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Abstract

Numerical reasoning in machine reading com-
prehension (MRC) has shown drastic improve-
ments over the past few years. While the pre-
vious models for numerical MRC are able to
interpolate the learned numerical reasoning ca-
pabilities, it is not clear whether they can per-
form just as well on numbers unseen in the
training dataset. Our work rigorously tests
state-of-the-art models on DROP, a numerical
MRC dataset, to see if they can handle pas-
sages that contain out-of-range numbers. One
of the key findings is that the models fail to ex-
trapolate to unseen numbers. Presenting num-
bers as digit-by-digit input to the model, we
also propose the E-digit number form that al-
leviates the lack of extrapolation in models
and reveals the need to treat numbers differ-
ently from regular words in the text. Our work
provides a valuable insight into the numerical
MRC models and the way to represent number
forms in MRC.

1 Introduction

The research in question-answering (QA) models
that are able to perform reading comprehension
and discrete reasoning over numbers in the passage
has seen significant progress, like the models in
DROP (Ran et al., 2019; Hu et al., 2019; Chen
et al., 2020; Geva et al., 2020). Despite their abil-
ity to understand the complex context and num-
bers within, none of them deal with the notion of
whether these models can robustly handle "unseen"
numbers during testing. The ability to extend dis-
crete, symbolic rules such as addition and subtrac-
tion on numbers outside what we already know is
called extrapolation, and this is an essential part
of human intelligence. For example, if one can
reason on numbers over text that range between
0 and 100, it is logically reasonable to infer that
it should be able to handle numbers larger than

∗Equal contribution.

As of the census of 2000, there were 49,927 people, 
18,009 households, and 12,192 families residing in the
county. The population density was 48 people per square

mile (19/km²). 

As of the census of 2000, there were 4,992,700 people, 
1,800,900 households, and 1,219,200 families residing in
the county. The population density was 4,800 people per

square mile (19/km²). 

“How many people, households, and families reside in the 
county according to the 2000 census?”

Answer: 80,128

Answer: 8,012,800

Figure 1: An example of DROP data instance perturba-
tion to test the numerical QA models for extrapolation
capabilities. This figure shows CARDINAL-type num-
bers factored by 100.

100. The lack of extrapolation capability in models,
however, is a significant obstacle in the way toward
a truly generalizable, number-understanding QA.

Although the problem of numerical extrapola-
tion has been recently addressed by previous works
in arithmetic word problem (AWP) settings (Trask
et al., 2018; Madsen and Johansen, 2020; Kim et al.,
2021) where the given instances involve simple
math problems like "What is 24 + 5?", their pro-
posed approaches do not have the ability to handle
two or more supporting facts (Kim et al., 2021),
which is a capability demanded by DROP to handle
multiple numbers, or deal with negative numbers or
learn question-context relation (Trask et al., 2018).
These limitations preclude the possibility of apply-
ing their extrapolation capability on the DROP task,
where models are required to reason over multiple
sentences while dealing with heterogeneous num-
ber types (e.g., percentage, cardinal, date), unlike
in AWP settings where the numbers are simple,
homogeneous type scalars. To see if the state-of-
the-art models for DROP possess the extrapolation
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capability we design the perturbated version of the
DROP evaluation dataset as in Figure 1 (Section
3 for details). Surprisingly, the models show sig-
nificant performance drop only when the range of
numbers appearing in the passage is changed.

We also note that the models for DROP typically
use transformer models as the encoder for context
understanding. As shown in Wallace et al. (2019);
Geva et al. (2020), subword tokenization meth-
ods arbitrarily subdivide the numbers and cause
two very similar numbers to be in two disparate
forms. This observation is in line with Nogueira
et al. (2021)’s conclusion that how the numbers are
presented to the model, or their surface form, influ-
ences the modeling of numbers. The surface forms
proposed in Nogueira et al. (2021) provide digit-
place information with a special set of tokens (the
first three surface forms in Figure 2), to increase
model’s accuracy in a simple addition task. How-
ever, they fail to imbue the extrapolation capability
in their tested models, observing that the addition
rules could not be extended beyond the length of
numbers seen during training. Therefore, we pro-
pose a new surface form called E-digit (Figure 2)
that addresses the lack of extrapolation capability
in the models. Our E-digit method successfully
generalizes to out-of-distribution numbers and out-
performs all the other surface forms by a significant
margin.

2 Related Work

Previous works like NumNet (Ran et al., 2019) at-
tempt to tackle the DROP task by using graphs to
imbue the model with the relative magnitude infor-
mation. GenBERT (Geva et al., 2020) pre-trains
BERT (Devlin et al., 2019) with synthetic number
and text data. QDGAT (Chen et al., 2020) designs a
graph neural network with fully-connected number
nodes of same entity type. While there are many
other related works on this topic (Hu et al., 2019;
Andor et al., 2019; Gupta et al., 2019; Min et al.,
2019; Sundararaman et al., 2020; Saha et al., 2021),
none of them address the problem of extrapolation
in DROP. Although Wallace et al. (2019) reveals
that NAQANet (Dua et al., 2019) struggles to deal
with numbers outside the training range, showing
a drop in performance in the extrapolation setting,
they simply treat it as one of the failure modes in
NAQANet and provide no further analysis on this
alarming issue on model reliability. A survey on
numerical representations (Thawani et al., 2021)

“While 2015 estimates place the median
household income for Cooke County at
$53,552, past estimates showed the
median household income …”

10e-based

10-based

Digit

E-digit

2 10e3 0 10e2 1 10e1 5 10e0
5 10e4 3 10e3 5 10e2 5 10e1 2 10e0

2 1000 0 100 1 10 5 1
5 10000 3 1000 5 100 5 10 2 1

2 0 1 5
5 3 5 5 2

2 e 3 0 e 2 1 e 1 5 e 0
5 e 4 3 e 3 5 e 2 5 e 1 2 e 0

Figure 2: Illustration of how each surface form is rep-
resented and replaced in text.

also mentions the extrapolation issue frequently
found in these models, only to stop at reiterating
the already identified issues.

A recent study by Nogueira et al. (2021) on the
changes in how a number is presented to a model
shows that different surface forms have significant
influence on T5 (Raffel et al., 2020) in solving a
simple arithmetic task. However, their proposed
surface forms fail to extrapolate. They also explic-
itly provide the arithmetic operators and do not
require complicated textual understanding for dis-
crete reasoning. This begs the question of whether
the same approach is viable in DROP, where rea-
soning is done across multiple sentences, requires
dealing with heterogeneous type numbers, and the
operations should be inferred from the text.

3 Empirical Investigation on
Extrapolation

We first seek to determine whether the state-of-
the-art models on DROP (Dua et al., 2019) can
extrapolate their numerical reasoning capabilities
to unseen numbers during inference.

Dataset DROP is a reading comprehension
benchmark that requires models to perform a set
of discrete reasoning such as counting, sorting and
basic arithmetic operations. In this work, we con-
struct the extrapolated version of DROP evaluation
set by perturbing numbers with addition and mul-
tiplication of pre-defined numbers as in Figure 1.
Then, we test the existing models for their extrapo-
lation capabilities with these variant datasets.

Data Perturbation Prior to constructing the
evaluation datasets, we use a named entity recog-
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Model Interpolate Add(10) Add(100) Factor(10) Factor(100)

EM F1 EM F1 EM F1 EM F1 EM F1
NAQANet 46.20 49.24 40.87 43.61 38.31 40.34 30.17 34.09 23.03 26.01
NumNet 64.92 68.31 57.01 61.12 56.70 60.75 39.76 43.84 27.55 31.68
NumNet+(RoBERTa) 81.07 84.42 63.38 66.19 62.30 66.05 55.44 66.01 55.04 58.80
GenBERT 68.80 72.30 60.67 63.80 56.73 59.72 45.41 47.58 42.78 45.10

Table 1: The baseline and state-of-the-art DROP models tested on our four extrapolated versions of DROP eval-
uation dataset. Add(N) means adding N and Factor(N) means multiplying N to the numbers that appear in the
passage. Interpolate shows the results on the original evaluation dataset.

Type Count Max Min Median MAD

CARDINAL 33,732 48,466,928 0 31 140
MONEY 1,561 653,422,000 0.8 289.5 318.5
QUANTITY 23,072 4,000,160 1 27 19
DATE 30,549 105,000 0 1,907 191.5
TIME 2,627 160 0 13.5 9
PERCENT 5,123 280 0.01 12 14

Table 2: Type-wise analysis on numbers in DROP train-
ing dataset. MAD is the median absolute deviation.

nition (NER) system1 to extract and identify seven
different entity types among the numbers in the
text, namely: ORDINAL, DATE, QUANTITY,
CARDINAL, MONEY, TIME, PERCENT. Among
these seven entity types, we apply the aforemen-
tioned extrapolation perturbation to QUANTITY,
CARDINAL and MONEY only, because DATE,
PERCENT, TIME and ORDINAL require type-
specific, handcrafted perturbations. For instance,
if we were to perturb, "King James was born in
May 25, 1926", it is not possible to simply change
the range of "25" and "1926" by multiplying a 100,
which neglects the entity-specific characteristics
and requires question-level adjustment. Since we
are probing the models to evaluate their extrapola-
tion capability on unseen numbers, changing the
range of the three types suffices. We use the four
versions of extrapolated DROP evaluation set to
observe the changes in performance along with the
magnitude of changes in number range: Add(10),
Add(100), Factor(10), Factor(100). Add(N) means
adding N and Factor(N) means multiplying N to
the numbers that appear in the passage.

The numbers from the passage, question and an-
swer are perturbed with one of the four perturbation
schemes above. Naturally, by the distributive law,
the validity of the perturbed answer value holds.
For example (see Figure 1), applying Factor(100)

1Stanford’s Stanza toolkit for NLP (Qi et al., 2020)

Figure 3: MONEY type number distribution in the
DROP train and evaluation datasets. Bin width is set
to 50 with the numbers shown up to 80th percentile for
visibility. The numbers are highly skewed to right.

to a sequence, 49,927 + 18,009 + 12,182 = 80,128,
results in 100 * (49,927 + 18,009 + 12,182) = 100
* (80,128). The same rule applies to other perturba-
tion methods. As for the count-type answers that
consist of numbers, we apply a heuristic where we
consider both the number answers within the range
of 0 to 9 and their extrapolated variants as answers.
This prevents accidental perturbation of count-type
answers and also considers arithmetic-type answers
that have been extrapolated.

Models To inspect the extrapolation capability
among the existing models in DROP, we evaluate
the following representative models in the leader-
board: NAQANet (the official baseline model
in DROP), NumNet (Ran et al., 2019), Num-
Net+(RoBERTa) and GenBERT (Geva et al., 2020).
Although we mention QDGAT (Chen et al., 2020)
in this paper, we did not evaluate it because its
official implementation could not be reproduced.

Probing Models for Extrapolation We experi-
ment on the models with the extrapolated DROP
dataset and show that model performances degrade
significantly as in Table 1. One notable observa-
tion from this experiment is that as the range of
numbers increase ("Factor(10)" -> "Factor(100)"),
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Surface Form Number Date Others All

EM F1 EM F1 EM F1 EM F1
Add(100)

Original 62.05 62.06 33.12 34.44 48.97 57.02 56.73 59.72
10e-based 62.27 70.14 32.60 33.91 49.32 61.36 57.29 64.98
10-based 62.55 74.01 37.97 48.13 51.61 56.91 59.19 67.85

Digit 62.47 64.58 33.71 33.92 49.02 56.98 59.38 67.90
E-digit (Extrapolate) 62.42 75.03 50.96 58.78 64.47 77.94 59.97 68.24

Factor(100)
Original 39.11 43.25 17.85 30.42 46.51 57.18 42.78 45.10

10e-based 40.31 45.06 18.59 35.79 49.59 60.74 43.02 49.94
10-based 40.76 45.90 32.48 38.23 50.27 62.11 49.24 56.47

Digit 41.64 45.82 17.97 32.38 51.74 62.72 44.97 51.76
E-digit (Extrapolate) 61.56 63.72 41.40 55.74 55.48 64.68 57.91 63.98

Table 3: Surface form evaluation with GenBERT on our Add(100) and Factor(100) extrapolated versions of DROP
evaluation dataset. Our E-digit (Extrapolate) method outperforms all the other surface forms by a large margin.

model performances decrease accordingly. The re-
sult shows that even a small shift in the number
range affects the model performance, implying that
it is partly due to sample inefficiency. Meaning,
that the perturbations create numbers that exist out-
side the number distribution in the training dataset,
with the model trying to handle the vast coverage
of numbers with typical subword representations.
This problem is evident in the highly skewed num-
ber distribution in both the DROP training and eval-
uation dataset. The right-skewed distribution for
the MONEY-type numbers in Figure 3, for exam-
ple, shows a long tail, with the frequency of num-
bers in the training text quickly degrading as the
magnitude of numbers grow (similar distribution is
exhibited in CARDINAL, QUANTITY and PER-
CENT). This is also apparent in Table 2, where
we see numbers that range up to millions but the
median absolute deviation (MAD) is overly large
for CARDINAL, MONEY and DATE. For TIME,
PERCENT and QUANTITY, although we see a
negligible spread, MAD’s characteristic of ignor-
ing the outliers like the MAX value of QUANTITY
may have ignored less frequent, larger values. Such
number distribution inhibits the models from gener-
ating an inductive bias for numbers, as the model is
going to encounter only the numbers within the lim-
ited range during training. This lack of inductive
bias for numbers prevents the model from extrapo-
lating to out-of-distribution numbers in text. Thus,
it is essential that the model gains a strong induc-
tive bias for numbers, despite seeing numbers of

arbitrary lengths.

4 Injecting Inductive Bias on Numbers
with Surface Form Representations

After revealing the lack of extrapolation capability
in the models, we gauge the influence of different
surface forms of numbers as input to the MRC mod-
els. Based on the observation on the importance of
surface forms in arithmetic word problems (AWP)
(Nogueira et al., 2021), we evaluate if altering the
surface form representation of numbers in DROP
alleviates the performance discrepancy shown in
Table 1. Moreover, we propose the new E-digit sur-
face form to overcome the limitations of previous
surface forms in extrapolation.

Surface Form Methods Our E-digit method
makes use of two types of tokens, "e" and "digit",
to reconstruct the numbers in the passage as in
Figure 2. To elaborate, the E-digit method aug-
ments the typical digit-level number surface form
by providing digit-position information with the
e token and its corresponding digit number (See
Figure 2). The three other surface forms proposed
in Nogueira et al. (2021), namely 10e-based, 10-
based and digit forms are composed of "10e#",
"10n" and numbers separated into digit-level rep-
resentation, respectively. The principal difference
between our E-digit and the three surface forms is
that the e token embedding is digit-position inde-
pendent, meaning it can occupy any digit-position
as long as its followed by the digit-position number.
On the contrary, 10e-based and 10-based methods
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Model EM F1

GenBERT 68.80 72.30
E-digit (Interpolate) 68.14 71.05

Table 4: Comparison between the GenBERT model
and its E-digit variant (i.e., E-digit(Interpolate)), which
is trained with E-digit method and evaluated on the E-
digit DROP dev set.

require a separate embedding for every digit posi-
tion, with its number growing proportionally to the
length of a number.

Here, we hypothesize that providing a position-
independent token as in E-digit enables the model
to leverage the "e" embedding to improve the ex-
trapolation capability. We provide four versions
of the original training dataset for the above four
surface forms, and apply the same perturbation
"Factor(100)" on evaluation set for inference. We
use GenBERT as our proxy model because we need
the model to generate answer texts like "2 e 2 7 e
1 0 e 0," whereas other models are incapable of
generating calculated number answers in different
surface forms, only performing span extraction and
using special heads to assign {+, -, 0} on numbers
appearing in the passage.

To validate the utility of the E-digit approach in
the default, non-extrapolated setting, we compare
the performance of the original GenBERT model
against the E-digit(Interpolate) (Table 4), which is
GenBERT fine-tuned with the E-digit method and
evaluated on the original DROP evaluation set. De-
spite minor degradation in performance, the E-digit
(Interpolate) performs comparably to GenBERT,
which proves its effectiveness in representing num-
bers like digit tokenization does in the original
GenBERT model. Our interpretation to such an
outcome is that the performance gap is most likely
caused by GenBERT’s pre-training scheme (Geva
et al., 2020), which employs digit subword inputs
(14 → 1 ##4) to solve simple arithmetic problems
to induce numerical reasoning skills. This may
have caused the input mismatch issue since digit-
level information explicitly provided by E-digit is
absent during pre-training.

Analysis of Different Surface Forms The no-
table observation in Table 3 is that our E-digit
method outperforms all the other surface forms,
including the original model on the extrapolate
DROP dataset. Also, the surface form methods
all outperform the original models’ subword tok-

enization approach. The results empirically show
that: (i) providing digit information ("e", "10e#")
along with numbers in their digit form is important
in modeling numbers for extrapolation in a com-
plicated textual reasoning task, and (ii) from the
EM and F1 scores, we realize that the models still
underperform in the extrapolation task when com-
pared to the original interpolation task. The latter
suggests that, in addition to the surface form prob-
lem identified in our work, there still are problems
with the current approaches to number modeling in
numerical MRC models.

Further analysis on the different answer types
in DROP provides insight into the relationship be-
tween the answer types and surface forms. The
E-digit method outperforms other forms notably
in Number and Date categories. This shows that
the "e" embedding learns to effectively represent
numbers within the model despite seeing out-of-
distribution numbers. The 10-based surface form,
to our surprise, outperforms other surface forms in
the Date type answers. We speculate that such a
result arises from the year-type numbers’ charac-
teristic of typically ranging between numbers of
1000 to 2000, which enables the model to learn the
relevance of the embedding "1000" to numbers in
a year-related context. Overall, the E-digit surface
form provides an explicit digit-level information
of a number, which in turn empowers the model to
effectively preserve and represent number informa-
tion for numerical reasoning over text.

5 Conclusion

In this work, we investigated the extrapolation prob-
lem in complex numerical reasoning over text. Our
probing results shed light on the significant lack of
DROP models’ capabilities by simulating a more
realistic and ultimately needed benchmark (i.e.,
extrapolation). One of the key findings is that
treating numbers as words inevitably requires a
vast coverage of numbers, leading to sample inef-
ficiency. This motivated us to adopt a more gen-
eralizable surface form representation, proposing
the E-digit method that successfully generalizes to
unseen numbers. Empirical results highlight sim-
ple surface representations benefit the model with
digit information for extrapolation, and our E-digit
method effectively generalizes it further. Our work
opens up a new research direction in numerical rea-
soning over text on how to reduce the discrepancy
between the original and extrapolated settings.
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