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Abstract

Phrase grounding aims to map textual phrases
to their associated image regions, which can
be a prerequisite for multimodal reasoning
and can benefit tasks requiring identifying ob-
jects based on language. With pre-trained
vision-and-language models achieving impres-
sive performance across tasks, it remains un-
clear if we can directly utilize their learned
embeddings for phrase grounding without fine-
tuning. To this end, we propose a method
to extract matched phrase-region pairs from
pre-trained vision-and-language embeddings
and propose four fine-tuning objectives to im-
prove the model phrase grounding ability us-
ing image-caption data without any supervised
grounding signals. Experiments on two rep-
resentative datasets demonstrate the effective-
ness of our objectives, outperforming baseline
models in both weakly-supervised and super-
vised phrase grounding settings. In addition,
we evaluate the aligned embeddings on several
other downstream tasks and show that we can
achieve better phrase grounding without sacri-
ficing representation generality.1

1 Introduction

Recent studies on vision-and-language pre-
training (Tan and Bansal, 2019; Li et al., 2019;
Lu et al., 2019; Su et al., 2019; Chen et al., 2020;
Li et al., 2020b, 2021; Shen et al., 2021) demon-
strate impressive performance across vision-and-
language tasks, including image-text retrieval (Lin
et al., 2014; Plummer et al., 2015), visual entail-
ment (Xie et al., 2019) and visual question answer-
ing (Antol et al., 2015).

However, few existing papers have paid atten-
tion to the phrase grounding ability of their pre-
trained embeddings, namely the ability to map nat-
ural language queries to their corresponding image

1Code is available at https://github.com/
pluslab/phrase_grounding.

regions, which can 1) benefit tasks requiring identi-
fying objects based on language (Deng et al., 2018);
2) be a prerequisite for advanced multimodal rea-
soning (Plummer et al., 2015). Among the prior
work, Li et al. (2020a) demonstrate certain ground-
ing abilities of VisualBERT, yet their analysis is
limited to attention heads and it is unclear how Vi-
sualBERT compares with state-of-the-art ground-
ing models. Cao et al. (2020) provide insights on
cross-modal interaction, but their analysis is pri-
marily limited to the coreference relations between
phrases and visual tokens.

In this paper, we study the phrase grounding abil-
ity of vision-and-language embeddings pre-trained
on image-caption datasets. First, we propose a
method to extract phrase-region pairs from the
pre-trained embeddings without any fine-tuning.
We find that while our method uncovers certain
grounding abilities of the pre-trained embeddings,
there is still much room for improvement. There-
fore, we propose to fine-tune models with objec-
tives designed for better aligning word and region
representations on image-caption datasets. The
fine-tuning objectives are designed to maximize
the symmetricity between vision and language dur-
ing fine-tuning for better phrase grounding while
maintaining the representation transferability so
that the learned representations are still useful for
other downstream tasks. Specifically, we fine-tune
models with 1) a masked language modeling objec-
tive conditioned on images; 2) an adapted masked
region modeling objective with texts utilizing a dy-
namically constructed vision vocabulary; 3) a mod-
ified object label prediction objective that explicitly
bridges the gap between vision and language; 4) a
proposed bidirectional attention optimization ob-
jective encouraging the consistency between vision-
to-language and language-to-vision alignments.

We fine-tune pre-trained models on
COCO (Chen et al., 2015) and test them on
two representative phrase grounding datasets,

https://github.com/pluslab/phrase_grounding
https://github.com/pluslab/phrase_grounding
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RefCOCO+ (Kazemzadeh et al., 2014) and
Flickr30k Entities (Plummer et al., 2015). We find
that our fine-tuning objectives can improve the
model grounding ability significantly, improving
baseline in both weakly-supervised and supervised
phrase grounding settings. We also evaluate the
aligned representations on several downstream
tasks and show that our model can achieve better
phrase grounding without sacrificing performance
on other types of tasks.

2 Extracting Phrase-Region Pairs from
Pre-Trained Embeddings

Formally, the phrase grounding task can be defined
as: given an image v consisting of multiple re-
gions 〈v1, · · · , vn〉 and its corresponding caption l
segmented into tokens 〈l1, · · · , lm〉, for each noun
phrase pi = 〈lix, · · · , liy〉, a model needs to find
its associated region vj .

We first propose a way to directly extract the
matched phrase-region pairs from pre-trained em-
beddings. Then, we evaluate this method on phrase
grounding tasks with several popular pre-trained
models, including LXMERT (Tan and Bansal,
2019), UNITER (Chen et al., 2020), ViLBERT (Lu
et al., 2019), VisualBERT (Li et al., 2019) and VL-
BERT (Su et al., 2019).

2.1 Extraction Method

We propose to directly extract phrase-region pairs
from pre-trained models based on representation
similarities. Specifically, given an image v and its
caption l, we feed them to a pre-trained vision-and-
language model and obtain their representations
h(v) and h(l). Note that here representations of
the k-th model layer are taken, where k is a hyper-
parameter and is selected on the validation set.

Then, given a noun phrase pi, we average its
token representations and get the phrase representa-
tion h(pi) = MEAN(〈h(lix), · · · , h(liy)〉). After-
wards, we score each candidate region vj by com-
puting the dot product between h(pi) and h(vj).
Regions with the highest scores are selected and
we can measure the accuracy of the selected pairs.

2.2 Experiments

We evaluate the extraction method on RefCOCO+
using pre-trained models in a controlled set-
ting (Bugliarello et al., 2020).

Model
RefCOCO+

val testA testB

LXMERT 13.62 (33.33) 10.41 (36.59) 16.53 (30.91)
UNITER 26.26 (43.27) 32.62 (50.90) 18.49 (35.80)
ViLBERT 14.47 (42.14) 10.79 (48.88) 18.76 (36.27)
VisualBERT 33.26 (43.88) 33.59 (52.04) 33.34 (36.56)
VL-BERT 23.52 (42.97) 32.54 (49.86) 13.93 (36.19)
Supervised 70.98 77.05 60.73

Table 1: Phrase grounding accuracy (%) of pre-trained
models investigated with our proposed method. We
also include the performance of probing classifiers
(numbers in parenthesis) and a supervised VisualBERT
model (‘Supervised’) for reference.

2.2.1 Setup

We follow the setting in Bugliarello et al. (2020)
in this section. Specifically, all the vision-and-
language models are pre-trained on a pruned Con-
ceptual Captions dataset (Sharma et al., 2018), con-
sisting of 2.77M images with weakly-associated
captions automatically collected from billions of
web pages. The image features are extracted using
a Faster R-CNN (Ren et al., 2016) with a ResNet-
101 backbone (Anderson et al., 2018) trained on the
Visual Genome dataset (Krishna et al., 2017) and
the vision-and-language models are trained with 36
extracted regions of interest.

2.2.2 Results

Table 1 shows the phrase grounding accuracy of
the pre-trained models using our method. To pro-
vide upper-bound performance for our extraction
method, we train a linear probing classifier with
the frozen model embeddings as inputs (numbers
in parenthesis). We find that our extraction method
can better uncover the phrase grounding ability
of single-stream models (UNITER, VisualBERT,
VL-BERT), which process the vision and language
inputs jointly. On the other hand, the grounding
information in two-stream models (LXMERT, ViL-
BERT) can be hard to extract, probably because the
parameters of two-stream models are not shared in
the top layers and thus they are less likely to learn
aligned representations.

Also, comparing with a supervised VisualBERT
model, the pre-trained models can underperform
their supervised counterparts by a large margin,
indicating there is much room for improvement
and additional efforts are required to align the pre-
trained vision-and-language embeddings.
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3 Aligning Pre-trained
Vision-and-Language Embeddings

To improve the model phrase grounding ability,
we then propose four fine-tuning objectives for
vision-and-language models. We assume an image-
caption dataset {〈vk, lk〉} is provided but no fine-
grained phrase-region annotations are available. A
pre-trained vision model (Anderson et al., 2018) is
used to segment images into regions and produce
region representations and object labels.

3.1 Fine-tuning Objectives
We investigate four objectives that fine-tune pre-
trained vision-and-language models for phrase
grounding:

Masked Language Modeling (MLM). MLM
with images has proven to be useful for represen-
tation learning (Li et al., 2019) and here we in-
vestigate if it is also helpful for phrase grounding.
Specifically, we randomly mask 15% of the tokens
l and the model is trained to reconstruct l given the
masked texts lmask and regions v:

LMLM = log p(l|[v; lmask]). (1)

Masked Region Modeling (MRM). Inspired by
MLM, we propose its counterpart in the vision side
to encourage the symmetricity between vision and
language. While previous work (Tan and Bansal,
2019) regress the region features, we find it is un-
helpful in our setting (in Appendix). Instead, by
imitating MLM which uses a text vocabulary, we
create a dynamic vision vocabulary on the fly, and
the model tries to reconstruct the input regions
given the dynamically constructed vocabulary.

Concretely, at each training step, we sample a
batch of image-caption pairs {〈vk, lk〉}Bk=1 and ran-
domly mask 15% of the regions, where B is the
batch size. We treat all the regions in {vk}Bk=1 as
candidate regions, and for each masked region, the
model needs to select the original region within
the set of candidate regions given masked inputs.
Denoting the pre-trained vision model representa-
tions and our model representations of {vk}Bk=1 as
{c(vk)}Bk=1 and {h(vk)}Bk=1 respectively, we can
represent the output probability at position i for the
k-th instance as:

p(vk
i |[vk,mask; lk]) =

ecos(h(vk
i ),c(v

k
i ))∑

j,k′ e
cos(h(vk

i ),c(v
k′
j ))

,

where cos(·, ·) refers to the cosine similarity.

The model is trained to maximize this probability
similar to noise contrastive estimation (Gutmann
and Hyvärinen, 2010; Jozefowicz et al., 2016):

LMRM = log p(v|[vmask; l]). (2)

Object Label Prediction (OLP). The object la-
bels predicted by the pre-trained vision model pro-
vide us with good anchor points to bridge the gap
between vision and language, and previous work
has tried to incorporate the information by pre-
dicting the object labels for each region (Tan and
Bansal, 2019; Chen et al., 2020). In this paper,
to better share the information between the two
modalities, we propose to 1) use simple heuristics
to convert object labels into text tokens and train
our model to predict the object labels ov with a
multi-class MLM objective; 2) share the classifica-
tion layer of MLM and OLP.

For example, if the object label of vi is “stop
sign”, we first tokenize it into “stop” and “sign”,
the model is then trained to maximize the joint
probability of both the two tokens at vi:

LOLP = log p(ov|[v; l]). (3)

Bidirectional Attention Optimization (BAO).
Inspired by the work on encouraging the con-
sistency between forward and backward atten-
tions (Cohn et al., 2016; Hu et al., 2020; Dou and
Neubig, 2021), we propose an objective to encour-
age the symmetricity of vision-to-language and
language-to-vision attentions. Specifically, after
obtaining the representations h(v) and h(l), we
compute the forward and backward attention matri-
ces as:

ATTV L = SOFTMAX(h(v)Th(l)/
√
d),

ATTLV = SOFTMAX(h(l)Th(v)/
√
d),

where d denotes the feature dimension.
We then minimize the distance between them by

maximizing the trace of ATTT
V LATTLV :

LBAO = − log(1 +
trace(ATTT

V LATTLV )

min(|v|, |l|)
).

(4)

Combined Objective. Our final objective is a
combination of the four objectives:

L = LMLM + LMRM + LOLP + αLBAO, (5)

where α is selected from {0.1, 0.25, 0.5, 1.0} and
is set to 0.1 based on the validation performance.
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Baseline Ours

the girl is about to 
kick a soccer ball .

Figure 1: Visualizations of cosine similarities between text and image representations of the VisualBERT baseline
and our model. Our model can learn more aligned representations than the baseline.

Model Flickr30k
RefCOCO+

testA testB

Weakly-Supervised

MAF (Wang et al., 2020) 61.43 17.10 13.50
VisualBERT 34.53 42.19 35.44
Ours 62.10 47.89 38.20

Supervised

VisualBERT 71.33 78.31 61.98
Ours 72.49 78.64 62.86

Table 2: Accuracy (%) in weakly-supervised and super-
vised grounding settings. Best scores are in bold.

3.2 Experiments

We then train our model with the proposed objec-
tive and compare with several baselines.

3.2.1 Setup

Model/Datasets. We choose VisualBERT as our
base architecture because it performs the best in
Section 2 and pre-train it on COCO (Chen et al.,
2015). We then further fine-tune models on COCO
and evaluate them on RefCOCO+ and Flickr30k
in both weakly-supervised and supervised settings.
Details of the models and datasets are in Appendix.

Settings. In weakly-supervised settings where
only the image-text pairs in COCO are given, we
directly extract phrase-region pairs from models
using our method in Section 2.1. In supervised
settings where phrase-region annotations in Ref-
COCO+ and Flickr30k are available, we add a lin-
ear layer on top of each region representation and
fine-tune models with the cross-entropy loss.

3.2.2 Results

We first present the main results of the models and
some ablation studies of the training objectives.

Model
Flickr30k RefCOCO+

val test val testA testB

Ours 59.59 62.10 42.79 47.89 38.20

-MLM 50.53 52.71 39.14 42.54 35.66
-MRM 51.21 53.49 40.58 44.53 36.87
-OLP 48.38 50.17 40.06 42.32 38.84
-BAO 57.20 59.19 41.49 44.48 37.12

Table 3: Ablation studies on each of our objectives.
We measure the accuracy (%) numbers in weakly-
supervised grounding settings.

Model
Flickr SNLI-VE VQAv2 (VQA-score)

(Recall@1) (Accuracy) test-dev test-std

VisualBERT 58.94 76.41 69.68 69.92
Ours 59.84 76.83 69.89 70.16

Table 4: We can achieve better phrase grounding abili-
ties while maintaining the representation transferability
on other types of tasks, including image-text retrieval,
visual entailment and visual question answering.

Main Results. In the weakly-supervised settings,
Table 2 demonstrates that our objectives can im-
prove the model grounding ability significantly, out-
performing all the baselines. Moreover, we find
that while MAF (Wang et al., 2020) achieves strong
performance on Flickr30k, it fails on RefCOCO+.
We hypothesize that this is because MAF is based
on static word embeddings and in the RefCOCO+
setting multiple objects of the same type will typ-
ically present in one image, making MAF unable
to disambiguate the phrases. With the aligned rep-
resentations, we can also achieve better grounding
ability than VisualBERT in supervised settings.

Ablation Studies. We ablate each of our training
objective and test their contributions in Table 3. We
can see that all of the objectives are beneficial for
phrase grounding, with OLP being the most effec-
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tive one. BAO can bring marginal improvements,
yet its contributions are still non-negligible. We
also test most existing pre-training objectives in
Appendix and show that our proposed objective
works the best.

3.2.3 Analysis
We then perform analysis to provide insights on the
fine-tuned model representations.

Transferring to Other Tasks. It is interesting
to see if the aligned representations are still use-
ful for other types of tasks. In Table 4, we test
our model on image-text retrieval (Plummer et al.,
2015), visual entailment (Xie et al., 2019) and vi-
sual question answering (Goyal et al., 2017) (de-
tails in Appendix). We find that our model can
achieve comparable or superior performance com-
pared with VisualBERT, especially on tasks relying
more on the model grounding ability like image
retrieval, which shows that our training paradigm
can maintain the representation generality.

Qualitative Examples. We visualize the learned
representations in Figure 1. We find it hard to
observe clear patterns from the baseline representa-
tions. For example, while the token representation
of “ball” have high similarity with its associated
region embedding, it is also close to the represen-
tation of the mascot. By contrast, our model can
clearly learn more aligned representations. It is
interesting to note that our model can learn there is
a partial correspondence between the word “kick"
and the soccer ball region, indicating that our objec-
tives can also align verb and region representations.

4 Related Work

We overview two lines of related work in this part.

Vision-and-Language Representation Learn-
ing. Learning multimodal representations has
been an active research area (Ngiam et al., 2011;
Silberer and Lapata, 2014; Hill and Korhonen,
2014; Hubert Tsai et al., 2017) and the progresses
on model pre-training in computer vision (Doer-
sch et al., 2015; Pathak et al., 2016) and natural
language processing (Peters et al., 2018; Devlin
et al., 2019) have motivated research on vision-
and-language representation learning with pre-
training (Tan and Bansal, 2019; Li et al., 2019;
Lu et al., 2019; Su et al., 2019; Chen et al., 2020;
Sun et al., 2019; Li et al., 2020b). The pretraining-
finetuning paradigm has proven to be effective

across tasks, such as image-text retrieval (Lin et al.,
2014; Plummer et al., 2015), visual entailment (Xie
et al., 2019) and visual question answering (Antol
et al., 2015). A few studies (Li et al., 2020a; Cao
et al., 2020) analyze the pre-trained multimodal
models, while to the best of our knowledge, no ex-
isting work have focused on the phrase grounding
ability of learned representations.

Phrase Grounding. Many vision-and-language
tasks, such as visual question answering and vision-
language navigation, rely on or can benefit from
phrase grounding. Both supervised (Rohrbach
et al., 2016a; Yu et al., 2018; Liu et al., 2020) and
weakly-supervised (Rohrbach et al., 2016b; Yeh
et al., 2018; Chen et al., 2018; Wang and Specia,
2019; Hessel et al., 2019; Wang et al., 2020) phrase
grounding approaches have been proposed. While
pre-trained vision-language models have been ap-
plied in vision grounding tasks in supervised set-
tings (Chen et al., 2020; Li et al., 2020b), it is
unclear whether the models can perform phrase
grounding by directly using the representations
learned during pre-training.

5 Conclusion

In this paper, we first propose a method to ex-
tract matched phrase-region pairs from pre-trained
vision-and-language embeddings and evaluate its
performance across models. Then, we propose
several fine-tuning objectives for phrase ground-
ing and demonstrate their effectiveness in both
weakly-superivsed and supervised phrase ground-
ing tasks. We also evaluate our aligned representa-
tions on other downstream tasks and show that we
can achieve better phrase grounding without sac-
rificing the representation transferability to other
downstream tasks. Future directions include better
utilizing the aligned representations and incorpo-
rating our objectives into pre-training.
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A Implementation Details

In Section 2, we follow (Bugliarello et al., 2020)
and pre-train the vision-and-language models in
a controlled setting. Specifically, all the mod-
els are pre-trained on a pruned Conceptual Cap-
tions dataset (Sharma et al., 2018), consisting of
2.77M images with weakly-associated captions au-
tomatically collected from billions of web pages.
The image features are extracted using a Faster
R-CNN (Ren et al., 2016) with a ResNet-101 back-
bone (Anderson et al., 2018) trained on the Vi-
sual Genome dataset (Krishna et al., 2017) and the
vision-and-language models are trained with 36
extracted regions of interest. For the probing ex-
periments, we use the default hyper-parameters in
(Bugliarello et al., 2020) for training the probing
classifiers.

In Section 3, we pre-train VisualBERT on the
COCO dataset (Chen et al., 2015), consisting of
413K captions for 82K images (each image is
paired with five different captions). VisualBERT
is pre-trained with its original objectives for 11K
steps and with two RTX 2080 GPUs, taking about
40 hours per experiment. Then, our models are
further fine-tuned on two RTX 2080 GPUs for 11K
steps, taking about 2 days per experiment. The
batch size is set to 480 and the learning rate is set

to 5e-5. The models are trained with 64 extracted
regions of interest. α in Equation 5 is selected from
{0.1, 0.25, 0.5, 1.0} based on the validation perfor-
mance on Flickr30k. The image features and labels
are extracted from a ResNeXT-152 Faster-RCNN
model trained on Visual Genome with attribute loss.
For efficiency, we mask both vision and language
inputs and perform MLM, MRM, OLP jointly on
the masked inputs instead of training models with
these objectives sequentially. We also tried to fine-
tune VisualBERT with its original objectives for
phrase grounding, but the grounding performance
did not get improved.

For the phrase grounding datasets we use, the Re-
fCOCO+ dataset is collected in an interactive game
interface and we follow its standard split. During
test, RefCOCO+ provides person vs. object splits
for evaluation, where images containing multiple
people are in “testA” and images containing mul-
tiple other objects are in “testB”. The Flickr30k
Entities dataset contains 224K phrases and 31K
images in total, where each image is associated
with five captions, and we follow its standard splits.
Following previous work, we consider a predic-
tion to be correct if the IoU (Intersection of Union)
score between our predicted bounding box and the
ground-truth box is larger than 0.5. We fine-tune
the models for 20K steps, with the batch size set
to 32 and the learning rate set to 2e-5. The models
are trained with 100 extracted regions of interest.

For the image-text retrieval task, we evaluate
models on Flickr30k (Plummer et al., 2015) with
Recall@1 as the evaluation metric. The models
are fine-tuned for 20 epochs with the batch size
set to 256 and the learning rate set to 1e-4. The
models are trained with 36 extracted regions of
interest. For the visual entailment task, we exper-
iment on the SNLI-VE dataset (Xie et al., 2019)
and test the accuracy numbers. We fine-tune the
models for 60K steps with the batch size set to 480
and the learning rate set to 5e-5. The models are
trained with 100 extracted regions of interest. For
the visual question answering task, we choose the
VQAv2 dataset (Goyal et al., 2017) and evaluate
models with the VQA-score2 on both test-dev and
test-standard datasets. The models are fine-tuned
for 60K steps with the batch size set to 480 and the
learning rate set to 5e-5. The models are trained
with 100 extracted regions of interest.

2https://visualqa.org/evaluation.html
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B Negative Results

In this part, we show some negative results of four
fine-tuning objectives that we have tried in our set-
tings.

B.1 Fine-tuning Objectives

In addition to the objectives presented in the main
content, we also experiment with the following four
objectives:

Masked Region Regression (MRR). Previous
work (Tan and Bansal, 2019; Chen et al., 2020)
have attempted to regress the region features by
minimizing the L2 distance between the predicted
and the original image features. An additional feed-
forward layer is used to transform the hidden rep-
resentations into the image feature space.

Masked Region Classification (MRC). Similar
to our OLP objective, researchers (Tan and Bansal,
2019; Lu et al., 2019; Su et al., 2019; Chen et al.,
2020) have also tried to utilize object labels by
predicting the object semantic class without shar-
ing the classification layer between vision and lan-
guage modalities. The object labels are obtained
from a pre-trained vision model. The main differ-
ence between MRC and our OLP is that we perform
image classification in the text space and share the
prediction layer between the two modalities.

Image-Text Matching (ITM). In ITM, a special
token ([CLS]) is inserted at the beginning of the
input sentence and it tries to learn a fused repre-
sentation of both vision and language. We feed the
model with either matched or mismatched image-
caption pairs with equal probability. A classifier is
added on the top of this token and its output is a bi-
nary label, indicating if the sampled image-caption
pair is a match.

Optimal Transport (OT). Chen et al. (2020)
use optimal transport to encourage word-region
alignments, which is potentially beneficial for
phrase grounding. Therefore, we follow their set-
tings and implement the optimal transport objec-
tive. Specifically, for each pair of word li and
region vj , we first compute their cosine distance

cij = 1 − lTi vj
||li||2||vj ||2 . Then, the optimal transport

objective is defined as:

LOT = min
T

∑
i

∑
j

Tijcij ,

Model
Flickr30k RefCOCO+

val test val testA testB

Ours 59.59 62.10 42.79 47.89 38.20

+MRR 57.77 60.52 41.80 46.32 37.38
+MRC 58.13 60.35 41.96 46.32 37.81
+ITM 52.72 55.42 41.10 45.41 37.22
+OT 43.44 45.33 39.98 43.40 35.62

-MRM 51.21 53.49 40.58 44.53 36.87
-MRM+MRR 50.98 52.50 40.71 45.96 35.93

-OLP 48.38 50.17 40.06 42.32 38.84
-OLP+MRC 48.75 50.98 40.39 43.77 37.44

-BAO 57.20 59.19 41.49 44.48 37.12
-BAO+OT 43.00 44.78 39.63 43.17 35.71

Table 5: Negative results of four training objectives.
Our proposed objectives (MRM, OLP, BAO) are better
than previous methods (MRR, MRC, OT).

where Tij is the transport plan between language
and vision and is obtained using the IPOT algo-
rithm (Xie et al., 2020).

B.2 Results

Table 5 shows the results of the four fine-tuning
objectives on Flickr30k and RefCOCO+ in weakly-
supervised settings. We can see that adding these
objectives cannot improve the model performance
in our phrase grounding settings. We think this
is possibly because 1) the MRR and MRC objec-
tives differ a lot from the MLM objective in the
language part, and thus they can deviate the result-
ing vision-and-language representations; 2) ITM
mainly cares about aligning sentence and image
representations, while our phrase grounding tasks
require fine-grained phrase-region alignments; 3)
there can be multiple complicated many-to-many
alignments for an image-caption pair, making it
hard to find a reasonable transport plan between
language and vision modalities, and thus the opti-
mal transport techniques may not be not suitable
for phrase grounding. Also, as shown in the last 6
rows of the table, our proposed MRM, OLP, BAO
objectives are better than the MRR, MRC, OT ob-
jectives that previous work use.

C Phrase Grounding Abilities Across
Layers

In this part, we plot the grounding performance of
each model layer in Figure 2. Contrary to findings
in multilingual encoders (Pires et al., 2019), we do
not see coherent patterns from the performance of
different models. While most models demonstrate
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Figure 2: The phrase grounding ability across layers
evaluated with representation similarity measures.

better grounding abilities in the top and bottom
layers than the middle layers, VL-BERT exhibits
an opposite behavior.


