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Abstract

We study Comparative Preference Classifica-
tion (CPC) which aims at predicting whether
a preference comparison exists between two
entities in a given sentence and, if so, which
entity is preferred over the other. High-
quality CPC models can significantly ben-
efit applications such as comparative ques-
tion answering and review-based recommen-
dation. Among the existing approaches, non-
deep learning methods suffer from inferior per-
formances. The state-of-the-art graph neural
network-based ED-GAT (Ma et al., 2020) only
considers syntactic information while ignoring
the critical semantic relations and the senti-
ments to the compared entities. We propose
Sentiment Analysis Enhanced COmparative
Network (SAECON) which improves CPC ac-
curacy with a sentiment analyzer that learns
sentiments to individual entities via domain
adaptive knowledge transfer. Experiments on
the CompSent-19 (Panchenko et al., 2019)
dataset present a significant improvement on
the F1 scores over the best existing CPC ap-
proaches.

1 Introduction

Comparative Preference Classification (CPC) is a
natural language processing (NLP) task that pre-
dicts whether a preference comparison exists be-
tween two entities in a sentence and, if so, which
entity wins the game. For example, given the sen-
tence: Python is better suited for data analysis than
MATLAB due to the many available deep learning
libraries, a decisive comparison exists between
Python and MATLAB and comparatively Python is
preferred over MATLAB in the context.

The CPC task can profoundly impact various
real-world application scenarios. Search engine
users may query not only factual questions but also
comparative ones to meet their specific informa-
tion needs (Gupta et al., 2017). Recommendation
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providers can analyze product reviews with com-
parative statements to understand the advantages
and disadvantages of the product comparing with
similar ones.

Several models have been proposed to solve this
problem. Panchenko et al. (2019) first formalize the
CPC problem, build and publish the CompSent-19
dataset, and experiment with numerous general ma-
chine learning models such as Support Vector Ma-
chine (SVM), representation-based classification,
and XGBoost. However, these attempts consider
CPC as a sentence classification while ignoring the
semantics and the contexts of the entities (Ma et al.,
2020).

ED-GAT (Ma et al., 2020) marks the first entity-
aware CPC approach that captures long-distance
syntactic relations between the entities of interest
by applying graph attention networks (GAT) to de-
pendency parsing graphs. However, we argue that
the disadvantages of such an approach are clear.
Firstly, ED-GAT replaces the entity names with
“entityA” and “entityB” for simplicity and hence
deprives their semantics. Secondly, ED-GAT has a
deep architecture with ten stacking GAT layers to
tackle the long-distance issue between compared
entities. However, more GAT layers result in a
heavier computational workload and reduced train-
ing stability. Thirdly, although the competing en-
tities are typically connected via multiple hops of
dependency relations, the unordered tokens along
the connection path cannot capture either global or
local high-quality semantic context features.

In this work, we propose a Sentiment Analy-
sis Enhanced COmparative classification Network
(SAECON), a CPC approach that considers not
only syntactic but also semantic features of the
entities. The semantic features here refer to the
context of the entities from which a sentiment anal-
ysis model can infer the sentiments toward the
entities. Specifically, the encoded sentence and
entities are fed into a dual-channel context fea-
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ture extractor to learn the global and local context.
In addition, an auxiliary Aspect-Based Sentiment
Analysis (ABSA) module is integrated to learn the
sentiments towards individual entities which are
greatly beneficial to the comparison classification.

ABSA aims to detect the specific emotional in-
clination toward an aspect within a sentence (Ma
et al., 2018; Hu et al., 2019; Phan and Ogunbona,
2020; Chen and Qian, 2020; Wang et al., 2020).
For example, the sentence I liked the service and
the staff but not the food suggests positive senti-
ments toward service and staff but a negative one
toward food. These aspect entities, such as service,
staff, and food, are studied individually.

The well-studied ABSA approaches can be bene-
ficial to CPC when the compared entities in a CPC
sentence are considered as the aspects in ABSA.
Incorporating the individual sentiments learned by
ABSA methods into CPC has several advantages.
Firstly, for a comparison to hold, the preferred en-
tity usually receives a positive sentiment while its
rival gets a relatively negative one. These senti-
ments can be easily extracted by the strong ABSA
models. The contrast between the sentiments as-
signed to the compared entities provides a vital
clue for an accurate CPC. Secondly, the ABSA
models are designed to target the sentiments to-
ward phrases, which bypasses the complicated and
noisy syntactic relation path. Thirdly, considering
the scarcity of the data resource of CPC, the abun-
dant annotated data of ABSA can provide sufficient
supervision signal to improve the accuracy of CPC.

There is one challenge that blocks the knowl-
edge transfer of sentiment analysis from the ABSA
data to the CPC task: domain shift. Existing ABSA
datasets are centered around specific topics such
as restaurants and laptops, while the CPC data has
mixed topics (Panchenko et al., 2019) that are all
distant from restaurants. In other words, sentences
of ABSA and CPC datasets are drawn from dif-
ferent distributions, also known as domains. The
difference in the distributions is referred to as a “do-
main shift” (Ganin and Lempitsky, 2015; He et al.,
2018) and it is harmful to an accurate knowledge
transfer. To mitigate the domain shift, we design
a domain adaptive layer to remove the domain-
specific feature such as topics and preserve the
domain-invariant feature such as sentiments of the
text so that the sentiment analyzer can smoothly
transfer knowledge from sentiment analysis to com-
parative classification.

2 Related Work

2.1 Comparative Preference Classification

CPC originates from the task of Comparative Sen-
tence Identification (CSI) (Jindal and Liu, 2006).
CSI aims to identify the comparative sentences. Jin-
dal and Liu (2006) approach this problem by Class
Sequential Mining (CSR) and a Naive Bayesian
classifier. Building upon CSI, Panchenko et al.
(2019) propose the task of CPC, release CompSent-
19 dataset, and conduct experimental studies us-
ing traditional machine learning approaches such
as SVM, representation-based classification, and
XGBoost. However, they neglect the entities in
the comparative context (Panchenko et al., 2019).
ED-GAT (Ma et al., 2020), a more recent work,
uses the dependency graph to better recognize long-
distance comparisons and avoid falsely identifying
unrelated comparison predicates. However, it fails
to capture semantic information of the entities as
they are replaced by “entityA” and “entityB”. Fur-
thermore, having multiple GAT layers severely in-
creases training difficulty.

2.2 Aspect-Based Sentiment Analysis

ABSA derives from sentiment analysis (SA) which
infers the sentiment associated with a specific en-
tity in a sentence. Traditional approaches of ABSA
utilize SVM for classification (Kiritchenko et al.,
2014; Wagner et al., 2014; Zhang et al., 2014)
while neural network-based approaches employ
variants of RNN (Nguyen and Shirai, 2015; Ay-
din and Güngör, 2020), LSTM (Tang et al., 2016;
Wang et al., 2016; Bao et al., 2019), GAT (Wang
et al., 2020), and GCN (Pouran Ben Veyseh et al.,
2020; Xu et al., 2020).

More recent works1 widely use complex con-
textualized NLP models such as BERT (Devlin
et al., 2019). Sun et al. (2019) transform ABSA
into a Question Answering task by constructing
auxiliary sentences. Phan and Ogunbona (2020)
build a pipeline of Aspect Extraction and ABSA
and used wide and concentrated features for sen-
timent classification. ABSA is related to CPC by
nature. In general, entities with positive sentiments
are preferred over the ones with neutral or negative
sentiments. Therefore, the performance of a CPC
model can be enhanced by the ABSA techniques.

1Due to the limited space, we are unable to exhaustively
cover all references. Works discussed are classic examples.
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Figure 1: Pipeline of SAECON. Sentences from two domains shown in the gray box are fed into text encoder
and dependency parser. The resultant representations of the entities from three substructures are discriminated by
different colors (see the legend in the corner). “Cls.” is short for classifier.

3 SAECON

In this section, we first formalize the problem and
then explain SAECON in detail. The pipeline of
SAECON is depicted in Figure 1 with essential
notations.

3.1 Problem Statement
CPC Given a sentence s from the CPC corpus
Dc with n tokens and two entities e1 and e2, a CPC
model predicts whether there exists a preference
comparison between e1 and e2 in s and if so, which
entity is preferred over the other. Potential results
can be Better (e1 wins), Worse (e2 wins), or
None (no comparison exists).

ABSA Given a sentence s′ from the ABSA cor-
pus Ds with m tokens and one entity e′, ABSA
identifies the sentiment (positive, negative, or neu-
tral) associated with e′.

We denote the source domains of the CPC and
ABSA datasets by Dc and Ds. Dc and Ds contain
samples that are drawn from Dc and Ds, respec-
tively. Dc and Ds are similar but different in topics
which produces a domain shift. We use s to denote
sentences in Dc ∪ Ds and E to denote the entity
sets for simplicity in later discussion. |E| = 2 if
s ∈ Dc and |E| = 1 otherwise.

3.2 Text Feature Representations
A sentence is encoded by its word representations
via a text encoder and parsed into a dependency
graph via a dependency parser (Chen and Man-
ning, 2014). Text encoder, such as GloVe (Penning-
ton et al., 2014) and BERT (Devlin et al., 2019),
maps a word w into a low dimensional embedding

w ∈ Rd0 . GloVe assigns a fixed vector while
BERT computes a token2 representation by its tex-
tual context. The encoding output of s is denoted by
S0 = {w1, . . . , e1, . . . , e2, . . . ,wn} where ei de-
notes the embedding of entity i,wi denotes the em-
bedding of a non-entity word, and wi, ej ∈ Rd0 .

The dependency graph of s, denoted by Gs, is
obtained by applying a dependency parser to s such
as Stanford Parser (Chen and Manning, 2014) or
spaCy3. Gs is a syntactic view of s (Marcheggiani
and Titov, 2017; Li et al., 2016) that is composed of
vertices of words and directed edges of dependency
relations. Advantageously, complex syntactic rela-
tions between distant words in the sentence can be
easily detected with a small number of hops over
dependency edges (Ma et al., 2020).

3.3 Contextual Features for CPC

Global Semantic Context To model more ex-
tended context of the entities, we use a bi-
directional LSTM (BiLSTM) to encode the entire
sentence in both directions. Bi-directional recur-
rent neural network is widely used in extracting
semantics (Li et al., 2019). Given the indices of e1
and e2 in s, the global context representations hg,1
and hg,2 are computed by averaging the hidden

2BERT generates representations of wordpieces which can
be substrings of words. If a word is broken into wordpieces by
BERT tokenizer, the average of the wordpiece representations
is taken as the word representation. The representations of the
special tokens of BERT, [CLS] and [SEP], are not used.

3https://spacy.io

https://spacy.io
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outputs from both directions.

−−→
hg,i,

←−−
hg,i = BiLSTM(S0)[ei.index], i = 1, 2

hg,i =
1

2

(−−→
hg,i +

←−−
hg,i

)
,hg,i ∈ Rdg .

Local Syntactic Context In SAECON, we use
a dependency graph to capture the syntactically
neighboring context of entities that contains words
or phrases modifying the entities and indicates com-
parative preferences. We apply a Syntactic Graph
Convolutional Network (SGCN) (Bastings et al.,
2017; Marcheggiani and Titov, 2017) toGs to com-
pute the local context feature hl,1 and hl,2 for e1
and e2, respectively. SGCN operates on directed
dependency graphs with three major adjustments
compared with GCN (Kipf and Welling, 2017):
considering the directionality of edges, separating
parameters for different dependency labels4, and
applying edge-wise gating to message passing.

GCN is a multilayer message propagation-based
graph neural network. Given a vertex v in Gs and
its neighbors N (v), the vertex representation of v
on the (j + 1)th layer is given as

h(j+1)
v = ρ

 ∑
u∈N (v)

W(j)h(j)
u + b(j)

 ,

where ρ(·) denotes an aggregation function such
as mean and sum, W(j) ∈ Rd(j+1)×d(j) and b(j) ∈
Rd(j+1)

are trainable parameters, and d(j+1) and
d(j) denote latent feature dimensions of the (j +
1)th and the jth layers, respectively.

SGCN improves GCN by considering different
edge directions and diverse edge types, and assigns
different parameters to different directions or labels.
However, there is one caveat: the directionality-
based method cannot accommodate the rich edge
type information; the label-based method causes
combinatorial over-parameterization, increased
risk of overfitting, and reduced efficiency. There-
fore, we naturally arrive at a trade-off of using
direction-specific weights and label-specific biases.

The edge-wise gating can select impactful neigh-
bors by controlling the gates for message propaga-
tion through edges. The gate on the jth layer of an
edge between vertices u and v is defined as

g(j)uv = σ
(
h(j)
u · β(j)

duv
+ γ

(j)
luv

)
, g(j)uv ∈ R,

4Labels are defined as the combinations of directions and
dependency types. For example, edge ((u, v), nsubj) and
edge ((v, u), nsubj−1) have different labels.

where duv and luv denote the direction and label of
edge (u, v), β(j)

duv
and γ(j)luv are trainable parameters,

and σ(·) denotes the sigmoid function.
Summing up the aforementioned adjustments on

GCN, the final vertex representation learning is

h(j+1)
v = ρ

 ∑
u∈N (v)

g(j)uv

(
W

(j)
duv
h(j)
u + b

(j)
luv

) .

Vectors of S0 serve as the input representations
h
(0)
v to the first SGCN layer. The representa-

tions corresponding to e1 and e2 are the output
{hl,1,hl,2} with dimension dl.

3.4 Sentiment Analysis with Knowledge
Transfer from ABSA

We have discussed in Section 1 that ABSA inher-
ently correlates with the CPC task. Therefore, it
is natural to incorporate a sentiment analyzer into
SAECON as an auxiliary task to take advantage of
the abundant training resources of ABSA to boost
the performance on CPC. There are two paradigms
for auxiliary tasks: (1) incorporating fixed param-
eters that are pretrained solely with the auxiliary
dataset; (2) incorporating the architecture only with
untrained parameters and jointly optimizing them
from scratch with the main task simultaneously (Li
et al., 2018; He et al., 2018; Wang and Pan, 2018).

Option (1) ignores the domain shift between Dc

and Ds, which degrades the quality of the learned
sentiment features since the domain identity in-
formation is noisy and unrelated to the CPC task.
SAECON uses option (2). For a smooth and ef-
ficient knowledge transfer from Ds to Dc under
the setting of option (2), the ideal sentiment ana-
lyzer only extracts the textual feature that is contin-
gent on sentimental information but orthogonal to
the identity of the source domain. In other words,
the learned sentiment features are expected to be
discriminative on sentiment analysis but invariant
with respect to the domain shift. Therefore, the
sentiment features are more aligned with the CPC
domain Dc with reduced noise from domain shift.

In SAECON, we use a gradient reversal layer
(GRL) and a domain classifier (DC) (Ganin and
Lempitsky, 2015) for the domain adaptive senti-
ment feature learning that maintains the discrimina-
tiveness and the domain-invariance. GRL+DC is a
straightforward, generic, and effective modification
to neural networks for domain adaptation (Kamath
et al., 2019; Gu et al., 2019; Belinkov et al., 2019;
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Li et al., 2018). It can effectively close the shift
between complex distributions (Ganin and Lempit-
sky, 2015) such as Dc and Ds.

Let A denote the sentiment analyzer which alter-
natively learns sentiment information from Ds and
provides sentimental clues to the compared entities
in Dc. Specifically, each CPC instance is split into
two ABSA samples with the same text before being
fed into A (see the “Split to 2” in Figure 1). One
takes e1 as the queried aspect the other takes e2.

A(S0, Gs, E) =

{
hs,1,hs,2 if s ∈ Dc,

hs if s ∈ Ds.

hs,1, hs,2, and hs ∈ Rds . These outputs are
later sent through a GRL to not only the CPC and
ABSA predictors shown in Figure 1 but also the
DC to predict the source domain yd of s where
yd = 1 if s ∈ Ds otherwise 0. GRL, trainable by
backpropagation, is transparent in the forward pass
(GRLα(x) = x). It reverses the gradients in the
backward pass as

∂GRLα
∂x

= −αI.

Here x is the input to GRL, α is a hyperparame-
ter, and I is an identity matrix. During training,
the reversed gradients maximize the domain loss,
forcing A to forget the domain identity via the
backpropagation and mitigating the domain shift.
Therefore, the outputs of A stay invariant to the
domain shift. But as the outputs of A are also op-
timized for ABSA predictions, the distinctiveness
with respect to sentiment classification is retained.

Finally, the selection of A is flexible as it is
architecture-agnostic. In this paper, we use the
LCF-ASC aspect-based sentiment analyzer pro-
posed by Phan and Ogunbona (2020) in which two
scales of representations are concatenated to learn
the sentiments to the entities of interest.

3.5 Objective and Optimization

SAECON optimizes three classification errors over-
all for CPC, ABSA, and domain classification.
For CPC task, features for local context, global
context, and sentiment are concatenated: hei =
[hg,i;hl,i;hs,i], i ∈ {1, 2}, and hei ∈ Rds+dg+dl .
Given Fc, Fs, Fd, and F below denoting fully-
connected neural networks with non-linear activa-
tion layers, CPC, ABSA, domain predictions are

obtained by

ŷc = δ(Fc([F(he1);F(he2)])) (CPC only),

ŷs = δ(Fs(hs)) (ABSA only),

ŷd = δ(Fd(GRL(A(S0, Gs, E)))) (Both tasks),

where δ denotes the softmax function. With the
predictions, SAECON computes the cross entropy
losses for the three tasks as Lc, Ls, and Ld, respec-
tively. The label of Ld is yd. The computations of
the losses are omitted due to the space limit.

In summary, the objective function of the pro-
posed model SAECON is given as follows,

L = Lc + λsLs + λdLd + λreg(L2),

where λs and λd are two weights of the losses, and
λ is the weight of an L2 regularization. We denote
λ = {λs, λd, λ}. In the actual training, we separate
the iterations of CPC data and ABSA data and input
batches from the two domains alternatively. Alter-
native inputs ensure that the DC receives batches
with different labels evenly and avoid overfitting to
either domain label. A stochastic gradient descent
based optimizer, Adam (Kingma and Ba, 2015), is
leveraged to optimize the parameters of SAECON.
Algorithm 1 in Section A.1 explains the alternative
training paradigm in detail.

4 Experiments

4.1 Experimental Settings
Dataset CompSent-19 is the first public dataset
for the CPC task released by Panchenko et al.
(2019). It contains sentences with entity annota-
tions. The ground truth is obtained by comparing
the entity that appears earlier (e1) in the sentence
with the one that appears later (e2). The dataset
is split by convention (Panchenko et al., 2019; Ma
et al., 2020): 80% for training and 20% for testing.
During training, 20% of the training data of each
label composes the development set for model se-
lection. The detailed statistics are given in Table 1.

Three datasets of restaurants released in Se-
mEval 2014, 2015, and 2016 (Pontiki et al., 2014,
2015; Xenos et al., 2016) are utilized for the ABSA
task. We join their training sets and randomly sam-
ple instances into batches to optimize the auxiliary
objective Ls. The proportions of POS, NEU, and
NEG instances are 65.8%, 11.0%, and 23.2%.

Note. The rigorous definition of None in
CompSent-19 is that the sentence does not contain
a comparison between the entities rather than that
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Dataset Better Worse None Total
Train 872 (19%) 379 (8%) 3,355 (73%) 4,606

Development 219 (19%) 95 (8%) 839 (73%) 1,153
Test 273 (19%) 119 (8%) 1,048 (73%) 1,440
Total 1,346 (19%) 593 (8%) 5,242 (73%) 7,199

Flipping labels 1,251 (21%) 1,251 (21%) 3,355 (58%) 5,857
Upsampling 3,355 (33%) 3,355 (33%) 3,355 (33%) 10,065

Table 1: Statistics of CompSent-19. The rows of Flip-
ping labels and Upsampling show the numbers of the
augmented datasets to mitigate label imbalance.

entities are both preferred or disliked. Although
the two definitions are not mutually exclusive, we
would like to provide a clearer background of the
CPC problem.

Imbalanced Data CompSent-19 is badly imbal-
anced (see Table 1). None instances dominate in
the dataset. The other two labels combined only
account for 27%. This critical issue can impair the
model performance. Three methods to alleviate the
imbalance are tested. Flipping labels: Consider the
order of the entities, an original Better instance
will become a Worse one and vice versa if query-
ing (e2, e1) instead. We interchange the e1 and e2
of all Better and Worse samples so that they
have the same amount. Upsampling: We upsam-
ple Better and Worse instances with duplica-
tion to the same amount of None. Weighted loss:
We upweight the underpopulated labels Better
and Worse when computing the classification loss.
Their effects are discussed in Section 4.2.

Evaluation Metric The F1 score of each label
and the micro-averaging F1 score are reported for
comparison. We use F1(B), F1(W), F1(N), and
micro-F1 to denote them. The micro-F1 scores
on the development set are used as the criteria to
pick the best model over training epochs and the
corresponding test performances are reported.

Reproducibility The implementation of SAE-
CON is publicly available on GitHub5. Details
for reproduction are given in Section A.2.

Baseline Models Seven models experimented
in Panchenko et al. (2019) and the state-of-the-art
ED-GAT (Ma et al., 2020) are considered for per-
formance comparison and described in Section A.3.
Fixed BERT embeddings are used in our experi-
ments same as ED-GAT for comparison fairness.

5https://github.com/zyli93/SAECON

4.2 Performances on CPC

Comparing with Baselines We report the best
performances of baselines and SAECON in Ta-
ble 2. SAECON with BERT embeddings achieves
the highest F1 scores comparing with all baselines,
which demonstrates the superior ability of SAE-
CON to accurately classify entity comparisons.
The F1 scores for None, i.e., F1(N), are consis-
tently the highest in all rows due to the data im-
balance where None accounts for the largest per-
centage. Worse data is the smallest and thus is
the hardest to predict precisely. This also explains
why models with higher micro-F1 discussed later
usually achieve larger F1(W) given that their ac-
curacy values on the majority class (None) are
almost identical. BERT-based models outperform
GloVe-based ones, indicating the advantage of con-
textualized embeddings.

In later discussion, the reported performances of
SAECON and its variants are based on the BERT
version. The performances of the GloVe-based
SAECON demonstrate similar trends.

Model Micro. F1(B) F1(W) F1(N)
Majority 68.95 0.0 0.0 81.62
SE-Lin 79.31 62.71 37.61 88.42

SE-XGB 85.00 75.00 43.00 92.00
SVM-Tree 68.12 53.35 13.90 78.13
BERT-CLS 83.12 69.62 50.37 89.84
AvgWE-G 76.32 48.28 20.12 86.34
AvgWE-B 77.64 53.94 26.88 87.47
ED-GAT-G 82.73 70.23 43.30 89.84
ED-GAT-B 85.42 71.65 47.29 92.34

SAECON-G 83.78 71.06 45.90 91.05
SAECON-B 86.74 77.10 54.08 92.64

Table 2: Performance comparisons between the pro-
posed model and baselines on F1 scores (%). “-B”
and “-G” denote different versions of the model us-
ing BERT (Devlin et al., 2019) and GloVe (Pennington
et al., 2014) as the input embeddings, respectively. All
reported improvements over the best baselines are sta-
tistically significant with p-value < 0.01.

Ablation Studies Ablation studies demonstrate
the unique contribution of each part of the pro-
posed model. Here we verify the contributions
of the following modules: (1) The bi-directional
global context extractor (BiLSTM); (2) The syntac-
tic local context extractor (SGCN); (3) The domain
adaptation modules of A (GRL); (4) The entire
auxiliary sentiment analyzer, including its depen-

https://github.com/zyli93/SAECON


6824

dent GRL+DC (A+GRL for short). The results are
presented in Table 3.

Four points worth noting. Firstly, the SAECON
with all modules achieves the best performance on
three out of four metrics, demonstrating the effec-
tiveness of all modules (SAECON vs. the rest);
Secondly, the synergy of A and GRL improves the
performance (−(A+GRL) vs. SAECON) whereas
the A without domain adaptation hurts the classi-
fication accuracy instead (−GRL vs. SAECON),
which indicates that the auxiliary sentiment ana-
lyzer is beneficial to CPC accuracy only with the as-
sistance of GRL+DC modules; Thirdly, removing
the global context causes the largest performance
deterioration (−BiLSTM vs. SAECON), showing
the significance of long-term information. This ob-
servation is consistent with the findings of Ma et al.
(2020) in which eight to ten stacking GAT layers
are used for global feature learning; Finally, the
performances also drop after removing the SGCN
(−SGCN vs. SAECON) but the drop is less than
removing the BiLSTM. Therefore, local context
plays a less important role than the global context
(−SGCN vs. −BiLSTM).

Variants Micro. F1(B) F1(W) F1(N)
SAECON 86.74 77.10 54.08 92.64
−BiLSTM 85.21 72.94 43.86 92.63
−SGCN 86.53 76.22 51.38 92.24
−GRL 86.53 76.16 49.77 92.93

−(A+GRL) 85.97 74.82 52.44 92.45

Table 3: Ablation studies on F1 scores (%) between
SAECON and its variants with modules disabled.
“−X” denotes a variant without module X. Removing
A will also remove GRL+DC.

Hyperparameter Searching We demonstrate
the influences of several key hyperparameters.
Such hyperparameters include the initial learning
rate (LR, η), feature dimensions (d = {dg, dl, ds}),
regularization weight λ, and the configurations of
SGCN such as directionality, gating, and layer num-
bers.

For LR, d, and λ in Figures 2a, 2b, and 2c, we
can observe a single peak for F1(W) (green curves)
and fluctuating F1 scores for other labels and the
micro-F1 (blue curves). In addition, the peaks of
micro-F1 occur at the same positions of F1(W).
This indicates that the performance on Worse is
the most influential factor to the micro-F1. These
observations help us locate the optimal settings and
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Figure 2: Searching and sensitivity for four key hyper-
parameters of SAECON in F1 scores.

also show the strong learning stability of SAECON.
Figure 2d focuses on the effect of SGCN layer

numbers. We observe clear oscillations on F1(W)
and find the best scores at two layers. More layers
of GCN result in oversmoothing (Kipf and Welling,
2017) and hugely downgrade the accuracy, which
is eased but not entirely fixed by the gating mech-
anism. Therefore, the performances slightly drop
on larger layer numbers.

Table 4 shows the impact of directionality and
gating. Turning off either the directionality or the
gating mechanism (“73” or “37”) leads to de-
graded F1 scores. SGCN without modifications
(“77”) drops to the poorest micro-F1 and F1(W).
Although its F1(N) is the highest, we hardly con-
sider it a good sign. Overall, the benefits of the
directionality and gating are verified.

Directed Gating Micro. F1(B) F1(W) F1(N)
3 3 86.74 77.10 54.08 92.64
7 3 86.18 75.72 49.78 92.40
3 7 85.35 74.03 43.27 92.34
7 7 85.35 73.39 35.78 93.04

Table 4: Searching and sensitivity for the directionality
and gating of SGCN by F1 scores (%).

Alleviating Data Imbalance The label imbal-
ance severely impairs the model performance, es-
pecially on the most underpopulated label Worse.
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The aforementioned imbalance alleviation methods
are tested in Table 5. The Original (OR) row is
a control experiment using the raw CompSent-19
without any weighting or augmentation.

The optimal solution is the weighted loss (WL
vs. the rest). One interesting observation is that
data augmentation such as flipping labels and up-
sampling cannot provide a performance gain (OR
vs. FL and OR vs. UP). Weighted loss performs
a bit worse on F1(N) but consistently better on
the other metrics, especially on Worse, indicat-
ing that it effectively alleviates the imbalance issue.
In practice, static weights found via grid search
are assigned to different labels when computing
the cross entropy loss. We leave the exploration
of dynamic weighting methods such as the Focal
Loss (Lin et al., 2017) for future work.

Methods Micro. F1(B) F1(W) F1(N)
Weighted loss (WL) 86.74 77.10 54.08 92.64

Original (OR) 85.97 73.80 46.15 92.90
Flipping labels (FL) 84.93 73.07 42.45 91.99
Upsampling (UP) 85.83 73.11 46.36 92.95

Table 5: Performance analysis with F1 scores (%) for
different methods to mitigate data imbalance.

Alternative Training One novelty of SAECON
is the alternative training that allows the sentiment
analyzer to learn both tasks across domains. Here
we analyze the impacts of different batch ratios
(BR) and different domain shift handling methods
during the training. BR controls the number of
ratio of batches of the two alternative tasks in each
training cycle. For example, a BR of 2 : 3 sends 2
CPC batches followed by 3 ABSA batches in each
iteration.

Figure 3a presents the entire training time for
ten epochs with different BR. A larger BR takes
shorter time. For example, a BR of 1:1 (the left-
most bar) takes a shorter time than 1:5 (the yellow
bar). Figure 3b presents the micro-F1 scores for
different BR. We observe two points: (1) The re-
ported performances differ slightly; (2) Generally,
the performance is better when the CPC batches are
less than ABSA ones. Overall, the hyperparameter
selection tries to find a “sweet spot” for effective-
ness and efficiency, which points to the BR of 1:1.

Figure 4 depicts the performance comparisons
of SAECON (green bars), SAECON−GRL (the
“−GRL” in Figure 3, orange bars), and SAECON
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Figure 3: Analyses for batch ration (BR). The values of
micro-F1 are actual numbers minus 0.85 for the conve-
nience of visualization.

with pretrained and fixed parameters of A (the op-
tion (1) mentioned in Section 3.4, blue bars). They
represent different levels of domain shift mitiga-
tion: The pretrained and fixed A does NOT handle
the domain shift at all; The variant −GRL only
attempts to implicitly handle the shift by alterna-
tive training with different tasks to converge in
the middle although the domain difference can be
harmful to both objectives; SAECON, instead, ex-
plicitly uses GRL+DC to mitigate the domain shift
between Ds and Dc during training.

As a result, SAECON achieves the best perfor-
mance especially on F1(W), −GRL gets the sec-
ond, and the “option (1)” gets the worst. These
demonstrate that (1) the alternative training (blue
vs. green) for an effective domain adaptation is
necessary and (2) there exists a positive correlation
between the level of domain shift mitigation and
the model performance, especially on F1(W) and
F1(B). A better domain adaptation produces higher
F1 scores in the scenarios where datasets in the
domain of interest, i.e., CPC, is unavailable.
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Figure 4: Visualization of the domain shift mitigation.

4.3 Case Study

In this section, we qualitatively exemplify the con-
tribution of the sentiment analyzer A. Table 6 re-
ports four example sentences from the test set of
CompSent-19. The entities e1 and e2 are high-
lighted together with the corresponding sentiment
predicted by A. The column “Label” shows the
ground truth of CPC. The “∆” column computes
the sentiment distances between the entities. We
assign +1, 0, and −1 to sentiment polarities of
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CPC sentences with sentiment predictions by A Label ∆

S1: This is all done via the gigabit [Ethernet:POS] interface, rather than the much slower [USB:NEG] interface. Better +2

S2: Also, [Bash:NEG] may not be the best language to do arithmetic heavy operations in something like
[Python:NEU] might be a better choice. Worse −1

S3: It shows how [JavaScript:POS] and [PHP:POS] can be used in tandem to make a user’s experience faster
and more pleasant. None 0

S4: He broke his hand against [Georgia Tech:NEU] and made it worse playing against [Virginia Tech:NEU]. None 0

Table 6: Case studies for the effect of the sentiment analyzer A (see Section 4.3 for details).

POS, NEU, and NEG, respectively. ∆ is computed
by the sentiment polarity of e1 minus that of e2.
Therefore, a positive distance suggests that e1 re-
ceives a more positive sentiment from A than e2
and vice versa. In S1, sentiments to Ethernet and
USB are predicted positive and negative, respec-
tively, which can correctly imply the comparative
label as Better. S2 is a Worse sentence with
Bash predicted negative, Python predicted neutral,
and a resultant negative sentiment distance−1. For
S3 and S4, the entities are assigned the same polari-
ties. Therefore, the sentiment distances are both ze-
ros. We can easily tell that preference comparisons
do not exist, which is consistent with the ground
truth labels. Due to the limited space, more inter-
esting case studies are presented in Section A.4.

5 Conclusion

This paper proposes SAECON, a CPC model that
incorporates a sentiment analyzer to transfer knowl-
edge from ABSA corpora. Specifically, SAECON
utilizes a BiLSTM to learn global comparative fea-
tures, a syntactic GCN to learn local syntactic infor-
mation, and a domain adaptive auxiliary sentiment
analyzer that jointly learns from ABSA corpora and
CPC corpora for a smooth knowledge transfer. An
alternative joint training scheme enables the effi-
cient and effective information transfer. Qualitative
and quantitative experiments verified the superior
performance of SAECON. For future work, we
will focus on a deeper understanding of CPC data
augmentation and an exploration of weighting loss
methods for data imbalance.
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Broader Impact Statement

This section states the broader impact of the pro-
posed CPC model. Our model is designed specifi-
cally for the comparative classification scenarios in
NLP. Users can use our model to detect whether a
comparison exists between two entities of interest
within the sentences of a particular sentential cor-
pus. For example, a recommender system equipped
with our model can tell whether a product is com-
pared with a competitor and, further, which is pre-
ferred. In addition, Review-based platforms can
utilize our model to decide which items are widely
welcomed and which are not.

Our model, SAECON, is tested with the
CompSent-19 dataset which has been anonymized
during the process of collection and annotation.
For the auxiliary ABSA task, we also use an
anonymized public dataset from SemEval 2014 to
2016. Therefore, our model will not cause potential
leakages of user identity and privacy. We would
like to call for attention to CPC as it is a relatively
new task in NLP research.
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A Supplementary Materials

This section contains the supplementary materials
for Powering Comparative Classification with Sen-
timent Analysis via Domain Adaptive Knowledge
Transfer. Here we provide additional supporting
information in four aspects, including additional
description for the training, the reproducibility de-
tails of SAECON, brief introductions of baselines,
and additional case studies.

A.1 Pseudocode of SAECON

In this section, we show the pseudocode of the
training of SAECON to provide a comprehensive
picture of the alternative training paradigm.

Algorithm 1: Optimization of SAECON
with two alternative tasks

Input: Loss weights λ; Learning rate η
Data: Dc and Ds.

1 while not converge do
2 {s, E}, task←− getAltSample(Dc, Ds)
3 S0 ←− TextEncode(s)
4 Gs ←− DepParse(s)
5 if task is CPC then
6 {hg,i}, {hl,i} (i = 1, 2)←−

methods in Section 3.3.
7 hs,1,hs,2 ←−A(S0, Gs, E)
8 Lc,Ld ←− methods in Section 3.5
9 optimize({Lc, λdLd, λreg(L2)}, η)

10 else
// sentiment analysis

11 hs ←−A(S0, Gs, E)
12 Ls,Ld ←− methods in Section 3.5
13 optimize({λsLs, λdLd, λreg(L2)}, η)

A.2 Reproducibility

In this section, we provide the instructions to re-
produce SAECON and the default hyperparameter
settings to generate the performances reported in
Section 4.2.

A.2.1 Implementation of SAECON
The proposed SAECON is implemented in Python
(3.6.8) with PyTorch (1.5.0) and run with a sin-
gle 16GB Nvidia V100 GPU. The source code of
SAECON is publicly available on GitHub6 and

6The source code will be publicly available if the paper is
accepted. A copy of anonymized source code is submitted for
review.

comprehensive instructions on how to reproduce
our model are also provided.

The implementation of SGCN is based on Py-
Torch Geometric7. The implementation of our
sentiment analyzer A is adapted from the official
source code of LCF-ASC (Phan and Ogunbona,
2020)8. The dependency parser used in SAECON
is from spaCy 9. The pretrained embedding vectors
of GloVe are downloaded from the office site10.
The pretrained BERT model is obtained from the
Hugging Face model repository11. The implemen-
tation of the gradient reversal package is available
on GitHub12. We would like to appreciate the au-
thors of these packages for their precious contribu-
tions.

A.2.2 Default Hyperparameters

The default hyperparameter settings for the results
reported in Section 4.2 are given in Table 7

Hyperparameter Setting
GloVe embeddings pretrained, 100 dims (d0)

BERT version bert-base-uncased
BERT num. 12 heads, 12 layers, 768 dims (d0)

BERT param. pretrained by Hugging Face
Dependency parser spaCy, pretrained model

Batch config. size = 16, batch ratio = 1 : 1
Init. LR (η) 5× 10−4

CPC loss weight 2 : 4 : 1 (B:W:N)
λ ({λ, λs, λd}) {1× 10−4, 1, 1}

Activation ReLU (f(x) = max(0, x))
d ({dg, dl, ds}) {240, 240, 240}

Optimizer Adam (β1 = 0.9, β2 = 0.999)
LR scheduler StepLR (steps = 3, γ = 0.8)
GRL config. α = 1.0 (Default setting)
SGCN num. 2 layers (768−→256−→240)
SGCN arch. Directed, Gated

Data aug. Off (weighted loss only)

Table 7: Default hyperparameter settings. “LR” is short
for learning rate. “num.” shows the numerical config-
urations and “arch.” shows the architectural configura-
tions. “aug.” is short for augmentation.

7https://github.com/rusty1s/pytorch_
geometric

8https://github.com/HieuPhan33/
LCFS-BERT

9https://spacy.io/
10https://nlp.stanford.edu/projects/

glove/
11https://huggingface.co/

bert-base-uncased
12https://github.com/janfreyberg/

pytorch-revgrad

https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
https://github.com/HieuPhan33/LCFS-BERT
https://github.com/HieuPhan33/LCFS-BERT
https://spacy.io/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/janfreyberg/pytorch-revgrad
https://github.com/janfreyberg/pytorch-revgrad
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Supplementary CPC sentences with sentiment predictions by A Label ∆

S1: [Ruby:NEU] wasn’t designed to “exemplify best practices”, it was to be a better [Perl:NEG]. Better +1

S2: And from my experience the ticks are much worse in [Mid Missouri:NEG] than they are in [South
Georgia:POS] which is much warmer year round. Worse −2

S3: As an industry rule, [hockey:NEG] and [basketball:NEG] sell comparatively poorly everywhere. None 0

S4: [Milk:NEG], [juice:NEG] and soda make it ten times worse. None 0

Table 8: Additional case studies for the effect of sentiment analyzer A (see Section A.4 for details).

A.2.3 Reproduction of ED-GAT
We briefly introduce the reproduction of the state-
of-the-art baseline, ED-GAT, in both GloVe and
BERT versions. We implement ED-GAT with
the same software packages as SAECON such
as PyTorch-Geometric, spaCy, and PyTorch, and
run it within the same machine environment. The
parameters all follow the original ED-GAT set-
ting (Ma et al., 2020) except the dimension of
GloVe. It is set to 300 in the original paper but
100 in our experiments for the fairness of compar-
ison. The number of layers is select as 8 and the
hidden size is set to 300 for each layer with 6 at-
tention heads. We trained the model for 15 epochs
with Adam optimizer with a batch size of 32.

A.3 Baseline models

We briefly introduce the compared models in Sec-
tion 4.2.

Majority-Class A simple model which chooses
the majority label in the training set as the predic-
tion of each test instance.

SE Sentence Embedding encodes the sentences
into low-dimensional sentence representations us-
ing pretrained language encoders (Conneau et al.,
2017; Bowman et al., 2015) and then feeds them
into a classifier for comparative preference predic-
tion. SE has two versions (Panchenko et al., 2019)
with different classifiers, namely SE-Lin with a
linear classifier and SE-XGB with an XGBoost
classifier.

SVM-Tree This method (Tkachenko and Lauw,
2015) applies convolutional kernel methods to CSI
task. We follow the experimental settings of (Ma
et al., 2020).

AvgWE A word embedding-based method that
averages the word embeddings of the sentence as
the sentence representation and then feeds this rep-
resentation into a classifier. The input embeddings
have several options, such as GloVe (Pennington
et al., 2014) and BERT (Devlin et al., 2019). These
variants are denoted by AvgWE-G and AvgWE-B

separately.
BERT-CLS Using the representation of the to-

ken “[CLS]” generated by BERT (Devlin et al.,
2019) as the sentence embedding and a linear clas-
sifier to conduct comparative preference classifica-
tion.

ED-GAT Entity-aware Dependency-based
Graph Attention Network (Ma et al., 2020) is the
first entity-aware model that analyzes the entity
relations via the dependency graph and multi-layer
graph attention layer.

A.4 Additional Case Studies
In this section, we present four supplementary ex-
amples for case study in Table 8 which have differ-
ent sentiments compared with their counterparts in
Table 6. S1 shows a NEU versus NEG comparison
which results in a sentiment distance +1 and a CPC
prediction Better. “Ruby” is not praised in this
sentence so it has NEU. But “Perl” is assigned a neg-
ative emotion through a simple inference. S2 shows
a stronger contrast between the entities. “Mid Mis-
souri” is said “much worse” while the “South Geor-
gia” is “much warmer”, which clearly indicates
the sentiments and the comparative classification
results.

S3 and S4 are two sentences both with two par-
allel negative entities. The sport equipment in S3
is sold “poorly” and the drinks in S4 are “ten times
worse” both indicating negative sentiments. There-
fore, the labels are None.


