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Abstract

Recent multilingual pre-trained language mod-
els have achieved remarkable zero-shot perfor-
mance, where the model is only finetuned on
one source language and directly evaluated on
target languages. In this work, we propose a
self-learning framework that further utilizes
unlabeled data of target languages, combined
with uncertainty estimation in the process to
select high-quality silver labels. Three dif-
ferent uncertainties are adapted and analyzed
specifically for the cross lingual transfer:
Language Heteroscedastic/Homoscedastic Un-
certainty (LEU/LOU), Evidential Uncertainty
(EVI). We evaluate our framework with uncer-
tainties on two cross-lingual tasks including
Named Entity Recognition (NER) and Natu-
ral Language Inference (NLI) covering 40 lan-
guages in total, which outperforms the base-
lines significantly by 10 F1 on average for
NER and 2.5 accuracy score for NLI.

1 Introduction

Recent multilingual pre-trained language models
such as mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020) and mT5 (Xue et al., 2021)
have demonstrated remarkable performance on var-
ious direct zero-shot cross-lingual transfer tasks,
where the model is finetuned on the source lan-
guage, and directly evaluated on multiple target lan-
guages that are unseen in the task-finetuning stage.
While direct zero-shot transfer is a sensible testbed
to assess the multilinguality of language models,
one would apply supervised or semi-supervised
learning on target languages to obtain more robust
and accurate predictions in a practical scenario.

In this work, we investigate self-learning (also
known as “pseudo labels”) as one way to apply
semi-supervised learning on cross-lingual transfer,
where only unlabeled data of target languages are
required, without any efforts to annotate gold la-
bels for target languages. As self-learning has been
proven effective in certain tasks of computer vision

(Yalniz et al., 2019; Xie et al., 2020) and natural lan-
guage processing (Artetxe et al., 2018; Dong and
de Melo, 2019; Karan et al., 2020), we propose to
formalize an iterative self-learning framework for
multilingual tasks using pre-trained models, com-
bined with explicit uncertainty estimation in the
process to guide the cross-lingual transfer.

Our self-learning (SL) framework utilizes any
multilingual pre-trained models as the backbone,
and iteratively grows the training set by adding pre-
dictions of target language data as silver labels. We
reckon two important observations from our prelim-
inary study (baselines in §4). First, compared with
self-training one target language at a time, jointly
training multiple languages together can improve
the performance on most languages, especially for
certain low-resource languages that can achieve up
to 8.6 F1 gain in NER evaluation. Therefore, our
SL framework features the joint training strategy,
maximizing potentials of different languages ben-
efiting each other. Second, compared with simply
using all unlabeled data as silver labels without
considering prediction confidence, estimating un-
certainties becomes critical in the transfer process,
as higher quality of silver labels should lead to
better performance. We hence introduce three dif-
ferent uncertainty estimations in the SL framework.

Specifically, we adapt uncertainty estimation
techniques based on variational inference and
evidence learning for our cross-lingual transfer,
namely LEU, LOU and EVI (§3.2). We evaluate
our framework and three uncertainties on two mul-
tilingual tasks from XTREME (Hu et al., 2020):
Named Entity Recognition (NER), and Natural
Language Inference (NLI). Empirical results sug-
gest LEU to be the best uncertainty estimation over-
all, while the others can also perform well on cer-
tain languages (§4.1). Our analysis shows further
evaluation of different estimations, corroborating
the correlation between the uncertainty quality and
the final SL performance. Characteristics of dif-



6717

ferent estimations are also discussed, including the
language similarities learned by LOU and the cur-
rent limitation of EVI in the SL process (§5).

Our contributions in this work can be summa-
rized as follows. (1) We propose the self-learning
framework for the cross-lingual transfer and iden-
tify the importance of uncertainty estimation under
this setting. (2) We adapt three different uncertainty
estimations in our framework, and evaluate the
framework on both NER and NLI tasks covering
40 languages in total, improving the performance
of both high-resource and low-resource languages
on both tasks by a solid margin (10 F1 for NER
and 2.5 accuracy score for NLI on average). (3)
Further analysis is conducted to compare different
uncertainties and their characteristics.

2 Related Work

We introduce the work of uncertain estimation
briefly. As deep learning models are optimized
by minimizing the loss without special care on the
uncertainty, they are usually poor at quantifying
uncertainty and tend to make over-confident predic-
tions, despite producing high accuracies (Lakshmi-
narayanan et al., 2017). Estimating the uncertainty
of deep learning models has been recently stud-
ied in NLP tasks (Xiao and Wang, 2019a; Zhang
et al., 2019; He et al., 2020). There are two main
uncertainty types in Bayesian modelling (Kendall
and Gal, 2017; Depeweg et al., 2018): epistemic
uncertainty that captures the model uncertainty it-
self, which can be explained away with more data;
aleatoric uncertainty that captures the intrinsic data
uncertainty regardless of models. Aleatoric uncer-
tainty can further be devided into two sub-types:
heteroscedastic uncertainty that depends on input
data, and homoscedastic uncertainty that remains
constant for all data within a task. In this work, we
only focus on aleatoric uncertainty, as it is more
closely related to our SL process to select confident
and high-quality predictions within each iteration.

3 Approach

We keep the same model architecture throughout
our experiments: a multilingual pre-trained lan-
guage model is employed to encode each input
sequence, followed by a linear layer to classify on
the hidden state of CLS token for NLI, and of each
token for NER, which is the same model setting
from XTREME (Hu et al., 2020). Cross-entropy
(CE) loss is used during training in the baseline.

Uncertainty 
Estimation 

Prediction

Selection

Training

Source 
Language

Target 
Languages

Selected

Figure 1: Illustration of the self-learning framework
with explicit uncertainty estimation.

3.1 Self-Learning (SL) Framework
We formulate the task-agnostic SL framework for
cross lingual transfer into the following four phases,
as shown in Figure 1. In the training phase, the
model parameter θ gets optimized by the training
inputs X and labels Y , with Y being gold labels of
the source language in the first iteration, along with
silver labels of target languages in later iterations.
Inputs of different languages are mixed together.
In the prediction phase, the model predicts on the
remaining unlabeled data X∗l = {x∗l1, . . . , x∗lN}
of each target language l, with each prediction
denoted as y∗ = fθ(x∗). In the uncertainty es-
timation phase, the model estimates the predic-
tion uncertainty based on one of the methods de-
scribed in §3.2, denoted as γ = fθγ (x

∗, y∗), rep-
resenting the model confidence of the prediction.
In the selection phase, data in each X∗l is ranked
based on the uncertainty score γ, and we select
top-K percent of each X∗l with their predictions
as silver labels, adding to the training data. To
avoid posing potential inductive bias from imbal-
anced label distribution, we select equal amount
of inputs for each label type, similar to previous
work on self-learning (Yalniz et al., 2019; Dong and
de Melo, 2019; Mukherjee and Awadallah, 2020).

After selection, the model goes back to the train-
ing phase and starts a new iteration with the up-
dated training set. The entire process keeps iter-
ating until there is no remaining unlabeled data;
early stop criteria are implemented on the dev set
of the source language only, as gold labels are not
available for other languages. Each phase can be
adjusted by task-specific requirements (see A.2).

3.2 Uncertainty Estimation
We adapt three different uncertainty estimation
techniques in our framework. Let C be the label
classes, pc be the probability of class c for an input.
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Language Heteroscedastic Uncertainty (LEU)
LEU injects Gaussian noise into class logits whose
variance is predicted by the model as an input-
dependent uncertainty (Kendall and Gal, 2017),
regardless of languages. A Gaussian distribution is
placed on the logit space g ∼ N (gθ, (σθ)2), where
the model is modified to predict both raw logit gθ

and standard deviation σθ given each input. We
use the expectation of the logit softmax as the new
probability, computed by Monte Carlo sampling:
pc = E[softmax(gc)] ≈ 1

T

∑
t softmax(gtc), with

gtc being the logit of class c at t-th sampling from
g. The training loss and the uncertainty take into
account the new probability formulation pc:

LLEU = − log
1

T

∑
t

exp
(
− Lt(x, c)

)
(1)

The loss is composed of the CE loss Lt(x, c) on
input x and gold class c with tth sampled proba-
bilities. The uncertainty is the entropy of the new
probabilities: γ = −

∑
c pc log pc. When an input

of any language is hard to predict, the model will
signal high variance, indicating high uncertainty,
as the probability distribution tends to be uniform.

Language Homoscedastic Uncertainty (LOU)
LOU estimates the uncertainty of each certain lan-
guage, regardless of the input. Similar to the formu-
lation of task uncertainty (Cipolla et al., 2018), we
propose to place an uncertainty σl on a language
l as the homoscedastic uncertainty. σ is used as
the softmax temperature on the predicted logits gθ:
pc = softmax( 1

σ2 g
θ
c ). The final uncertainty is also

the entropy of the scaled probabilities. A higher
σl leads to higher entropy of all inputs of language
l, as the probability distribution tends to be more
uniform. During training, each σl is a learned pa-
rameter directly, and the new loss for an input of
language l can be approximated as:

LLOU ≈ 1

σ2l
L(x, c) + log σl (2)

L(x, c) is the same CE loss as in Eq (1). Note
that LOU does not change the input selection nor
ranking within each language; we mainly use it as
an optimization strategy to jointly train inputs of
multiple languages, automatically distinguishing
the importance of different target languages.

Evidential Uncertainty (EVI) EVI estimates
the evidence-based uncertainty (Sensoy et al.,
2018), where the softmax probability is replaced

with Dirichlet distribution, and each predicted logit
for class c is regarded as the evidence. We em-
ploy the decomposed entropy vacuity and disso-
nance proposed by Shi et al. (2020). vacuity is
high when there lacks evidence for all the classes,
indicating out-of-distribution (OOD) samples that
are far away from the source language; dissonance
becomes high when there are conflicts of strong
evidence among certain classes (more details are
shown in A.1). The prediction is said uncertain if
either vacuity or dissonance is high. For each input,
let S be the total evidence strength, and let the label
yc be 1 for the gold class and 0 for the others. The
following describes the expected probability pc for
the class c under Dirichlet distribution, as well as
the training loss LEVI:

pc =
ec + 1

S
(3)

LEVI =
∑
c

(yc − pc)2 +
pc(1− pc)
S + 1

(4)

4 Experiments

The framework with different uncertainties are eval-
uated on two cross-lingual transfer datasets: XNLI
(Conneau et al., 2018) for the NLI task covering
15 languages, and Wikiann (Pan et al., 2017) for
the NER task covering 40 languages. For both
datasets, English is the source language with gold
labels, and we use the dev set of target languages
(TLs) as the source of unlabeled data; we do not
consult any gold labels of TLs in the SL process.
XLM-RLarge (Conneau et al., 2020) is used as the
multilingual encoder across our experiments. Our
detailed experimental setting can be found in A.3.

We implement three different settings for the
baseline.1 BL-Direct is the direct zero-shot trans-
fer without utilizing unlabeled data of TLs. BL-
Single trains gold data of English and silver data
of only one TL per model; it simply selects predic-
tions of all unlabeled data as silver labels, without
considering any uncertainties. BL-Joint is similar
to BL-Single but instead train with all TLs jointly.

For SL, we set top-K percent selection to be top
8% of total unlabeled data for each label type, so
the entire SL process will finish in around 6 itera-
tions. We found that K below 10% can generally
yield decent performance.

For the analysis, we also include two common
uncertainties used in previous work of self-learning
1Code is available at https://github.com/lxucs/multilingual-sl.

https://github.com/lxucs/multilingual-sl
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en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

BL-Direct 84.0 79.3 45.5 81.4 77.4 78.8 78.9 71.4 79.0 61.0 52.0 78.7 79.3 54.6 70.8 79.4 52.9 81.0 25.0 62.6
BL-Single 84.0 78.9 56.9 84.5 79.3 80.9 81.6 72.9 80.7 63.2 54.8 80.5 81.9 63.0 73.9 81.7 54.3 82.1 36.5 60.9
BL-Joint 84.7 79.5 56.7 84.9 80.5 80.5 81.5 73.3 81.2 64.0 55.1 81.2 82.1 62.6 76.6 81.6 54.5 83.0 37.2 63.5

SL-EVI 85.2 83.7 75.1 85.8 82.0 83.6 84.4 86.5 84.6 72.1 72.9 84.7 84.1 61.4 80.2 85.7 54.8 83.9 41.3 69.2
SL-LOU 84.4 85.3 61.1 87.1 81.9 83.4 85.4 75.6 85.5 74.6 74.9 84.4 83.3 68.5 78.6 84.5 55.5 85.1 46.2 70.0
SL-LEU 84.7 81.5 70.0 87.6 83.6 84.6 85.5 85.0 85.6 77.8 81.0 86.2 83.1 62.0 79.5 87.0 53.4 84.8 49.5 65.3

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh avg

BL-Direct 69.3 51.9 57.9 63.6 62.4 69.6 60.1 83.7 80.9 70.2 69.2 58.2 51.3 1.8 71.0 76.7 55.8 76.2 41.4 33.0 64.4
BL-Single 73.6 52.5 63.6 66.0 66.8 62.6 54.3 84.8 82.6 72.9 67.7 63.2 57.2 3.1 74.7 81.8 69.9 80.9 46.2 43.6 67.5
BL-Joint 73.6 53.4 63.6 67.5 67.9 64.3 53.0 84.8 83.2 73.5 69.7 63.1 57.4 3.6 76.1 81.8 71.5 81.4 54.8 43.7 68.3

SL-EVI 81.0 56.4 69.4 76.3 77.9 72.5 71.7 87.1 85.5 80.6 71.2 69.4 61.5 6.7 80.7 85.3 79.8 86.2 42.7 48.9 73.3
SL-LOU 78.8 58.7 70.2 75.4 79.4 73.8 71.2 86.4 86.2 79.2 73.3 69.5 68.8 4.7 83.4 88.4 85.9 85.8 49.1 50.5 73.8
SL-LEU 81.1 63.7 71.8 76.0 76.2 75.9 71.5 87.1 87.6 79.9 70.4 64.0 69.9 2.2 81.3 89.1 85.9 85.9 43.5 54.8 74.4

Table 1: NER Results in F1 scores for 40 languages. BL-Direct is equivalent to Hu et al. (2020).

en ar bg de el es fr hi ru sw th tr ur vi zh avg

BL-Direct 88.5 78.0 82.5 81.8 80.5 83.8 82.9 74.8 78.7 67.5 76.7 78.1 71.5 79.4 78.2 78.9
BL-Single 88.5 77.6 82.4 82.0 79.6 82.5 82.1 76.1 79.1 69.1 76.6 77.9 71.5 77.9 78.2 78.7
BL-Joint 88.2 78.8 82.0 82.2 80.4 83.1 82.2 76.1 79.6 68.8 76.2 78.0 71.4 79.1 78.5 79.0

SL-EVI 88.1 79.5 84.4 83.4 82.4 84.8 83.7 78.0 81.6 71.1 78.2 79.2 74.4 80.8 80.4 80.7
SL-LOU 88.2 81.0 84.4 83.5 82.3 84.8 83.9 78.9 81.8 73.9 79.3 80.1 75.7 81.6 81.4 81.4
SL-LEU 88.1 80.7 84.9 83.4 82.8 84.5 83.8 79.2 81.8 73.0 79.7 80.5 75.7 81.9 81.3 81.4

Table 2: XNLI Results in accuracy scores for 15 languages.

on other tasks: max probability (MPR), and entropy
(ENT); both use plain softmax probabilities (A.4).

4.1 Results

The results for NER and NLI are shown in Table 1
and 2 respectively. BL-Direct is equivalent to our
re-implementation of Hu et al. (2020).

BL-Single outperforms BL-Direct on NER by
3.1 F1 on average, demonstrating the effectiveness
of utilizing unlabeled data even without consider-
ing uncertainties. Remarkablely, languages such
as Arabic (ar), Japanese (ja), Urdu (ur) and Chi-
nese (zh) receive 10+ gain in F1. By contrast, BL-
Single does not surpass the baseline for NLI, par-
tially because all TLs already have much closer
performance to English, which in turn highlights
the importance of estimating uncertainties for SL.

BL-Joint outperforms BL-Single on both tasks
by a slight margin, and we do see performance gain
over BL-Single on 32/40 and 10/15 languages for
NER and NLI respectively. Certain languages such
as Hindi (hi), Javanese (jv) and Yoruba (yo) receive
non-trivial benefits (2.6 - 8.6 F1 gain for NER)
through the joint language training, validating our
joint training strategy for SL.

Evaluation of SL is shown with the best results
of each uncertainty from 3 repeated runs. The best
performance of SL for both tasks is achieved by
adopting LEU as the uncertainty estimation, which

outperforms three baselines significantly (10% gain
for NER and 2.5% for NLI on average), and sur-
passes other uncertainties by a slight margin. In
NER specifically, certain low-resource languages
such as Basque (eu), Persian (fa), Burmese (my)
and Urdu (ur) have substantial performance im-
provement over BL-Joint (13.8 - 25.9 F1 gain); the
performance of certain high-resource languages
such as Arabic (ar), German (de) and Chinese (zh)
can also increase by a solid margin over BL-Joint
(4.1 - 13.3 F1 gain). The trend of improving both
high and low-resource languages is also present in
NLI. All results are stable across multiple runs with
standard deviation within 0.1 - 0.2 on average.

Results also suggest that other uncertainty esti-
mations can achieve comparable performance, as
LEU does not dominate every language. We further
conduct analysis on uncertainties as follows.

5 Analysis

Uncertainty Comparison To directly assess dif-
ferent uncertainty estimations, we evaluate uncer-
tainty scores by AUROC against predictions, such
that AUROC is high when the model is confident
on correct predictions and uncertain on incorrect
predictions. The left side of Table 3 shows the AU-
ROC of four estimations on the test sets of both
tasks. MPR and ENT are also included in the ex-
periments for comparison; LOU is excluded as it
does not change selection. The right side of Table 3
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M T I E M T I O

NER 71.2 72.1 68.7 73.7 0.6 0.5 1.1 0.5
XNLI 76.9 77.3 73.0 78.6 0.3 0.3 0.7 0.0

Table 3: The left side shows the averaged AUROC of
different uncertainty estimations. The right side shows
the averaged SL performance drop compared to LEU.
M=MPR, T=ENT, I=EVI, O=LOU, E=LEU.

shows the SL performance drop using other uncer-
tainties compared to LEU, serving as an indirect
evaluation of different uncertainties. As shown,
LEU indeed achieves the best AUROC, being a
better uncertainty estimation compared to others;
EVI has the lowest AUROC and also the lowest
SL performance; MPR and ENT can bring moder-
ate scores on both AUROC and SL. Thus, Table 3
corroborates strong correlation between AUROC
and SL performance: better uncertainty can indeed
lead to higher performance in the SL process.

Language Uncertainty Table 2 shows that LOU
reaches the same accuracy as LEU on XNLI, with
trivial performance gap for each language. We find
that the learned uncertainty of each language is
highly consistent through multiple runs, as shown
in Table 4, which can be loosely interpreted as
language similarities under the input of this task,
e.g. Vietnamese (vi) appears to be more distant
from English than others for this task, and the joint
optimization of all languages could benefit from
this learned language uncertainty. However, we do
not find LOU to be as stable on NER, potentially
because NER has much more noise and languages.

en ar bg de el es fr hi

1.44 1.20 1.15 0.63 0.58 1.78 0.70 1.60

ru sw th tr ur vi zh

0.33 1.07 4.18 1.89 3.15 0.23 0.99

Table 4: The learned language uncertainty σ2 of LOU
for each language in XNLI.

Evidential Uncertainty Although EVI is able to
achieve good performance on certain languages,
there also exists large gap for certain other lan-
guages compared to LEU. We attribute the infe-
rior performance of EVI to two aspects. First,
the predicted evidence (logit) still exhibits over-
confidence, which destabilizes the vacuity and
dissonance. Figure 2 shows an example of the
evidence-based entropy distribution for EVI, and
the model indicates most all predictions as certain

(small entropy). Second, vacuity can only dis-
tinguish true OOD samples for English, as only
English has gold labels. It could fail to recog-
nize those confident samples of TLs that appear
in-distribution but are inherently wrong, and falsely
select them in the SL process. Figure 3 shows the
t-SNE visualization of hidden states of inputs in
English and Japanese on the test set of NER: some
target language inputs that are close to English in
terms of hidden states are predicted wrong, because
of the zero-shot nature.
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Figure 2: Evidence-based entropy distribution on the
test set of NER for Japanese (ja).

100 75 50 25 0 25 50 75 100
d1

60

40

20

0

20

40

60

d2

golds
B-PER
I-PER
O
B-ORG
I-ORG
B-LOC
I-LOC

langs
en
ja

Figure 3: t-SNE visualization of CLS hidden states of
NER inputs in English (en) and Japanese (ja). Different
gold label types for tokens are marked by colors, and
two languages are marked by the shapes. Each cluster
should ideally has only one distinct color.

6 Conclusion

In this work, we propose a self-learning framework
combined with explicit uncertainty estimation for
cross-lingual transfer. Three different uncertainties
are adapted, and the entire framework is evaluated
on two tasks of NER and NLI, surpassing the base-
line by a large margin. Further analysis shows the
evaluation and characteristics of each uncertainty.
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A Appendix

A.1 Uncertainty Estimation

For LOU, the uncertainty term as the denomina-
tor in the loss as in Eq (2) achieves the effect
of “learned loss attenuation” (Kendall and Gal,
2017) during training, where uncertain samples
have lower scale of loss, so that the optimization
is less prone to noisy data. We use LOU to let
the model learn the uncertainty for each language
to achieve more stable training amid selected data
with silver labels.

In practice, the model directly predicts the log-
variance term log σ for both LEU and LOU, as the
training is more stable and the variance is guaran-
teed to be positive.
For EVI, we follow Sensoy et al. (2018) and define:

bc =
ec
S

u =
|C|
S

S =
∑
c

ec + |C| (5)

ec is the evidence strength (logit) for class c, |C|
is the number of classes. bc represents the belief
mass for class c and u is the vacuity, denoted as
vac = u. We follow Shi et al. (2020) and define
dissonance for each input as:

Bal(bj , bk) =

{
1− |bj−bk|bj+bk

if bibj 6= 0

0 elsewise
(6)

diss =
∑
c

bc
∑

c′ 6=c bc′Bal(bc, bc′)∑
c′ 6=c bc′

(7)

Both vac and diss are in the range of [0, 1]; being
closer to 1 indicates more uncertainty. The final
uncertainty is set as γ = diss + α · vac with α
being a hyperparameter.

In practice, ELU activation is added after raw
logits to ensure the evidence strength is positive.

A.2 Task-Specific Adjustment

We adjust the SL process for NER as follows: the
uncertainty score is obtained for each predicted en-
tity, which is calculated as the averaged uncertainty
score of all tokens within the entity. Ranking is
performed on entities within each entity type; we
select the input sequence if all its predicted entities
have uncertainty within the top-K threshold.

A.3 Experimental Setting

We follow the same train/dev/test split and same
evaluation protocol as XTREME (Hu et al., 2020).

Datasets For XNLI (Conneau et al., 2018), there
are three label types for each sequence: “neutral”,
“entailment”, “contradiction”. For Wikiann (Pan
et al., 2017), there are three entity types: “LOC”,
“PER”, “ORG”; each token is tagged in the BIO2
format, thus there are 7 label types for each token.

Hyperparameters For both NLI and NER, we
use the following hyperparameter setting as sug-
gested by XTREME (Hu et al., 2020): 32 effective
batch size, 2×10−5 learning rate with linear decay
scheduling, 1 max gradient norm.

For NLI in the self-learning (SL) process, we
train the model by 5 epochs in the first iteration
on English training set with gold labels, whereas
we train 10 epochs for NER. After the first itera-
tion, the model is trained for 3 epochs in each later
iteration. For LEU, we set the Monte Carlo sam-
pling T = 20. For EVI, we set α = 1 for NLI and
α = 10−2 for NER based on the empirical scale of
vac and diss, keeping both on the same scale.

To avoid the training set growing too huge as the
SL process iterates, we apply a sampling strategy
upon new selection: each training epoch samples
from the existing training set with equal amount
of newly selected data, so that each training epoch
consists of at least 50% latest selection. We adopt
early stop on English dev set if the evaluation does
not improve for over two iterations.

Our experiments uses NVIDIA Titan RTX GPUs.
The training takes 10 hours for both NER and NLI.

A.4 Other Uncertainties
MPR is the max probability of label classes, de-
noted by γ = maxc pc. It is equivalent to the proba-
bility of the predicted label, and is commonly used
as the selecting criterion for classification tasks
(Yalniz et al., 2019; Dong and de Melo, 2019).
ENT is the entropy of the class probability distri-
bution, denoted by γ = −

∑
c pc · logpc, which is

another common uncertainty metric for classifi-
cation (Depeweg et al., 2018; Xiao and Wang,
2019b).


