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Abstract

Common acquisition functions for active learn-
ing use either uncertainty or diversity sam-
pling, aiming to select difficult and diverse
data points from the pool of unlabeled data, re-
spectively. In this work, leveraging the best
of both worlds, we propose an acquisition
function that opts for selecting contrastive ex-
amples, i.e. data points that are similar in
the model feature space and yet the model
outputs maximally different predictive likeli-
hoods. We compare our approach, CAL (Con-
trastive Active Learning), with a diverse set of
acquisition functions in four natural language
understanding tasks and seven datasets. Our
experiments show that CAL performs consis-
tently better or equal than the best performing
baseline across all tasks, on both in-domain
and out-of-domain data. We also conduct an
extensive ablation study of our method and we
further analyze all actively acquired datasets
showing that CAL achieves a better trade-off
between uncertainty and diversity compared to
other strategies.

1 Introduction

Active learning (AL) is a machine learning
paradigm for efficiently acquiring data for anno-
tation from a (typically large) pool of unlabeled
data (Lewis and Catlett, 1994; Cohn et al., 1996;
Settles, 2009). Its goal is to concentrate the human
labeling effort on the most informative data points
that will benefit model performance the most and
thus reducing data annotation cost.

The most widely used approaches to acquiring
data for AL are based on uncertainty and diversity,
often described as the “two faces of AL” (Das-
gupta, 2011). While uncertainty-based methods
leverage the model predictive confidence to select
difficult examples for annotation (Lewis and Gale,
1994; Cohn et al., 1996), diversity sampling ex-
ploits heterogeneity in the feature space by typi-
cally performing clustering (Brinker, 2003; Bodó

Figure 1: Illustrative example of our proposed method
CAL. The solid line (model decision boundary) sepa-
rates data points from two different classes (blue and
orange), the coloured data points represent the labeled
data and the rest are the unlabeled data of the pool.

et al., 2011). Still, both approaches have core limi-
tations that may lead to acquiring redundant data
points. Algorithms based on uncertainty may end
up choosing uncertain yet uninformative repetitive
data, while diversity-based methods may tend to se-
lect diverse yet easy examples for the model (Roy
and McCallum, 2001). The two approaches are
orthogonal to each other, since uncertainty sam-
pling is usually based on the model’s output, while
diversity exploits information from the input (i.e.
feature) space. Hybrid data acquisition functions
that combine uncertainty and diversity sampling
have also been proposed (Shen et al., 2004; Zhu
et al., 2008; Ducoffe and Precioso, 2018; Ash et al.,
2020; Yuan et al., 2020; Ru et al., 2020).

In this work, we aim to leverage characteristics
from hybrid data acquisition. We hypothesize that
data points that are close in the model feature space
(i.e. share similar or related vocabulary, or similar
model encodings) but the model produces different
predictive likelihoods, should be good candidates
for data acquisition. We define such examples as
contrastive (see example in Figure 1). For that
purpose, we propose a new acquisition function
that searches for contrastive examples in the pool
of unlabeled data. Specifically, our method, Con-
trastive Active Learning (CAL) selects unlabeled
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data points from the pool, whose predictive like-
lihoods diverge the most from their neighbors in
the training set. This way, CAL shares similarities
with diversity sampling, but instead of performing
clustering it uses the feature space to create neigh-
borhoods. CAL also leverages uncertainty, by using
predictive likelihoods to rank the unlabeled data.

We evaluate our approach in seven datasets from
four tasks including sentiment analysis, topic classi-
fication, natural language inference and paraphrase
detection. We compare CAL against a full suite
of baseline acquisition functions that are based on
uncertainty, diversity or both. We also examine ro-
bustness by evaluating on out-of-domain data, apart
from in-domain held-out sets. Our contributions
are the following:

1. We propose CAL, a new acquisition function
for active learning that acquires contrastive ex-
amples from the pool of unlabeled data (§2);

2. We show that CAL performs consistently bet-
ter or equal compared to all baselines in all
tasks when evaluated on in-domain and out-
of-domain settings (§4);

3. We conduct a thorough analysis of our method
showing that CAL achieves a better trade-off
between diversity and uncertainty compared
to the baselines (§6).

We release our code online 1.

2 Contrastive Active Learning

In this section we present in detail our proposed
method, CAL: Contrastive Active Learning. First,
we provide a definition for contrastive examples
and how they are related to finding data points that
are close to the decision boundary of the model
(§2.1). We next describe an active learning loop
using our proposed acquisition function (§2.2).

2.1 Contrastive Examples
In the context of active learning, we aim to formu-
late an acquisition function that selects contrastive
examples from a pool of unlabeled data for anno-
tation. We draw inspiration from the contrastive
learning framework, that leverages the similarity
between data points to push those from the same
class closer together and examples from different
classes further apart during training (Mikolov et al.,

1https://github.com/mourga/
contrastive-active-learning

2013; Sohn, 2016; van den Oord et al., 2019; Chen
et al., 2020; Gunel et al., 2021).

In this work, we define as contrastive examples
two data points if their model encodings are simi-
lar, but their model predictions are very different
(maximally disagreeing predictive likelihoods).

Formally, data points xi and xj should first sat-
isfy a similarity criterion:

d
(
Φ(xi),Φ(xj)

)
< ε (1)

where Φ(.) ∈ Rd
′

is an encoder that maps xi, xj
in a shared feature space, d(.) is a distance metric
and ε is a small distance value.

A second criterion, based on model uncertainty,
is to evaluate that the predictive probability distri-
butions of the model p(y|xi) and p(y|xj) for the
inputs xi and xj should maximally diverge:

KL
(
p(y|xi)||p(y|xj)

)
→∞ (2)

where KL is the Kullback-Leibler divergence be-
tween two probability distributions 2.

For example, in a binary classification problem,
given a reference example x1 with output proba-
bility distribution (0.8, 0.2) 3 and similar candidate
examples x2 with (0.7, 0.3) and x3 with (0.6, 0.4),
we would consider as contrastive examples the pair
(x1, x3). However, if another example x4 (similar
to x1 in the model feature space) had a probabil-
ity distribution (0.4, 0.6), then the most contrastive
pair would be (x1, x4).

Figure 1 provides an illustration of contrastive
examples for a binary classification case. All data
points inside the circle (dotted line) are similar in
the model feature space, satisfying Eq. 1. Intu-
itively, if the divergence of the output probabilities
of the model for the gray and blue shaded data
points is high, then Eq. 2 should also hold and we
should consider them as contrastive.

From a different perspective, data points with
similar model encodings (Eq. 1) and dissimilar
model outputs (Eq. 2), should be close to the
model’s decision boundary (Figure 1). Hence, we
hypothesize that our proposed approach to select

2KL divergence is not a symmetric metric, KL(P ||Q) =∑
x

P (x)log
(P (x)
Q(x)

)
. We use as input Q the output probability

distribution of an unlabeled example from the pool and as
target P the output probability distribution of an example
from the train set (See §2.2 and algorithm 1).

3A predictive distribution (0.8, 0.2) here denotes that the
model is 80% confident that x1 belongs to the first class and
20% to the second.

https://github.com/mourga/contrastive-active-learning
https://github.com/mourga/contrastive-active-learning
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Algorithm 1 Single iteration of CAL

Input: labeled data Dlab, unlabeled data Dpool, acquisition size b, modelM, number of neighbours k,
model representation (encoding) function Φ(.)

1 for xp in Dpool do
2

{
(x

(i)
l , y

(i)
l )
}
, i = 1, ..., k ← KNN

(
Φ(xp),Φ(Dlab), k

)
. find neighbours in Dlab

3 p(y|x(i)l )←M(x
(i)
l ), i = 1, ..., k . compute probabilities

4 p(y|xp)←M(xp)

5 KL
(
p(y|x(i)l )||p(y|xp)

)
, i = 1, ..., k . compute divergence

6 sxp = 1
k

k∑
i=1

KL
(
p(y|x(i)l )||p(y|xp)

)
. score

7 end
8 Q = argmax

xp∈Dpool

sxp , |Q| = b . select batch

Output: Q

contrastive examples is related to acquiring difficult
examples near the decision boundary of the model.
Under this formulation, CAL does not guarantee
that the contrastive examples lie near the model’s
decision boundary, because our definition is not
strict. In order to ensure that a pair of contrastive
examples lie on the boundary, the second criterion
should require that the model classifies the two
examples in different classes (i.e. different predic-
tions). However, calculating the distance between
an example and the model decision boundary is
intractable and approximations that use adversarial
examples are computationally expensive (Ducoffe
and Precioso, 2018).

2.2 Active Learning Loop

Assuming a multi-class classification problem with
C classes, labeled data for training Dlab and a pool
of unlabeled data Dpool, we perform AL for T iter-
ations. At each iteration, we train a model on Dlab
and then use our proposed acquisition function,
CAL (Algorithm 1), to acquire a batchQ consisting
of b examples from Dpool. The acquired examples
are then labeled4, they are removed from the pool
Dpool and added to the labeled dataset Dlab, which
will serve as the training set for training a model in
the next AL iteration. In our experiments, we use
a pretrained BERT modelM (Devlin et al., 2019),
which we fine-tune at each AL iteration using the
current Dlab. We begin the AL loop by training a
modelM using an initial labeled dataset Dlab

5.

4We simulate AL, so we already have the labels of the
examples of Dpool (but still treat it as an unlabeled dataset).

5We acquire the first examples that form the initial training
set Dlab by applying random stratified sampling (i.e. keeping
the initial label distribution).

Find Nearest Neighbors for Unlabeled Candi-
dates The first step of our contrastive acquisition
function (cf. line 2) is to find examples that are
similar in the model feature space (Eq. 1). Specifi-
cally, we use the [CLS] token embedding of BERT

as our encoder Φ(.) to represent all data points in
Dlab and Dpool. We use a K-Nearest-Neighbors
(KNN) implementation using the labeled data Dlab,
in order to query similar examples xl ∈ Dlab for
each candidate xp ∈ Dpool. Our distance metric
d(.) is Euclidean distance. To find the most sim-
ilar data points in Dlab for each xp, we select the
top k instead of selecting a predefined threshold
ε (Eq. 1) 6. This way, we create a neighborhood
Nxp =

{
xp, x

(1)
l , . . . , x

(k)
l

}
that consists of the un-

labeled data point xp and its k closest examples xl
in Dlab (Figure 1).

Compute Contrastive Score between Unlabeled
Candidates and Neighbors In the second step,
we compute the divergence in the model predictive
probabilities for the members of the neighborhood
(Eq. 2). Using the current trained model M to
obtain the output probabilities for all data points
in Nxp (cf. lines 3-4), we then compute the Kull-
back–Leibler divergence (KL) between the output
probabilities of xp and all xl ∈ Nxp (cf. line 5). To
obtain a score sxp for a candidate xp, we take the
average of all divergence scores (cf. line 6).

Rank Unlabeled Candidates and Select Batch
We apply these steps to all candidate examples
xp ∈ Dpool and obtain a score sxp for each. With

6We leave further modifications of our scoring function
as future work. One approach would be to add the average
distance from the neighbors (cf. line 6) in order to alleviate
the possible problem of selecting outliers.
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DATASET TASK DOMAIN OOD DATASET TRAIN VAL TEST CLASSES

IMDB Sentiment Analysis Movie Reviews SST-2 22.5K 2.5K 25K 2

SST-2 Sentiment Analysis Movie Reviews IMDB 60.6K 6.7K 871 2

AGNEWS Topic Classification News - 114K 6K 7.6K 4

DBPEDIA Topic Classification News - 20K 2K 70K 14

PUBMED Topic Classification Medical - 180K 30.2K 30.1K 5

QNLI Natural Language Inference Wikipedia - 99.5K 5.2K 5.5K 2

QQP Paraphrase Detection Social QA Questions TWITTERPPDB 327K 36.4K 80.8K 2

Table 1: Dataset statistics.

our scoring function we define as contrastive ex-
amples the unlabeled data xp that have the highest
score sxp . A high sxp score indicates that the unla-
beled data point xp has a high divergence in model
predicted probabilities compared to its neighbors
in the training set (Eq. 1, 2), suggesting that it may
lie near the model’s decision boundary. To this end,
our acquisition function selects the top b examples
from the pool that have the highest score sxp (cf.
line 8), that form the acquired batch Q.

3 Experimental Setup

3.1 Tasks & Datasets
We conduct experiments on sentiment analysis,
topic classification, natural language inference and
paraphrase detection tasks. We provide details for
the datasets in Table 1. We follow Yuan et al. (2020)
and use IMDB (Maas et al., 2011), SST-2 (Socher
et al., 2013), PUBMED (Dernoncourt and Lee, 2017)
and AGNEWS from Zhang et al. (2015) where we
also acquired DBPEDIA. We experiment with tasks
requiring pairs of input sequences, using QQP and
QNLI from GLUE (Wang et al., 2019). To evaluate
robustness on out-of-distribution (OOD) data, we
follow Hendrycks et al. (2020) and use SST-2 as
OOD dataset for IMDB and vice versa. We finally
use TWITTERPPDB (Lan et al., 2017) as OOD data
for QQP as in Desai and Durrett (2020).

3.2 Baselines
We compare CAL against five baseline acquisition
functions. The first method, ENTROPY is the most
commonly used uncertainty-based baseline that ac-
quires data points for which the model has the
highest predictive entropy. As a diversity-based
baseline, following Yuan et al. (2020), we use
BERTKM that applies k-means clustering using
the l2 normalized BERT output embeddings of the
fine-tuned model to select b data points. We com-
pare against BADGE (Ash et al., 2020), an acqui-
sition function that aims to combine diversity and

uncertainty sampling, by computing gradient em-
beddings gx for every candidate data point x in
Dpool and then using clustering to select a batch.
Each gx is computed as the gradient of the cross-
entropy loss with respect to the parameters of the
model’s last layer, aiming to be the component that
incorporates uncertainty in the acquisition func-
tion 7. We also evaluate a recently introduced cold-
start acquisition function called ALPS (Yuan et al.,
2020) that uses the masked language model (MLM)
loss of BERT as a proxy for model uncertainty in
the downstream classification task. Specifically,
aiming to leverage both uncertainty and diversity,
ALPS forms a surprisal embedding sx for each x,
by passing the unmasked input x through the BERT

MLM head to compute the cross-entropy loss for a
random 15% subsample of tokens against the target
labels. ALPS clusters these embeddings to sample
b sentences for each AL iteration. Lastly, we in-
clude RANDOM, that samples data from the pool
from a uniform distribution.

3.3 Implementation Details

We use BERT-BASE (Devlin et al., 2019) adding
a task-specific classification layer using the im-
plementation from the HuggingFace library (Wolf
et al., 2020). We evaluate the model 5 times per
epoch on the development set following Dodge
et al. (2020) and keep the one with the lowest vali-
dation loss. We use the standard splits provided for
all datasets, if available, otherwise we randomly
sample a validation set from the training set. We
test all models on a held-out test set. We repeat all
experiments with five different random seeds result-
ing into different initializations of the parameters
of the model’s extra task-specific output feedfor-

7We note that BERTKM and BADGE are computationally
heavy approaches that require clustering of vectors with high
dimensionality, while their complexity grows exponentially
with the acquisition size. We thus do not apply them to the
datasets that have a large Dpool. More details can be found in
the Appendix A.2
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Figure 2: In-domain (ID) test accuracy during AL iterations for different acquisition functions.

ward layer and the initial Dlab. For all datasets we
use as budget the 15% of Dpool, initial training set
1% and acquisition size b = 2%. Each experiment
is run on a single Nvidia Tesla V100 GPU. More
details are provided in the Appendix A.1.

4 Results

4.1 In-domain Performance

We present results for in-domain test accuracy
across all datasets and acquisition functions in Fig-
ure 2. We observe that CAL is consistently the
top performing method especially in DBPEDIA,
PUBMED and AGNEWS datasets.

CAL performs slightly better than ENTROPY in
IMDB, QNLI and QQP, while in SST-2 most methods
yield similar results. ENTROPY is the second best
acquisition function overall, consistently perform-
ing better than diversity-based or hybrid baselines.
This corroborates recent findings from Desai and
Durrett (2020) that BERT is sufficiently calibrated
(i.e. produces good uncertainty estimates), making
it a tough baseline to beat in AL.

BERTKM is a competitive baseline (e.g. SST-
2, QNLI) but always underperforms compared to
CAL and ENTROPY, suggesting that uncertainty
is the most important signal in the data selection

process. An interesting future direction would be to
investigate in depth whether and which (i.e. which
layer) representations of the current (pretrained
language models) works best with similarity search
algorithms and clustering.

Similarly, we can see that BADGE, despite us-
ing both uncertainty and diversity, also achieves
low performance, indicating that clustering the con-
structed gradient embeddings does not benefit data
acquisition. Finally, we observe that ALPS gen-
erally underperforms and is close to RANDOM.
We can conclude that this heterogeneous approach
to uncertainty, i.e. using the pretrained language
model as proxy for the downstream task, is bene-
ficial only in the first few iterations, as shown in
Yuan et al. (2020).

Surprisingly, we observe that for the SST-2
dataset ALPS performs similarly with the highest
performing acquisition functions, CAL and EN-
TROPY. We hypothesize that due to the informal
textual style of the reviews of SST-2 (noisy social
media data), the pretrained BERT model can be
used as a signal to query linguistically hard exam-
ples, that benefit the downstream sentiment analy-
sis task. This is an interesting finding and a future
research direction would be to investigate the cor-
relation between the difficulty of an example in a
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TRAIN (ID) SST-2 IMDB QQP

TEST (OOD) IMDB SST-2 TWITTERPPDB

RANDOM 76.28± 0.72 82.50± 3.61 85.86± 0.48
BERTKM 75.99± 1.01 84.98± 1.22 -
ENTROPY 75.38± 2.04 85.54± 2.52 85.06± 1.96
ALPS 77.06± 0.78 83.65± 3.17 84.79± 0.49
BADGE 76.41± 0.92 85.19± 3.01 -
CAL 79.00± 1.39 84.96± 2.36 86.20± 0.22

Table 2: Out-of-domain (OOD) accuracy of models
trained with the actively acquired datasets created with
different AL acquisition strategies.

downstream task with its perplexity (loss) of the
pretrained language model.

4.2 Out-of-domain Performance
We also evaluate the out-of-domain (OOD) robust-
ness of the models trained with the actively ac-
quired datasets of the last iteration (i.e. 15% of
Dpool or 100% of the AL budget) using different
acquisition strategies. We present the OOD results
for SST-2, IMDB and QQP in Table 2. When we
test the models trained with SST-2 on IMDB (first
column) we observe that CAL achieves the highest
performance compared to the other methods by a
large margin, indicating that acquiring contrastive
examples can improve OOD generalization. In the
opposite scenario (second column), we find that
the highest accuracy is obtained with ENTROPY.
However, similarly to the ID results for SST-2 (Fig-
ure 2), all models trained on different subsets of
the IMDB dataset result in comparable performance
when tested on the small SST-2 test set (the mean
accuracies lie inside the standard deviations across
models). We hypothesize that this is because SST-2
is not a challenging OOD dataset for the different
IMDB models. This is also evident by the high
OOD accuracy, 85% on average, which is close
to the 91% SST-2 ID accuracy of the full model
(i.e. trained on 100% of the ID data). Finally, we
observe that CAL obtains the highest OOD accu-
racy for QQP compared to RANDOM, ENTROPY

and ALPS. Overall, our empirical results show that
the models trained on the actively acquired dataset
with CAL obtain consistently similar or better per-
formance than all other approaches when tested on
OOD data.

5 Ablation Study

We conduct an extensive ablation study in order to
provide insights for the behavior of every compo-
nent of CAL. We present all AL experiments on
the AGNEWS dataset in Figure 3.

Figure 3: In-domain (ID) test accuracy with different
variants of CAL (ablation).

Decision Boundary We first aim to evaluate our
hypothesis that CAL acquires difficult examples
that lie close to the model’s decision boundary.
Specifically, to validate that the ranking of the con-
structed neighborhoods is meaningful, we run an
experiment where we acquire candidate examples
that have the minimum divergence from their neigh-
bors opposite to CAL (i.e. we replace argmax(.)
with argmin(.) in line 8 of Algorithm 1). We ob-
serve (Fig. 3 - CAL opposite) that even after
acquiring 15% of unlabeled data, the performance
remains unchanged compared to the initial model
(of the first iteration), even degrades. In effect, this
finding denotes that CAL does select informative
data points.

Neighborhood Next, we experiment with chang-
ing the way we construct the neighborhoods, aim-
ing to improve computational efficiency. We thus
modify our algorithm to create a neighborhood for
each labeled example (instead of unlabeled).8. This
way we compute a divergence score only for the
neighbors of the training data points. However, we
find this approach to slightly underperform (Fig. 3
- CAL per labeled example), possibly be-
cause only a small fraction of the pool is considered
and thus the uncertainty of all the unlabeled data
points is not taken into account.

8In this experiment, we essentially change the for-loop of
Algorithm 1 (cf. line 1-7) to iterate for each xl inDlab (instead
of each xp in Dpool) and similarly find the k nearest neighbors
of each labeled example in the pool (KNN(xl,Dpool, k)) As
for the scoring (cf. line 6), if an unlabeled example was not
picked (i.e. was not a neighbor to a labeled example), its score
is zero. If it was picked multiple times we average its scores.
We finally acquire the top b unlabeled data with the highest
scores. This formulation is more computationally efficient
since usually |Dlab| << |Dpool|.
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Scoring function We also experiment with sev-
eral approaches for constructing our scoring func-
tion (cf. line 6 in Algorithm 1). Instead of com-
puting the KL divergence between the predicted
probabilities of each candidate example and its la-
beled neighbors (cf. line 5), we used cross entropy
between the output probability distribution and the
gold labels of the labeled data. The intuition is to
evaluate whether information of the actual label is
more useful than the model’s predictive probability
distribution. We observe this scoring function to re-
sult in a slight drop in performance (Fig. 3 - Cross
Entropy). We also experimented with various
pooling operations to aggregate the KL divergence
scores for each candidate data point. We found
maximum and median (Fig. 3 - Max/Median) to
perform similarly with the average (Fig. 3 - CAL),
which is the pooling operation we decided to keep
in our proposed algorithm.

Feature Space Since our approach is related to
to acquiring data near the model’s decision bound-
ary, this effectively translates into using the [CLS]
output embedding of BERT. Still, we opted to
cover several possible alternatives to the repre-
sentations, i.e. feature space, that can be used
to find the neighbors with KNN. We divide our
exploration into two categories: intrinsic repre-
sentations from the current fine-tuned model and
extrinsic using different methods. For the first
category, we examine representing each example
with the mean embedding layer of BERT (Fig. 3 -
Mean embedding) or the mean output embed-
ding (Fig. 3 - Mean output). We find both al-
ternatives to perform worse than using the [CLS]
token (Fig. 3 - CAL). The motivation for the sec-
ond category is to evaluate whether acquiring con-
trastive examples in the input feature space, i.e.
representing the raw text, is meaningful (Gard-
ner et al., 2020) 9. We thus examine contextual
representations from a pretrained BERT language
model (Fig. 3 - BERT-pr [CLS]) (not fine-tuned
in the task or domain) and non-contextualized
TF-IDF vectors (Fig. 3 - TF-IDF). We find both
approaches, along with Mean embedding, to
largely underperform compared to our approach
that acquires ambiguous data near the model deci-
sion boundary.

9This can be interpreted as comparing the effectiveness
of selecting data near the model decision boundary vs. the
task decision boundary, i.e. data that are similar for the task
itself or for the humans (in terms of having the same raw
input/vocabulary), but are from different classes.

6 Analysis

Finally, we further investigate CAL and all acquisi-
tion functions considered (baselines), in terms of
diversity, representativeness and uncertainty. Our
aim is to provide insights on what data each method
tends to select and what is the uncertainty-diversity
trade-off of each approach. Table 3 shows the re-
sults of our analysis averaged across datasets. We
denote with L the labeled set, U the unlabeled pool
and Q an acquired batch of data points from U 10.

6.1 Diversity & Uncertainty Metrics

Diversity in input space (DIV.-I) We first evalu-
ate the diversity of the actively acquired data in the
input feature space, i.e. raw text, by measuring the
overlap between tokens in the sampled sentences
Q and tokens from the rest of the data pool U . Fol-
lowing Yuan et al. (2020), we compute DIV.-I as
the Jaccard similarity between the set of tokens
from the sampled sentences Q, VQ, and the set of
tokens from the unsampled sentences U\Q, VQ′ ,
J (VQ,VQ′) =

|VQ∩VQ′ |
|VQ∪VQ′ | . A high DIV.-I value in-

dicates high diversity because the sampled and un-
sampled sentences have many tokens in common.

Diversity in feature space (DIV.-F) We next
evaluate diversity in the (model) feature space, us-
ing the [CLS] representations of a trained BERT

model 11. Following Zhdanov (2019) and Ein-Dor
et al. (2020), we compute DIV.-F of a set Q as(

1
|U |

∑
xi∈U

min
xj∈Q

d(Φ(xi),Φ(xj))
)−1

, where Φ(xi)

denotes the [CLS] output token of example xi
obtained by the model which was trained using
L, and d(Φ(xi),Φ(xj)) denotes the Euclidean dis-
tance between xi and xj in the feature space.

Uncertainty (UNC.) To measure uncertainty, we
use the model Mf trained on the entire training
dataset (Figure 2 - Full supervision). As in
Yuan et al. (2020), we use the logits from the fully
trained model to estimate the uncertainty of an ex-
ample, as it is a reliable estimate due to its high per-
formance after training on many examples, while

10In the previous sections we used Dlab and Dpool to denote
the labeled and unlabeled sets and we change the notation here
to L and U , respectively, for simplicity.

11To enable an appropriate comparison, this analysis is
performed after the initial BERT model is trained with the
initial training set and each AL strategy has selected examples
equal to 2% of the pool (first iteration). Correspondingly,
all strategies select examples from the same unlabeled set U
while using outputs from the same BERT model.
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DIV.-I DIV.-F UNC. REPR.
RANDOM 0.766 0.356 0.132 1.848
BERTKM 0.717 0.363 0.145 2.062
ENTROPY 0.754 0.323 0.240 2.442
ALPS 0.771 0.360 0.126 2.038
BADGE 0.655 0.339 0.123 2.013
CAL 0.768 0.335 0.231 2.693

Table 3: Uncertainty and diversity metrics across acqui-
sition functions, averaged for all datasets.

it offers a fair comparison across all acquisition
strategies. First, we compute predictive entropy of
an input x when evaluated by modelMf and then
we take the average over all sentences in a sampled
batch Q. We use the average predictive entropy to
estimate uncertainty of the acquired batch Q for

each method − 1
|Q|
∑
x∈Q

C∑
c=1

p(y = c|x)logp(y =

c|x). As a sampled batch Q we use the full actively
acquired dataset after completing our AL iterations
(with 15% of the data).

Representativeness (REPR.) We finally analyze
the representativeness of the acquired data as in Ein-
Dor et al. (2020). We aim to study whether AL
strategies tend to select outlier examples that do
not properly represent the overall data distribution.
We rely on the KNN-density measure proposed by
Zhu et al. (2008), where the density of an exam-
ple is quantified by one over the average distance
between the example and its K most similar ex-
amples (i.e., K nearest neighbors) within U , based
on the [CLS] representations as in DIV.-F. An
example with high density degree is less likely to
be an outlier. We define the representativeness of
a batch Q as one over the average KNN-density
of its instances using the Euclidean distance with
K=10.

6.2 Discussion

We first observe in Table 3 that ALPS acquires
the most diverse data across all approaches. This
is intuitive since ALPS is the most linguistically-
informed method as it essentially acquires data
that are difficult for the language modeling task,
thus favoring data with a more diverse vocabulary.
All other methods acquire similarly diverse data,
except BADGE that has the lowest score. Interest-
ingly, we observe a different pattern when evaluat-
ing diversity in the model feature space (using the
[CLS] representations). BERTKM has the highest

DIV.-F score, as expected, while CAL and EN-
TROPY have the lowest. This supports our hypothe-
sis that uncertainty sampling tends to acquire uncer-
tain but similar examples, while CAL by definition
constrains its search in similar examples in the fea-
ture space that lie close to the decision boundary
(contrastive examples). As for uncertainty, we ob-
serve that ENTROPY and CAL acquire the most
uncertain examples, with average entropy almost
twice as high as all other methods. Finally, regard-
ing representativeness of the acquired batches, we
see that CAL obtains the highest score, followed by
ENTROPY, with the rest AL strategies to acquire
less representative data.

Overall, our analysis validates assumptions on
the properties of data expected to be selected by the
various acquisition functions. Our findings show
that diversity in the raw text does not necessar-
ily correlate with diversity in the feature space.
In other words, low DIV.-F does not translate to
low diversity in the distribution of acquired tokens
(DIV.-I), suggesting that CAL can acquire simi-
lar examples in the feature space that have suffi-
ciently diverse inputs. Furthermore, combining
the results of our AL experiments (Figure 2) and
our analysis (Table 3) we conclude that the best
performance of CAL, followed by ENTROPY, is
due to acquiring uncertain data. We observe that
the most notable difference, in terms of selected
data, between the two approaches and the rest is
uncertainty (UNC.), suggesting perhaps the supe-
riority of uncertainty over diversity sampling. We
show that CAL improves over ENTROPY because
our algorithm “guides” the focus of uncertainty
sampling by not considering redundant uncertain
data that lie away from the decision boundary and
thus improving representativeness. We finally find
that RANDOM is evidently the worst approach, as
it selects the least diverse and uncertain data on
average compared to all methods.

7 Related Work

Uncertainty Sampling Uncertainty-based ac-
quisition for AL focuses on selecting data points
that the model predicts with low confidence. A sim-
ple uncertainty-based acquisition function is least
confidence (Lewis and Gale, 1994) that sorts data
in descending order from the pool by the proba-
bility of not predicting the most confident class.
Another approach is to select samples that maxi-
mize the predictive entropy. Houlsby et al. (2011)
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propose Bayesian Active Learning by Disagree-
ment (BALD), a method that chooses data points
that maximize the mutual information between pre-
dictions and model’s posterior probabilities. Gal
et al. (2017) applied BALD for deep neural models
using Monte Carlo dropout (Gal and Ghahramani,
2016) to acquire multiple uncertainty estimates for
each candidate example. Least confidence, entropy
and BALD acquisition functions have been applied
in a variety of text classification and sequence la-
beling tasks, showing to substantially improve data
efficiency (Shen et al., 2017; Siddhant and Lipton,
2018; Lowell and Lipton, 2019; Kirsch et al., 2019;
Shelmanov et al., 2021; Margatina et al., 2021).

Diversity Sampling On the other hand, diversity
or representative sampling is based on selecting
batches of unlabeled examples that are representa-
tive of the unlabeled pool, based on the intuition
that a representative set of examples once labeled,
can act as a surrogate for the full data available. In
the context of deep learning, Geifman and El-Yaniv
(2017) and Sener and Savarese (2018) select repre-
sentative examples based on core-set construction,
a fundamental problem in computational geome-
try. Inspired by generative adversarial learning,
Gissin and Shalev-Shwartz (2019) define AL as a
binary classification task with an adversarial classi-
fier trained to not be able to discriminate data from
the training set and the pool. Other approaches
based on adversarial active learning, use out-of-the-
box models to perform adversarial attacks on the
training data, in order to approximate the distance
from the decision boundary of the model (Ducoffe
and Precioso, 2018; Ru et al., 2020).

Hybrid There are several existing approaches
that combine representative and uncertainty sam-
pling. Such approaches include active learning
algorithms that use meta-learning (Baram et al.,
2004; Hsu and Lin, 2015) and reinforcement learn-
ing (Fang et al., 2017; Liu et al., 2018), aiming to
learn a policy for switching between a diversity-
based or an uncertainty-based criterion at each it-
eration. Recently, Ash et al. (2020) propose Batch
Active learning by Diverse Gradient Embeddings
(BADGE) and Yuan et al. (2020) propose Active
Learning by Processing Surprisal (ALPS), a cold-
start acquisition function specific for pretrained
language models. Both methods construct represen-
tations for the unlabeled data based on uncertainty,
and then use them for clustering; hence combining

both uncertainty and diversity sampling. The ef-
fectiveness of AL in a variety of NLP tasks with
pretrained language models, e.g. BERT (Devlin
et al., 2019), has empirically been recently evalu-
ated by Ein-Dor et al. (2020), showing substantial
improvements over random sampling.

8 Conclusion & Future Work

We present CAL, a novel acquisition function for
AL that acquires contrastive examples; data points
which are similar in the model feature space and
yet the model outputs maximally different class
probabilities. Our approach uses information from
the feature space to create neighborhoods for each
unlabeled example, and predictive likelihood for
ranking the candidate examples. Empirical experi-
ments on various in-domain and out-of-domain sce-
narios demonstrate that CAL performs better than
other acquisition functions in the majority of cases.
After analyzing the actively acquired datasets ob-
tained with all methods considered, we conclude
that entropy is the hardest baseline to beat, but our
approach improves it by guiding uncertainty sam-
pling in regions near the decision boundary with
more informative data.

Still, our empirical results and analysis show
that there is no single acquisition function to out-
perform all others consistently by a large margin.
This demonstrates that there is still room for im-
provement in the AL field.

Furthermore, recent findings show that in spe-
cific tasks, as in Visual Question Answering
(VQA), complex acquisition functions might not
outperform random sampling because they tend
to select collective outliers that hurt model perfor-
mance (Karamcheti et al., 2021). We believe that
taking a step back and analyzing the behavior of
standard acquisition functions, e.g. with Dataset
Maps (Swayamdipta et al., 2020), might be ben-
eficial. Especially, if similar behavior appears in
other NLP tasks too.

Another interesting future direction for CAL,
related to interpretability, would be to evaluate
whether acquiring contrastive examples for the
task (Kaushik et al., 2020; Gardner et al., 2020)
is more beneficial than contrastive examples for the
model, as we do in CAL.
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A Appendix

A.1 Data & Hyperparameters

In this section we provide details of all the datasets
we used in this work and the hyperparparameters
used for training the model. For QNLI, IMDB and
SST-2 we randomly sample 10% from the training
set to serve as the validation set, while for AG-
NEWS and QQP we sample 5%. For the DBPEDIA

dataset we undersample both training and valida-
tion datasets (from the standard splits) to facilitate
our AL simulation (i.e. the original dataset consists
of 560K training and 28K validation data exam-
ples). For all datasets we use the standard test
set, apart from SST-2, QNLI and QQP datasets that
are taken from the GLUE benchmark (Wang et al.,
2019) we use the development set as the held-out
test set and subsample a development set from the
training set.

For all datasets we train BERT-BASE (Devlin
et al., 2019) from the HuggingFace library (Wolf
et al., 2020) in Pytorch (Paszke et al., 2019). We
train all models with batch size 16, learning rate
2e− 5, no weight decay, AdamW optimizer with
epsilon 1e−8. For all datasets we use maximum se-
quence length of 128, except for IMDB that contain
longer input texts, where we use 256. To ensure
reproducibility and fair comparison between the
various methods under evaluation, we run all exper-
iments with the same five seeds that we randomly
selected from the range [1, 9999]. We evaluate the
model 5 times per epoch on the development set
following Dodge et al. (2020) and keep the one
with the lowest validation loss. We use the code
provided by Yuan et al. (2020) for ALPS, BADGE

and BERTKM.

A.2 Efficiency

In this section we compare the efficiency of the ac-
quisition functions considered in our experiments.
We denote m the number of labeled data in Dlab,
n the number of unlabeled data in Dpool, C the
number of classes in the downstream classification
task, d the dimension of embeddings, t is fixed
number of iterations for k-MEANS, l the maxi-
mum sequence length and k the acquisition size.
In our experiments, following (Yuan et al., 2020),
k = 100, d = 768, t = 10, and l = 12812. ALPS

requires O(tknl) considering that the surprisal em-
beddings are computed. BERTKM and BADGE, the

12Except for IMDB where l = 256.

most computationally heavy approaches, require
O(knd) andO(Cknd) respectively, given that gra-
dient embeddings are computed for BADGE 13. On
the other hand, ENTROPY only requires n forward
passes though the model, in order to obtain the log-
its for all the data in Dpool. Instead, our approach,
CAL, first requires m+ n forward passes, in order
to acquire the logits and the CLS representations
of the the data (in Dpool and Dlab) and then one
iteration for all data in Dpool to obtain the scores.

We present the runtimes in detail for all datasets
and acquisition functions in Tables 4 and 5. First,
we define the total acquisition time as a sum of
two types of times; inference and selection time.
Inference time is the time that is required in order
to pass all data from the model to acquire predic-
tions or probability distributions or model encod-
ings (representations). This is explicitly required
for the uncertainty-based methods, like ENTROPY,
and our method CAL. The remaining time is con-
sidered selection and essentially is the time for all
necessary computations in order to rank and select
the b most important examples from Dpool.

We observe in Table 4 that the diversity-based
functions do not require this explicit inference time,
while for ENTROPY it is the only computation that
is needed (taking the argmax of a list of uncertainty
scores is negligible). CAL requires both inference
and selection time. We can see that inference time
of CAL is a bit higher than ENTROPY because we
do m+n forward passes instead of n, that is equiv-
alent to both Dpool and Dlab instead of only Dpool.
The selection time for CAL is the for-loop as pre-
sented in our Algorithm 1. We observe that it is
often less computationally expensive than the infer-
ence step (which is a simple forward pass through
the model). Still, there is room for improvement in
order to reduce the time complexity of this step.

In Table 5 we present the total time for all
datasets (ordered with increasing Dpool size) and
the average time for each acquisition function, as a
means to rank their efficiency. Because we do not
apply all acquisition functions to all datasets we
compute three different average scores in order to
ensure fair comparison. AVG.-ALL is the average
time across all 7 datasets and is used to compare
RANDOM, ALPS, ENTROPY and CAL. AVG.-3 is
the average time across the first 3 datasets (IMDB,
SST-2 and DBPEDIA) and is used to compare all

13This information is taken from Section 6 of Yuan et al.
(2020).
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DBPEDIA IMDB SST-2 QNLI AGNEWS PUBMED QQP

RANDOM (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ALPS (0, 181) (0, 222) (0, 733) (0, 1607) (0, 2309) (0, 5878) (0, 14722)

BERTKM (0, 467) (0, 431) (0, 4265) (0, 8138) (0, 9344) (0, 25965) (−,−)

BADGE (0, 12871) (0, 3816) (0, 25640) (−,−) (−,−) (−,−) (−,−)

ENTROPY (103, 1) (107, 0) (173, 0) (331, 0) (402, 0) (596, 0) (1070, 0)

CAL (133, 49) (212, 61) (464, 244) (528, 376) (656, 628) (1184, 1445) (1541, 2857)

Table 4: Runtimes (in seconds) for all datasets and acquisition functions. In each cell of the table we present a tuple
(i, s) where i is the inference time and s the selection time. Inference time is the time for the model to perform
a forward pass for all the unlabeled data in Dpool and selection time is the time that each acquisition function
requires to rank all candidate data points and select b for annotation (for a single iteration). Since we cannot report
the runtimes for every model in the AL pipeline (at each iteration the size ofDpool changes), we provide the median.

DBPEDIA IMDB SST-2 QNLI AGNEWS PUBMED QQP AVG.-ALL AVG.-3 AVG.-6

RANDOM 0 0 0 0 0 0 0 0 0 0

ALPS 181 222 733 1607 2309 5878 14722 3664 378 1821

BERTKM 467 431 4265 8138 9344 25965 − − 1721 8101

BADGE 12871 3816 25640 − − − − − 14109 −
ENTROPY 104 107 173 331 402 596 1070 397 128 285

CAL 182 273 708 904 1284 2629 4398 1482 387 996

Table 5: Runtimes (in seconds) for all datasets and acquisition functions. In each cell of the table we present the
total acquisition time (inference and selection). AVG.-ALL shows the average acquisition time for each acquisition
function for all datasets, AVG.-6. for all datasets except QQP and AVG.-3 for the 3 first datasets only (DBPEDIA,
IMDB, SST-2).

acquisition functions. Finally, AVG.-6 is the aver-
age time across all datasets apart from QQP and
is used to compare RANDOM, ALPS, BERTKM,
ENTROPY and CAL.

We first observe that ENTROPY is overall the
most efficient acquisition function. According to
the AVG.-ALL column, we observe that CAL is the
second most efficient function, followed by ALPS.
According to the AVG.-6 we observe the same pat-
tern, with BERTKM to be the slowest method. Fi-
nally, we compare all acquisition functions in the
3 smallest (in terms of size of Dpool) datasets and
find that ENTROPY is the fastest method followed
by ALPS and CAL that require almost 3 times more
computation time. The other clustering methods,
BERTKM and BADGE, are significantly more com-
putationally expensive, requiring respectively 13
and 100(!) times more time than ENTROPY.

Interestingly, we observe the effect of the acqui-
sition size (2% of Dpool in our case) and the size of
Dpool in the clustering methods. As these parame-
ters increase, the computation of the corresponding
acquisition function increases dramatically. For
example, we observe that in the 3 smallest datasets
that ALPS requires similar time to CAL. However,

when we increase b and m (i.e. as we move from
DBPEDIA with 20K examples in Dpool to QNLI

with 100K etc - see Table 1) we observe that the
acquisition time of ALPS becomes twice as much
as that of CAL. For instance, in QQP with acqui-
sition size 3270 we see that ALPS requires 14722
seconds on average, while CAL 4398. This shows
that even though our approach is more computa-
tionally expensive as the size of Dpool increases,
the complexity is linear, while for the other hybrid
methods that use clustering, the complexity grows
exponentially.

A.3 Reproducibility
All code for data preprocessing, model imple-
mentations, and active learning algorithms is
made available at https://github.com/mourga/
contrastive-active-learning. For questions
regarding the implementation, please contact the
first author.

https://github.com/mourga/contrastive-active-learning
https://github.com/mourga/contrastive-active-learning

