class has a high accuracy. However, for consis-
tency with prior work, we report all three evalua-
tion metrics in this paper. All the reported results
are averaged over at least 3 independently trained
models initialised with the same hyperparameter
values. For tokenisation, unless the tokeniser is pre-
specified for the model, we use word tokenize

4
https://huggingface.co/

bert-base-multilingual-uncased
5
https://github.com/huggingface/transformers

6See Supplementary for the details on fine-tuning.

from nltk.tokenize.punkt7 for English and Ger-
man languages; and MeCab8 as the morphological
analyser for Japanese.

4.1 Selection Bias due to Clue Phrases

To evaluate the effectiveness of clue phrases for se-
lecting sentences for human annotation and any
selection bias due to this process, we fine-tune
mBERT with and without masking the clue phrases.
Classification performance values are shown in Ta-
ble 4. Overall, we see that no mask (training with-
out masking) returns slightly better performance
than mask (training with masking), however the
differences are not statistically significant. This
is reassuring because it shows that the sentence
embeddings produced by mBERT generalise well
beyond the clue phrases used to select sentences
for manual annotation. On the other hand, if a
CFD model had simply memorised the clue phrases
and was classifying based on the occurrences of
the clue phrases in a sentence, we would expect
a drop in classification performance in no mask
setting due to overfitting to the clue phrases that
are not observed in the test data. Indeed for EN
where all sentences contain clue phrases, we see a
slight drop in all evaluation measure for no mask
relative to mask, which we believe is due to this
overfitting effect. The performance on JP is the
lowest among all languages compared. This could
be attributed to the tokenisation issues and lack of
Japanese coverage in mBERT. Many counterfac-
tual clues in Japanese are parts of verb/adjective
inflections, which can get split/removed during the
tokenisation.

Table 5 shows recall (R) and precision (P ) on
7
https://www.nltk.org/api/nltk.tokenize.html

8
https://pypi.org/project/mecab-python3/

https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased
https://github.com/huggingface/transformers
https://www.nltk.org/api/nltk.tokenize.html
https://pypi.org/project/mecab-python3/
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Dataset Mask mBERT
F1 MCC Acc

EN mask 0.92 0.76 0.92
no mask 0.89 0.73 0.89

EN-ext mask 0.93 0.69 0.93
no mask 0.94 0.74 0.94

DE mask 0.86 0.68 0.86
no mask 0.90 0.79 0.90

JP mask 0.86 0.48 0.84
no mask 0.85 0.49 0.82

Table 4: F1, MCC and Accuracy (Acc) for CFD models
trained with and without masking the clue phrases.

Metric EN EN-ext DE JP

Rnm 0.93 0.94 0.92 0.85
Pnm 0.71 0.59 0.94 0.30
Rm 0.87 0.79 0.86 0.88
Pm 0.68 0.66 0.93 0.37

Table 5: Precision and Recall for mBERT trained with
(m) and without (nm) masking the clue phrases.

masked (subscript m) and non-masked (subscript
nm) settings. In all datasets the recall is higher than
precision for both masked and non-masked ver-
sions due to dataset imbalance with an underrepre-
sented positive class. The number of positive exam-
ples misclassified under masked and non-masked
settings are typically very small. We see that the
CFD model trained on EN-ext has a higher recall,
but lower precision than the one on EN . Most of
the added examples in EN-ext are negatives, which
makes it hard to maintain a high precision.

4.2 Cross-Dataset Adaptation

To study the compatibility of our dataset with exist-
ing datasets, we train a CFD model on one dataset
and test the trained model on a different dataset.
Prior work on domain adaptation (Ben-David et al.,
2009) has shown that the classification accuracy of
such a cross-domain classifier is upper-bounded by
the similarity between the train and test datasets.
Further, we merge our EN-ext dataset with the
SemEval dataset (Yang et al., 2020a) to create a
dataset denoted by Comb . Specifically, we sepa-
rately pool the the counterfactual and noncounter-
factual instances in each dataset to create Comb .

As can be seen from Table 6, the models trained
on EN and EN-ext perform poorly on SemEval ,
while the model trained on SemEval has relatively
high values of F1, MCC, and Accuracy on EN and
EN-ext . This implies that the product reviews we

Train Test mBERT
F1 MCC Acc

EN

EN 0.89 0.73 0.89
EN-ext 0.96 0.85 0.96
SemEval 0.65 0.28 0.59
Comb 0.68 0.31 0.62

EN-ext

EN 0.92 0.80 0.92
EN-ext 0.94 0.74 0.94
SemEval 0.50 0.19 0.42
Comb 0.49 0.19 0.42

SemEval

EN 0.82 0.56 0.80
EN-ext 0.86 0.48 0.83
SemEval 0.93 0.71 0.92
Comb 0.96 0.84 0.96

Comb

EN 0.95 0.86 0.95
EN-ext 0.94 0.72 0.94
SemEval 0.93 0.70 0.92
Comb 0.96 0.84 0.96

Table 6: Classification quality, combining datasets for
training and evaluation.

use cover a narrow subdomain compared to the do-
mains in SemEval . Interestingly, the CFD model
trained on Comb reports the best performance
across all measures, indicating that our dataset is
compatible with SemEval and can be used in con-
junction with existing datasets to train better CFD
models.

4.3 Cross-Lingual Transfer via MT

Considering the costs involved in manually anno-
tating counterfactual statements for each language,
a frugal alternative would be to train a model for
English and then apply it on test sentences in a tar-
get language of interest, which are translated into
English using a machine translation (MT) system.
To evaluate this possibility, we first translate the
German and Japanese CFD datasets into English
(denoted respectively by DE-EN and JP-EN ) using
Amazon MT.9 Next, we train separate English CFD
models using EN , EN-ext and SemEval datasets,
and apply those models on DE-EN and JP-EN .

As shown in Table 7, the MCC values for the MT-
based CFD model are significantly lower than that
for the corresponding in-language baseline, which
is trained using the target language data. Therefore,
simply applying MT on test data is not an alter-
native to annotating counterfactual datasets from
scratch for a novel target language. This result
shows the importance of developing counterfactual
datasets for languages other than English, which
has not been done prior to this work. Moreover,

9
https://aws.amazon.com/translate/

https://aws.amazon.com/translate/
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Train Test mBERT
F1 MCC Acc

EN DE-EN 0.65 0.41 0.64
EN-ext DE-EN 0.73 0.49 0.72
SemEval DE-EN 0.58 0.35 0.58
DE DE 0.90 0.79 0.90

EN JP-EN 0.80 0.26 0.78
EN-ext JP-EN 0.80 0.28 0.76
SemEval JP-EN 0.86 0.22 0.86
JP JP 0.85 0.49 0.82

Table 7: Classification quality of English translations.

the performance for German, which belongs to
the same Germanic language group as English, is
better than for Japanese. The model trained on Se-
mEval performs the worst on DE-EN dataset, and
has the lowest MCC on JP-EN . This experimental
result indicates the importance of introducing new
languages to the counterfactual dataset family.

4.4 Sentence Encoders and Classifiers

We evaluate the effect of the sentence encoding and
binary classification methods on the performance
of CFD using multiple settings.

Bag-of-N-grams (BoN): We represent a sen-
tence using tf-idf weighted unigrams and bi-grams
and ignore n-grams with a frequency less than 2 or
more than 95% of the frequency distribution. Next,
Principal Component Analysis (PCA; Wold et al.,
1987) is used to create 600-dimensional sentence
embeddings.

Word Embeddings (WE): We average the 300-
dimensional fastText embeddings trained on Com-
mon Crawl and Wikipedia10 for the words in a
sentence to create its sentence embedding. We
note that there have been meta-embedding meth-
ods (Bollegala and Bao, 2018; Bollegala et al.,
2018) proposed to combine multiple word embed-
dings to further improve their accuracy. However,
their consideration for CFD is beyond the scope of
current work.

BoN and WE representations are used to train
binary CFD models using different classification
methods such as a Support Vector Machine (SVM;
Cortes and Vapnik, 1995) with a Radial Basis func-
tion, an ID3 Decision Tree (DT; Breiman et al.,
1984), a Random Forest (RF; Breiman, 2001) with
20 trees.

10
https://fasttext.cc/docs/en/crawl-vectors.html

Method Mask Dataset
EN EN-ext DE JP

mBERT mask 0.76 0.69 0.68 0.48
no mask 0.73 0.74 0.79 0.49

XLM-RoBERTa mask 0.75 0.68 0.59 0.42
no mask 0.79 0.76 0.80 0.38

XLM-w/o-Emb mask 0.71 0.64 0.67 0.47
no mask 0.76 0.70 0.79 0.47

SVM (BoN) mask 0.50 0.44 0.47 0.58
no mask 0.74 0.70 0.76 0.58

DT (BoN) mask 0.36 0.28 0.37 0.43
no mask 0.64 0.58 0.70 0.48

RF (BoN) mask 0.16 0.11 0.20 0.14
no mask 0.40 0.34 0.60 0.11

SVM (WE) mask 0.42 0.32 0.40 0.49
no mask 0.56 0.49 0.67 0.49

DT (WE) mask 0.23 0.25 0.28 0.42
no mask 0.37 0.37 0.56 0.40

RF (WE) mask 0.20 0.08 0.17 0.16
no mask 0.26 0.14 0.39 0.14

Table 8: MCC for the different CFD Models.

Pretrained Language Models Along with
mBERT, we fine-tune a linear layer for CFD task
on top of two following pretrained transformer
models: XLM model (Conneau and Lample,
2019)11 and base XLM-RoBERTa model (Con-
neau et al., 2020).12 Both models were trained for
the task of masked language modelling for 100
languages.

Results Here we extend our experiment with clue
word masking. For the transformer-based models
we mask the clue words similar to mBERT. For the
traditional ML methods we remove the clue words
from the sentences before tokenization.

The results with and without masking are re-
ported in Table 8 (F1 and Accuracy are reported in
the Supplementary). First, we note that masking
decreases the performance of all classifiers on all
datasets. Transformer-based classifiers are the least
affected by masking: they are able to learn seman-
tic dependencies from the remaining text. We could
also say that transformers are the least affected by
the data-selection bias as they do not rely on the
clue words. Traditional ML methods with BoN fea-
tures are affected by masking the most: they seem
to use clue words for discrimination. Interestingly,
for these methods the performance drops equally
for clue-based EN and enriched EN-ext datasets.
This could indicate that in both cases the classifier
relies on the clue words.

Overall transformer-based models (especially

11
https://huggingface.co/xlm-mlm-100-1280

12
https://huggingface.co/xlm-roberta-base

https://fasttext.cc/docs/en/crawl-vectors.html
https://huggingface.co/xlm-mlm-100-1280
https://huggingface.co/xlm-roberta-base
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XLM-RoBERTa) perform the best across all dat-
sets except for JP . For JP the best performance
is obtained by an SVM model with BoN fea-
tures. This could indicate that for Japanese, a
language-specific tokenisation works for the lex-
icalised (BoN) models better than the language-
independent subtokenisation methods such as Byte
Pair Encoding (BPE; Sennrich et al., 2016) that
are used when training contextualised transformer-
based sentence encoders. The former preserves
more information than the latter at the expense of
a sparser and larger feature space (Bollegala et al.,
2020). Transformer-based masked language mod-
els on the other hand require subtokenisation as
they must use a smaller vocabulary to make the
token prediction task efficient (Yang et al., 2018;
Li et al., 2019).

In general, unlike the simpler word embedding
and bag of words approaches, large pretrained con-
textualized embeddings maintain high test perfor-
mance according to the reported evaluation met-
rics. We note that these also converged after a few
epochs using a relatively small number of labelled
instances, based on the model with the best 5-fold
validation accuracy. Hence, contextualized em-
beddings can identify various context-dependent
counterfactuals from a diverse range of reviews
using a small number of mini-batch gradient up-
dates of a single linear layer. Among the different
sentence embedding methods compared, the best
performance is reported by XLM-RoBERTa.

Between the two baselines, we see that using
word embeddings to represent the sentences does
not offer clear benefits for traditional ML meth-
ods and BoN features are sufficient. However, em-
bedding based methods suffer generally a smaller
performance drop when clues are masked. This
suggests that embeddings provide a more general
and robust representation of counterfactuals in the
semantic space than BoN features.

5 Conclusion

We annotated a multilingual counterfactual dataset
using Amazon product reviews for English, Ger-
man and Japanese languages. Experimental re-
sults show that our English dataset is compatible
with the previously proposed SemEval-2020 Task
5 dataset. Moreover, the CFD models trained using
our dataset are relatively robust against selection
bias due to clue phrases. Simply applying MT
on test data results in poor cross-lingual classifica-

tion performance, indicating the need for language-
specific CFD datasets.

6 Ethical Considerations

In this work, we annotated a multilingual dataset
covering counterfactual statements. Moreover, we
train CFD models using different sentence represen-
tation methods and binary classification algorithms.
In this section, we discuss the ethical considera-
tions related to these contributions.

With regard to the dataset being released, all sen-
tences that are included in the dataset were selected
from a publicly available Amazon product review
dataset. In particular, we do not collect or release
any additional product reviews as part of this paper.
Moreover, we have manually verified that the sen-
tences in our dataset do not contain any customer
sensitive information. However, product reviews
do often contain subjective opinions, which can
sometimes be socially biased. We do not filter out
any such biases.

We use two pretrained sentence encoders,
mBERT and XLM-RoBERTa, when training the
CFD models. It has been reported that pretrained
masked language model encode unfair social biases
such as gender, racial and religious biases (Bom-
masani et al., 2020). Although we have evalu-
ated ourselves the mBERT and XLM-RoBERTa
based CFD models that we use in our experiments,
we suspect any social biases encoded in these pre-
trained masked language models could propagate
into the CFD models that we train. In particular,
these social biases could be further amplified dur-
ing the CFD model training process, if the counter-
factual statements in the training data also contain
such biases. Debiasing masked language models
is an active research field (Kaneko and Bollegala,
2021) and we plan to evaluate the social biases in
CFD models in our future work.
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Supplementary Materials

A Fine-tuned multilingual BERT for
counterfactual classification

Given that we select mBERT (Devlin et al., 2019)
as the main classification method in the paper, we
describe how the original BERT architecture is
adapted for fine-tuned for CF classification.

Consider a dataset D = {(Xi, yi)}mi=1 for D ∈
D and a sample s := (X, y) where the sentence
X := (x1, . . . xn) with n being the number of
words x ∈ X . We can represent a word as an input
embedding xw ∈ Rd, which has a corresponding
target vector y. In the pre-trained transformer mod-
els we use, Xi is represented by 3 types of embed-
dings; word embeddings (Xw ∈ Rn×d), segment
embeddings (Xs ∈ Rn×d) and position embed-
dings (Xp ∈ Rn×d), where d is the dimensionality
of each embedding matrix. The self-attention block
in a transformer mainly consists of three sets of pa-
rameters: the query parameters Q ∈ Rd×l, the key
parameters K ∈ Rd×l and the value parameters
V ∈ Rd×o. For 12 attention heads (as in BERT-
base), we express the forward pass as follows:

−→
X = Xw + Xs + Xp (1)

−→
Z :=

12⊕
i=1

softmax
(−→

X Q(i)KT
(i)

−→
X T
)−→

X V(i) (2)

−→
Z = Feedforward(LayerNorm(

−→
Z +

−→
X )) (3)

←−
Z = Feedforward(LayerNorm(

←−
Z +

←−
X )) (4)

The last hidden representations of both direc-
tions are then concatenated Z′ :=

←−
Z
⊕−→

Z′ and
projected using a final linear layer W ∈ Rd fol-
lowed by a sigmoid function σ(·) to produce a
probability estimate ŷ, as shown in (5). As in the
original BERT paper, WordPiece embeddings (Wu
et al., 2016) are used with a vocabulary size of
30,000. Words from (step-3) that are used for fil-
tering the sentences are masked using a [PAD]
token to ensure the model does not simply learn to
correctly classify some samples based on the asso-
ciation of these tokens with counterfacts. A linear
layer is then fine-tuned on top of the hidden state,
hX,[CLS] emitted corresponding to the [CLS] to-
ken. This fine-tunable linear layer is then used to
predict whether the sentence is counterfactual or
not, as shown in Equation 5, where B ⊂ D is a
mini-batch and Lce is the cross-entropy loss.

Lce :=
1

|B|
∑

(X,y)∈B

y log
(
σ(hX,[CLS] ·W)

)
(5)

Configurations For the mBERT counterfactual
model we use BERT-base, which uses 12 Trans-
former blocks, 12 self-attention heads with a hid-
den size of 768. The default size of 512 is used
for the sentence length and the sentence represen-
tation is taken as the final hidden state of the first
[CLS] token. This model is already pre-trained
and we fine-tune a linear layer W on top of BERT,
which is fed to through a sigmoid function σ as
p(c|h) = σ(Wh) where c is the binary class label
and we maximize the log-probability of correctly
predicting the ground truth label.

B Matthews Correlation Coefficient

Unlike metrics such as F1, MCC accounts for class
imbalance and incorporates all correlations within
the confusion matrix (Chicco and Jurman, 2020).
For MCC, the range is [-1, 1] where 1 represents a

http://arxiv.org/abs/arXiv:2008.00563
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
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perfect prediction, 0 an average random prediction
and -1 an inverse prediction.

MCC =
tp× tn− fp× fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(6)

C Extended version of Table 8

We report F1, MCC, and accuracy in Table 9.

D Examples of Incorrect Predictions

Table 10 shows examples of misclassifications
given by transformer models. The second column
indicates which of the remaining transformer mod-
els misclassified each review where B=mBERT,
XR=XLM-RoBERTa, X=XLM without embed-
ding.

E Hardware Used

All transformer, RNN and CNN models were
trained using a GeForce NVIDIA GTX 1070 GPU
which has 8GB GDDR5 Memory.

F Model Configuration and
Hyperparameter Settings

BERT-base uses 12 Transformer blocks, 12 self-
attention heads with a hidden size of 768. The
default size of 512 is used for the sentence length
and the sentence representation is taken as the fi-
nal hidden state of the first [CLS] token. A fine-
tuned linear layer W is used on top of BERT-base,
which is fed to through a sigmoid function σ as
p(c|h) = σ(Wh) where c is used to calibrate the
class probability estimate and we maximize the log-
probability of correctly predicting the ground truth
label.

Table 11 shows the pretrained model configura-
tions that were already predefined before our ex-
periments. The number of (Num.) hidden groups
here are the number of groups for the hidden lay-
ers where parameters in the same group are shared.
The intermediate size is the dimensionality of the
feed-forward layers of the the Transformer encoder.
The ‘Max Position Embeddings’ is the maximum
sequence length that the model can deal with.

We now detail the hyperparameter settings for
transformer models and the baselines. We note that
all hyperparameter settings were performed using
a manual search over development data.

F.1 Transformer Model Hyperparameters
We did not change the original hyperparame-
ter settings that were used for the original pre-
training of each transformer model. The hy-
perparameter settings for these pretrained mod-
els can be found in the class arguments python
documentation in each configuration python file
in the https://github.com/huggingface/transformers/

blob/master/src/transformers/ e.g configuration .py
and are also summarized in Table 11.

For fine-tuning transformer models, we man-
ually tested different combinations of a subset
of hyperparameters including the learning rates
{50−4, 10−5, 50−5}, batch sizes {16, 32, 128},
warmup proportion {0, 0.1} and ε which is a hyper-
parameter in the adaptive momentum (adam) op-
timizer. Please refer to the huggingface documen-
tation at https://github.com/huggingface/transformers
for further details on each specific model e.g
at https://github.com/huggingface/transformers/blob/

master/src/transformers/modeling_bert.py, and also
for the details of the architecture for BertForSe-
quenceClassification pytorch class that is used for
our sentence classification and likewise for the re-
maining models.

Fine-tuning all language models with a sentence
classifier took less than two and half hours for all
models. For example, for the largest transformer
model we used, BERT, the estimated average run-
time for a full epoch with batch size 16 (of 2, 682
training samples) is 184.13 seconds. In the worst
case, if the model does not already converge early
and all 50 training epochs are carried out, training
lasts for 2 hour and 30 minutes.

F.2 Baseline Hyperparameters
SVM Classifier: A radial basis function was
used as the nonlinear kernel, tested with an `2 reg-
ularization term settings of C = {0.01, 0.1, 1},
while the kernel coefficient γ is autotuned by the
scikit-learn python package and class weights are
used inversely proportional to the number of sam-
ples in each class. To calibrate probability esti-
mates for AUC scores, we use Platt’s scaling (Platt
et al., 1999).

Decision Tree and Random Forest Classifiers:
We use 20 decision tree classifiers with no restric-
tion on tree depth and the minimum number of
samples required to split an internal node is set
to 2. The criterion for splitting nodes is the Gini
importance (Gini, 1912).

https://github.com/huggingface/transformers/blob/master/src/transformers/
https://github.com/huggingface/transformers/blob/master/src/transformers/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers/blob/master/src/transformers/modeling_bert.py
https://github.com/huggingface/transformers/blob/master/src/transformers/modeling_bert.py
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Dataset Mask F1 MCC Acc F1 MCC Acc F1 MCC Acc
mBERT XLM-RoBERTa XLM-w/o-Emb

EN mask 0.92 0.76 0.92 0.91 0.75 0.90 0.89 0.71 0.89
no mask 0.89 0.73 0.89 0.92 0.79 0.92 0.91 0.76 0.90

EN-ext mask 0.93 0.69 0.93 0.93 0.68 0.92 0.91 0.64 0.91
no mask 0.94 0.74 0.94 0.95 0.76 0.95 0.93 0.70 0.92

DE mask 0.86 0.68 0.86 0.82 0.59 0.82 0.85 0.67 0.85
no mask 0.90 0.79 0.90 0.91 0.80 0.91 0.91 0.79 0.90

JP mask 0.86 0.48 0.84 0.81 0.42 0.78 0.84 0.47 0.81
no mask 0.85 0.49 0.82 0.86 0.38 0.85 0.83 0.47 0.79

SVM (BoN) DT (BoN) RF (BoN)
EN mask 0.83 0.50 0.83 0.80 0.36 0.82 0.73 0.16 0.81

no mask 0.91 0.74 0.91 0.88 0.64 0.89 0.80 0.40 0.84

EN-ext mask 0.89 0.44 0.88 0.87 0.28 0.89 0.85 0.11 0.89
no mask 0.94 0.70 0.94 0.92 0.58 0.93 0.87 0.34 0.90

DE mask 0.76 0.47 0.75 0.73 0.37 0.75 0.66 0.20 0.71
no mask 0.89 0.76 0.89 0.87 0.70 0.87 0.82 0.60 0.83

JP mask 0.91 0.58 0.91 0.90 0.43 0.91 0.85 0.14 0.89
no mask 0.91 0.58 0.91 0.90 0.48 0.92 0.85 0.11 0.89

SVM (WE) DT (WE) RF (WE)
EN mask 0.78 0.42 0.77 0.77 0.23 0.79 0.74 0.20 0.81

no mask 0.84 0.56 0.82 0.81 0.37 0.82 0.76 0.26 0.82

EN-ext mask 0.80 0.32 0.76 0.87 0.25 0.90 0.84 0.08 0.89
no mask 0.86 0.49 0.84 0.89 0.37 0.90 0.85 0.14 0.89

DE mask 0.71 0.40 0.70 0.70 0.28 0.72 0.65 0.17 0.70
no mask 0.84 0.67 0.84 0.81 0.56 0.82 0.73 0.39 0.76

JP mask 0.87 0.49 0.84 0.90 0.42 0.91 0.85 0.16 0.90
no mask 0.86 0.49 0.84 0.89 0.40 0.91 0.85 0.14 0.89

Table 9: F1, Matthew’s Correlation Coefficient & Accuracy for the different CFD Models.

G Further Details on the Datasets

Review categories represented in the datasets
and clue words breakdown: Below we list the
breakdown of product categories for each dataset
in the format “category (total number of review
sentences from the category / number of counter-
factual examples/ number of non-counterfactual
examples)”.

Dataset EN-ext contains review sentences from
4 product categories: Apparel (2500 / 297 / 2203),
Digital Ebook Purchase (2500 / 287 / 2213), Elec-
tronics (2500 / 213 / 2287), Home (2500 / 233 /
2267).

Dataset DE contains review sentences from
20 categories: Automotive (47 / 31 / 16), Baby
(99 / 80 / 19), Camera (816 / 597 / 219), Dig-
ital Ebook Purchase (426 / 259 / 167), Digi-
tal Video Download (1297 / 961 / 336), Electronics
(7 / 5 / 2), Home Entertainment (94 / 62 / 32), Home
Improvement (87 / 54 / 33), Kitchen (20 / 10 / 10),
Lawn and Garden (47 / 34 / 13), Luggage (21 / 9 /
12), Music (1297 / 909 / 388), Musical Instruments
(162 / 113 / 49), Office Products (40 / 25 / 15),

PC (1297 / 873 / 424), Personal Care Appliances
(56 / 36 / 20), Sports (5 / 3 / 2), Toys (378 / 216 /
162), Watches (186 / 126 / 60), Wireless (618 / 437
/ 181).

Dataset JP contains review sentences from
18 categories: Automotive (191 / 19 / 172),
Baby (182 / 6 / 176), Camera (490 / 67 / 423),
Digital Ebook Purchase (490 / 22 / 468), Digi-
tal Video Download (490 / 49 / 441), Electronics
(490 / 43 / 447), Home (102 / 16 / 86), Home Enter-
tainment (227 / 34 / 193), Home Improvement (221
/ 29 / 192), Kitchen (221 / 23 / 198), Music (490
/ 21 / 469), Musical Instruments (490 / 42 / 448),
PC (490 / 61 / 429), Shoes (490 / 52 / 438), Sports
(466 / 39 / 427), Toys (490 / 53 / 437), Watches
(490 / 37 / 453), Wireless (490 / 54 / 436).

The clue phrases for English, German and
Japanese are shown respectively in Table 13, Ta-
ble 14 and Table 15.
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Misclassifications of Reviews Containing No Counterfactuals Models
If you workout regularly, an extra set of ’expendable’ earbuds like these is a must-have. B XR X
I put over 500 songs on it the first day and still have around 17 GB left, probably could have done with a much smaller one. B XR X
If you have a similar build compared to mine, buy this shirt without hesitation. B XR X
If they ever need replacing I would definitely buy these again. B XR X
If this device for whatever reason fails within a year or two, I think I would look to buy the same machine again. B XR X
I was hoping she would be able to grow in it but it fits her now with no room to grow. B XR X
I must have read reviews on about 20 different models. B XR X
Because it is fleece, if you are in the US, I would suggest a second cool water rinse with a touch of fabric softener. B XR X
There are ways to get it like you want it but its not as easy as it could have been. B XR X
Could be improve with a size adjustment and chin strap. B XR X
If you need more desk space and have a location where you can use a wall mount for your monitors, this thing is the way to go. B XR X
It should be about $20 cheaper to make it worth while. B XR X

Misclassifications of Counterfactual Reviews

At the end of a series like The Wheel of Time, it might be appropriate to lament the loss of familiar characters. B XR X
You would have to be 5’10 and super thin to fit into these. B XR X
From the picture the dress looks like it should be long enough for someone at lease 5’ 6. B XR X
To say ”the usual awesome Stephen King novel” would be an understatement. B XR X
I don’t like to go into the plot a lot unless the blurb doesn’t represent the book fairly. B XR X
I’ve thought about it, and I guess that’s because what happened to the characters in Missing are stuff that I could imagine happening to me as well. B XR
For the price that this particular seller charged for this T-shirt, the material SHOULD be HEAVY-DUTY. B X
If one can put aside their religious beliefs about heaven and hell I think they will find this to be something they’ve always known deep inside about the afterlife. XR X
If you think leakage is a problem it really isn’t they are as bad as a pair of ear-buds. XR X

Table 10: Qualitative Examples of Incorrect Predictions from Fine-tuned BERT

Hyperparameters mBERT XLM-RoBERTa XLM-w/o-Emb
Vocab Size 119547 250002 119547
Max Pos. Embeddings 512 514 514
Hidden Size 3072 3072 3072
Encoder Size 768 768 768
Num. Hidden Layers 12 12 12
Num. Hidden Groups 1 1 1
Num. Attention Heads 12 12 12
Hidden Activations GeLU GeLU GeLU
Layer Norm. Epsilon 10−12 10−12 10−12

Fully-Connected Dropout Prob. 0.1 0.1 0.1
Attention Dropout Prob. 0 0 0

Table 11: Final Transformer Model Hyperparameter
Settings

Hyperparameters mBERT XLM-RoBERTa XLM-w/o-Emb
Seed 1234 1234 1234
Learning rates 10−5 10−5 50−5

Max Seq. Length 256 256 256
Max Train Epochs 50 50 50
Warmup Proportion 0.1 0.1 0.1
Classifier Dropout Prob. 0.2 0.2 0.2
Adam eps 10−8 10−8 10−8

Table 12: Final Transformer Model Hyperparameter
Settings
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Clue phrase NP NN fP fN fdata

without 25 571 2.42 6.36 5.96
doesn’t 11 569 1.06 6.34 5.8
wanted 18 512 1.74 5.70 5.3
would be 100 389 9.70 4.33 4.89
would have 281 114 27.2 1.27 3.95
wish 305 81 29.6 0.90 3.86
couldn’t 11 289 1.06 3.22 3.0
won’t 9 274 0.87 3.05 2.83
must 13 258 1.26 2.87 2.71
haven’t 5 208 0.48 2.31 2.13
instead of 18 132 1.74 1.47 1.5
should be 20 126 1.94 1.40 1.46
came with 9 128 0.87 1.42 1.37
could have 100 36 9.70 0.40 1.36
should have 106 19 10.2 0.21 1.25
miss 6 116 0.58 1.29 1.22
could be 19 103 1.84 1.14 1.22
except 7 115 0.67 1.28 1.22
comes with 1 80 0.09 0.89 0.81
none 2 68 0.19 0.75 0.7
missing 3 56 0.29 0.62 0.59
if it was 21 30 2.03 0.33 0.51
might have 10 20 0.97 0.22 0.3
wished 18 4 1.74 0.04 0.22
had not 3 13 0.29 0.14 0.16
if it were 13 3 1.26 0.03 0.16
if it had 10 3 0.97 0.03 0.13
wishing 5 4 0.48 0.04 0.09
had thought 3 4 0.29 0.04 0.07

Total 954 4069 92.6 45.3 50.2

Table 13: English clue words (statistics for EN-ext
dataset). NP (and NN ) is the number of positive (and
negative) examples with the clue word. fP (and fN )
is the percent of positive (negative) examples with the
clue word. fdata is the frequency of the clue word in
the dataset.

Clue phrase NP NN fP fN fdata

hätte 1804 11 37.2 0.50 25.9
wäre 1397 22 28.8 1.01 20.2
könnte 1143 28 23.6 1.29 16.7
müssen 122 479 2.52 22.1 8.58
fehlt 111 429 2.29 19.8 7.71
wenn es 296 227 6.11 10.5 7.47
statt 107 200 2.21 9.25 4.38
außer 52 184 1.07 8.51 3.37
wünschen 115 80 2.37 3.70 2.78
müsste 174 13 3.59 0.60 2.67
wird nicht 15 167 0.30 7.73 2.6
eigentlich nicht 51 119 1.05 5.50 2.42
dürfen 34 63 0.70 2.91 1.38
vermisse 10 55 0.20 2.54 0.92
gewollt 4 33 0.08 1.52 0.52
wünschte 25 11 0.51 0.50 0.51
verpassen 13 22 0.26 1.01 0.5
konnte nicht 4 27 0.08 1.25 0.44
hatte nicht 6 11 0.12 0.50 0.24
haben nicht 1 14 0.02 0.64 0.21
könnte sein 6 0 0.12 0.0 0.08
hatte gedacht 2 4 0.04 0.18 0.08
nicht hätte 5 0 0.10 0.0 0.07
anstelle von 1 2 0.02 0.09 0.04
hätte haben können 0 0 0.0 0.0 0.0
sollte haben 0 0 0.0 0.0 0.0
wenn es hatte 0 0 0.0 0.0 0.0

Total 4840 2160 100. 100. 100.

Table 14: German clue words. NP (and NN ) is the
number of positive (and negative) examples with the
clue word. fP (and fN ) is the percent of the clue word
in the dataset.
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Clue phrase NP NN fP fN fdata

思います 84 1556 12.5 24.5 23.4
れば 258 805 38.6 12.7 15.1
なら 84 841 12.5 13.2 13.2
でしょう 28 633 4.19 9.99 9.44
良かった 63 324 9.44 5.11 5.52
思う 32 344 4.79 5.43 5.37
いいです 17 282 2.54 4.45 4.27
よかった 53 239 7.94 3.77 4.17
思った 12 251 1.79 3.96 3.75
良いです 9 233 1.34 3.67 3.45
思いました 22 204 3.29 3.22 3.22
だろう 12 211 1.79 3.33 3.18
もっと 94 116 14.0 1.83 3.0
もう少し 131 64 19.6 1.01 2.78
良いと 21 154 3.14 2.43 2.5
ほうが 18 155 2.69 2.44 2.47
いいと 14 143 2.09 2.25 2.24
助か 7 119 1.04 1.87 1.8
べき 13 102 1.94 1.61 1.64
さらに 6 108 0.89 1.70 1.62
欲しかった 42 44 6.29 0.69 1.22
としても 2 67 0.29 1.05 0.98
いいかも 6 58 0.89 0.91 0.91
ならば 8 52 1.19 0.82 0.85
更に 7 51 1.04 0.80 0.82
たかった 10 46 1.49 0.72 0.8
思っていました 5 48 0.74 0.75 0.75
できれば 24 28 3.59 0.44 0.74
良いのですが 6 35 0.89 0.55 0.58
だったら 15 26 2.24 0.41 0.58
良いかも 2 39 0.29 0.61 0.58
おもいます 3 35 0.44 0.55 0.54
ほしかった 25 11 3.74 0.17 0.51
よいと 5 29 0.74 0.45 0.48
いいのですが 6 26 0.89 0.41 0.45
いいかな 7 22 1.04 0.34 0.41
思ってた 1 25 0.14 0.39 0.37
よいです 0 25 0.0 0.39 0.35
いいな 7 18 1.04 0.28 0.35
たらな 3 20 0.44 0.31 0.32
いいのに 8 8 1.19 0.12 0.22

Continued on next column

Table 15: Japanese clue words. NP (and NN ) is the
number of positive (and negative) examples with the
clue word. fP (and fN ) is the fraction of positive (neg-
ative) examples with the clue word. fdata is the fre-
quency of the clue word in the dataset.

Continued from previous page

Clue phrase NP NN fP fN fdata

良いのでは 3 13 0.44 0.20 0.22
良いかな 2 10 0.29 0.15 0.17
いいのでは 1 10 0.14 0.15 0.15
したかった 0 10 0.0 0.15 0.14
おもう 1 7 0.14 0.11 0.11
いいんですが 0 7 0.0 0.11 0.1
良いのだが 4 3 0.59 0.04 0.1
だったのに 1 6 0.14 0.09 0.1
おもった 0 6 0.0 0.09 0.08
おもいました 1 4 0.14 0.06 0.07
良いな 2 3 0.29 0.04 0.07
良かったのに 3 2 0.44 0.03 0.07
よいかな 2 2 0.29 0.03 0.05
よいのでは 0 4 0.0 0.06 0.05
よいのですが 2 2 0.29 0.03 0.05
たすかり 1 2 0.14 0.03 0.04
よいかも 0 3 0.0 0.04 0.04
よかったのに 2 0 0.29 0.0 0.02
よいのに 2 0 0.29 0.0 0.02
ところだった 0 1 0.0 0.01 0.01
よいな 1 0 0.14 0.0 0.01
良いのに 0 1 0.0 0.01 0.01
おもっていました 0 0 0.0 0.0 0.0
おもってた 0 0 0.0 0.0 0.0
たすかった 0 0 0.0 0.0 0.0
たすかる 0 0 0.0 0.0 0.0
よいんですが 0 0 0.0 0.0 0.0
あれば 0 0 0.0 0.0 0.0

Total 667 6333 100. 100. 100.


