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Abstract

For many business applications, we often seek
to analyze sentiments associated with any arbi-
trary aspects of commercial products, despite
having a very limited amount of labels or even
without any labels at all. However, existing
aspect target sentiment classification (ATSC)
models are not trainable if annotated datasets
are not available. Even with labeled data,
they fall short of reaching satisfactory perfor-
mance. To address this, we propose simple
approaches that better solve ATSC with nat-
ural language prompts, enabling the task un-
der zero-shot cases and enhancing supervised
settings, especially for few-shot cases. Under
the few-shot setting for SemEval 2014 Task 4
laptop domain, our method of reformulating
ATSC as an NLI task outperforms supervised
SOTA approaches by up to 24.13 accuracy
points and 33.14 macro F1 points. Moreover,
we demonstrate that our prompts could handle
implicitly stated aspects as well: our models
reach about 77% accuracy on detecting senti-
ments for aspect categories (e.g., food), which
do not necessarily appear within the text, even
though we trained the models only with explic-
itly mentioned aspect terms (e.g., fajitas) from
just 16 reviews — while the accuracy of the
no-prompt baseline is only around 65%.

1 Introduction

Measuring targeted sentiments from text toward
certain aspects or subtopics has immediate com-
mercial value. For example, a hotel chain might
want to base their business decisions on the propor-
tion of customer reviews being positive toward their
room cleanliness and front desk services. Manu-
ally reading through thousands of reviews would
be prohibitively expensive, calling for automated
solutions.

Adopting existing supervised models for aspect
target sentiment classification (ATSC) (Pontiki
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Figure 1: An overview of our prompt-based models
for ATSC. (a) BERT / GPT-2 LM is pretrained on un-
labeled review texts and we convert ATSC into a lan-
guage modeling task during training and testing. (b)
BERT NLI is pretrained on NLI datasets and we con-
vert ATSC into two entailment tasks.

et al., 2014) appears to be an obvious choice at
first glance. However, the accuracy of these mod-
els in practice are often unsatisfactory due to the
lack of labeled data from domains of interest. We
could direct practitioners to annotate few domain-
specific review texts, but ATSC models would need
to generalize from those limited examples and re-
turn accurate predictions upon seeing any arbitrary
aspects and sentiments. Even if we could get hold
of more data, it would be difficult to collect enough
labels to handle all aspect-sentiment cases that cus-
tomers could ever query.

The way people would write customer reviews
inspires our solutions to this label scarcity issue.
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For example, consider two plausible sentences
from hotel reviews: Mike and the rest of the staff
were very polite and responded quickly to our re-
quests. The front desk service is excellent. Sup-
posing we only observe the first one, if an ATSC
model could tell that the first entails the second,
or the second naturally follows the first, we could
determine that the customer feels positive about the
front desk service.

Based on this intuition, we propose two ATSC
models based on natural language prompts: our
first method appends cloze question prompts (e.g.,
The service is ) to the review text and predicts how
likely it is to observe good, bad, and ok as the next
word. The second method treats the review as a
premise and the prompt sentence with the sentimen-
tal next word as a hypothesis, and predicts whether
the review entails the prompt. With pretraining,
these prompts give us natural ways of leveraging
more abundant unlabeled reviews or large natural
language inference (NLI) datasets to overcome the
scarcity of labeled data. An overview of our meth-
ods is provided in Figure 1.

Most of previous ATSC efforts focus on fully
supervised training, assuming enough in-domain
labels on relevant aspects. Going beyond this typi-
cal setting, we also test our model on more “open”
situations where reviews and aspects for testing are
less similar to the training examples.

Experimental results show that our methods are
not only capable of producing reasonable predic-
tions without any labeled data (zero-shot) but also
constantly outperform SOTA no-prompt baselines
under supervised settings. Moreover, our prompt-
based models are robust to domain shifts: after
training with aspect-based sentiments in one do-
main, we observe that the models can accurately
predict sentiments associated with aspect terms
appearing in reviews from a completely unseen
domain. Also, our models that are trained on ex-
plicitly mentioned aspect terms could generalize
well to implied categorical aspects.1

2 Related Work

2.1 Aspect-based Sentiment Analysis

Hu and Liu (2004) is one of the first academic work
to discuss the task of analyzing opinions targeted
towards different aspects or topics within the text.

1All the program codes used to produce results presented
in this paper are available at https://link.iamblogge
r.net/atscprompts.

Pontiki et al. (2014) starts the current line of re-
search on aspect-based sentiment analysis (ABSA),
with their benchmark datasets of customer reviews
for restaurants and laptops.

To overcome small training dataset sizes, recent
developments for ABSA involve some combina-
tion of unlabeled domain text pretraining and in-
termediate task finetuning. Xu et al. (2019) and
Sun et al. (2019) use multi-task loss functions to
finetune BERT using SQuAD question answering
datasets that contain a range of domains and task-
related knowledge, to offset the small size of Se-
mEval 2014 ABSA datasets. Rietzler et al. (2020)
provides detailed analysis on cross-domain adapta-
tion, where they find that end task finetuning with
the domain different from the evaluation domain
still achieves performance comparable to the SOTA
results using in-domain labels.

2.2 Natural Language Prompts

There has been a number of recent papers on using
prompts — additional sentences appended to the
original input text — to direct language models to
perform different tasks, exploiting the knowledge
they have acquired during their original pretrain-
ing. One of the earliest examples of such efforts is
Radford et al. (2019), where they measured their
GPT-2 model’s performance on downstream tasks
by feeding in task descriptions as prompts, with-
out any finetuning at all. Since then, a number of
previous work has leveraged prompts for the tasks
such as question answering (Lewis et al., 2019) and
commonsense reasoning (Shwartz et al., 2020). We
also note that some previous work on prompt-based
learning methods have included sentence-level sen-
timent classification, which measures sentiment
from the entire input text, as part of their evalua-
tion (Shin et al., 2020; Gao et al., 2021).

Many recent works, including ours, follow the
format of cloze questions to design prompts as first
suggested by Schick and Schütze (2020). We de-
sign prompts to include masked tokens that need to
be filled in, and the predictions for the masks serve
as the outputs for the original task.

3 Methods

To maximally leverage the large data resources
of unlabeled review texts and NLI datasets, we
propose two ways of reformulating ATSC: the first
converts ATSC into next/masked word prediction;
the second transforms the task into NLI entailment

https://link.iamblogger.net/atscprompts
https://link.iamblogger.net/atscprompts
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predictions.

3.1 ATSC as Language Modeling
In order to elicit abilities to perform ATSC from lan-
guage models (LMs), it was essential that prompt
sentences should be similar to what one would typ-
ically write to express their sentiment. Hence, we
came up with the following set2 of cloze question
prompts (Schick and Schütze, 2020) that are aspect
dependent, and appended them to input texts:

• I felt the {aspect} was [MASK].

• The {aspect} made me feel [MASK].

• The {aspect} is [MASK].

where {aspect} is the placeholder for the query-
ing aspect term, and [MASK] represents the
masked word for BERT (Devlin et al., 2019) and
the next word for GPT-2 (Radford et al., 2019).
Then, we let the probability of predicting positive,
neutral, and negative sentiment be proportional to
the probability of predicting good, ok, and bad,
respectively.

Publicly available pretrained weights for BERT
and GPT-2 have already been trained on large gen-
eral corpora, but they might not include enough
sentences from our testing domains, such as lap-
top reviews. To produce more accurate predictions
on [MASK], we further pretrain LMs with the in-
domain review texts. For BERT, we modify the
original random masking scheme to mask only
adjectives, nouns, and proper nouns because the
words are more likely to indicate the sentiments of
the sentence. For GPT-2, we use the original causal
LM (CLM) objective. To measure the effectiveness
of the prompts, our baselines without prompts also
receive identical pretraining.3

When the labeled data for ATSC is available,
we convert the training labels to good, ok, and
bad and finetune all the parameters of LMs, in-
cluding the encoders and embeddings of words in
the prompts. During the training and testing, other
candidates for [MASK] are ignored.

3.2 ATSC as NLI
We first set the input review text as a premise.
We predict the scores for positive, negative,

2In our experiments, all three prompts perform similarly,
especially in few-shot cases; this suggests that the performance
of our models are not overly sensitive to the wording of prop-
erly chosen prompts. We present the performance comparison
between our prompts in Appendix C.

3We compare the results between original weights and our
further pretrained ones in Appendix F.

and neutral sentiment using the entailment prob-
abilities from a NLI model as follows: we cre-
ate positive and negative hypotheses by popu-
lating prompts with corresponding label words
(e.g., “The {aspect} is good; The {aspect}

is bad.”). We get the scores for positive and
negative sentiment by obtaining entailment proba-
bilities with each of the hypotheses; For the neutral
class, we average neutral probabilities (from NLI)
for the two hypotheses. Our method enables zero-
shot ATSC, which previously had not considered by
previous efforts that leveraged NLI for sentiment
analysis and text classification tasks (Yin et al.,
2019; Sun et al., 2019; Wang et al., 2021).

We use the BERT-base model pretrained on the
MNLI dataset (Williams et al., 2018), and none of
the unlabeled review texts are utilized for pretrain-
ing. We apply a softmax layer on top of the logits to
normalize the prediction scores of the three classes
into probabilities, in order to finetune models with
cross-entropy loss when labeled data is available.

4 Experiments

In the experiments, we test the generalization ca-
pability of our methods on more real world-like
conditions where there are far fewer training exam-
ples similar to the testing examples. Using ATSC
datasets from SemEval 2014 Task 4 Subtask 2 (Pon-
tiki et al., 2014), we evaluate our models on the
full spectrum of in-domain training data sizes cov-
ering the zero-shot and full-shot (i.e., fully super-
vised) cases. Similar to the settings of Scao and
Rush (2021), we train our models with randomly
re-sampled training sets of sizes {Zero, 16, 64, 256,
1024, Full}.

Furthermore, we conduct cross-domain evalua-
tion where we train the models on restaurant re-
views and test on laptop reviews, and vice versa.
Finally, we train the models on ATSC and test them
on aspect category sentiment classification (ACSC),
another ABSA variant, to evaluate the robustness
to an unseen querying aspect distribution. Unlike
aspect terms, these categories such as food, service,
price, and ambience usually do not explicitly ap-
pear within the text, but implicitly stated through
aspect terms or overall context.4

4Please refer to Appendix A for ATSC/ACSC dataset statis-
tics and preprocessing.
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Model
Number of Training Examples

Zero 16 64 256 1024 Full (1850)
Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1

BERT-ADA – – – – – – – – – – 79.19† 74.18†

BERT [CLS] – – 48.75 34.92 60.63 49.43 72.35 64.31 76.87 71.22 80.06 75.08
BERT NSP – – 48.24 31.35 60.91 49.27 72.38 64.64 76.77 71.12 80.25 75.46

BERT LM
63.58 46.17 69.05 58.60 72.80 65.54 76.59 70.65 79.30 74.80 81.10 76.83

– – +20.30* +23.68* +11.89* +16.11* +4.21* +6.01* +2.43* +3.58* +0.85* +1.37*

GPT-2 LM
60.45 39.59 68.94 56.71 71.54 63.69 76.48 70.89 79.02 74.88 80.73 77.13

– – +20.19* +21.79* +10.63* +14.26* +4.10* +6.25* +2.15* +3.66* +0.48 +1.67*

BERT NLI
58.93 54.91 72.88 68.06 74.95 70.84 76.22 71.65 77.42 73.52 77.58 73.18

– – +24.13* +33.14* +14.04* +21.41* +3.84* +7.01* +0.55 +2.30 -2.67 -2.28

(a) Laptops
Zero 16 64 256 1024 Full (3602)

Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1

BERT-ADA – – – – – – – – – – 87.14† 80.05†

BERT [CLS] – – 59.89 34.50 73.00 50.79 79.45 64.70 83.48 73.62 86.77 79.33
BERT NSP – – 61.05 32.46 74.73 53.00 79.34 65.51 83.61 74.15 87.09 79.98

BERT LM
70.86 48.17 71.99 56.65 77.79 63.30 81.10 69.27 85.12 76.60 87.50 80.78

– – +10.94* 22.15* +3.06* +10.30* +1.65* +3.76* +1.51* +2.45* +0.41 +0.80

GPT-2 LM
71.40 45.53 75.41 60.06 79.30 65.49 82.27 71.62 85.28 77.38 86.99 80.02

– – +14.36* +25.56* +4.57* +12.49* +2.82* +6.11* +1.67* +3.23* -0.1 +0.04

BERT NLI
61.79 57.93 74.74 65.58 79.33 69.44 81.24 71.94 83.07 74.52 85.07 77.53

– – +13.69* +31.08* +4.60* +16.44* +1.79* +6.43* -0.54 +0.37 -2.02 -2.45

(b) Restaurants

Table 1: Results of our methods and baselines. Acc and MF1 refer to accuracy and macro F1, respectively. We use
five random seeds for each of the prompts and baselines, and average their scores. We averaged the performance
of our models across all three prompts. Please see Appendix C for performance comparison between the prompts.
Boldfaces indicate the best performance given the same number of labels, and the best baseline scores are under-
lined. † BERT-ADA results are taken directly from Rietzler et al. (2020). * indicates an increase over the baseline
with significance level .05 using a two mean z-test.

4.1 Baselines

We compared our prompt-based methods with two
common strategies of utilizing BERT for classifi-
cation tasks: 1) the last hidden state of [CLS]
token (BERT [CLS]), and 2) the NSP head of
BERT (BERT NSP). We note that the architecture
of BERT NSP is equivalent to BERT-ADA (Ri-
etzler et al., 2020), currently the top-performing
BERT-based model for ATSC which we show their
reported full-shot performance for reference.

4.2 Results

Prompts constantly outperform the no-prompt
baselines. We can see in Table 1 that for both
target domains, our prompt-based BERT models
outperform the no-prompt baselines in all cases.
Especially for few-shots, we achieve larger perfor-
mance gains as fewer labels are available. We note
that BERT NLI does particularly well in 16 to 256
shots for laptops, with noticeably higher accuracy

and macro F1 (MF1) than other prompt models.5

We emphasize again that our NLI models are
only trained on the MNLI dataset, which makes
them particularly preferable when in-domain text
(shopping reviews) is not readily available.

Lastly, we observe that our methods achieve
good performances in the zero-shot cases, signifi-
cantly outperforming the baselines that are trained
on 16 samples, further showing its practicality.

Prompts can utilize cross-domain data more
effectively. As shown in Table 2, the prompt mod-
els with 16-shot cross-domain training achieve
better performance than both in- and out-domain
BERT NSP. It is also interesting to note that cross-
domain have even exceeded in-domain for the
restaurants domain. This suggests that our methods
might have the potential to be particularly more

5With the help of more abundant neutral examples in
MNLI, Appendix G suggests that BERT NLI is particularly
better at detecting neutral sentiment, subsequently leading to
better MF1 scores.
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Model In/Cross 16 Full
Restaurants Laptops Restaurants Laptops

BERT NSP
In 61.05 48.24 87.09 80.25

Cross 49.55 47.46 81.29 78.56

BERT LM
In 71.99 69.05 87.50 81.10

Cross 75.21 68.17 81.27 79.03

BERT NLI
In 74.74 72.88 85.07 77.58

Cross 77.45 70.43 80.35 76.61

Table 2: Accuracies of BERT NSP, LM, and NLI
trained with in-domain and cross-domain data.

Model 16 Full
Acc MF1 Acc MF1

BERT NSP 64.73 33.22 82.45 70.91

BERT LM 76.67 56.77 84.31 74.14
BERT NLI 66.92 58.18 67.42 59.24

Table 3: Performance on ACSC without any extra train-
ing. Refer to Appendix E for the results with other
training set sizes.

adaptable to arbitrary domains under low-resource
settings, which we plan to explore further in future
research.

Prompts can better recognize implicit aspects.
We can see from Table 3 that the BERT LM model
trained with merely 16 examples achieves about
77% accuracy on ACSC, while it was never trained
in terms of aspect categories at all. BERT NSP, the
no-prompt baseline, achieves around 65%. This
result suggests that our prompt-based models have
also acquired some abilities to recognize aspects
that are implied or worded differently from the
querying aspect term. Such abilities could also
make our prompt models more desirable for po-
tential real-life applications. We note that BERT
NLI performs rather poorly, particularly under full-
shot. As it hadn’t seen in-domain texts during pre-
training, we suspect that it cannot fully recognize
related domain-specific words.

5 Conclusion and Future Work

In this paper, we examined our prompt-based ATSC
models leveraging LM and NLI under zero-shot,
few-shot, and full supervised settings. We observe
a significant amount of improvements over the no-
prompt baselines in nearly all configurations we
have tested. In particular, we find that our NLI
model performs well with lower amounts of train-
ing data, while the BERT LM model does better
when more labels are available. In addition, we
have seen that it could effectively utilize cross-

domain labels and recognize implicit aspects, sug-
gesting that it would potentially be more applicable
in real-life scenarios.

For future work, one direction is to adapt our
aspect-dependent prompts to the models that jointly
perform aspect term extraction and sentiment clas-
sification, such as Luo et al. (2020). Secondly, we
could explore potential ways of combining ATSC,
masked/next word prediction, and NLI into a uni-
fied task in order to take the full advantage of both
our unlabeled text and NLI pretraining. Lastly,
it would be an interesting analysis to determine
whether there are any strong linguistic patterns
among correct or incorrect predictions that each
of our models make — such findings could allow
us to have more detailed insights into the potential
behaviors of our prompt-based models.
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A Dataset Information

A.1 SemEval 2014 Task 4 dataset

Aspect Target Sentiment Classification (ATSC,
Subtask 2) The dataset released by Pontiki et al.
(2014) is one of the most popular benchmark
datasets for ATSC used in the literature, which
contains English review sentences from two target
domains, laptops, and restaurants. We measure the
performance of our models and baselines on the
test splits of each domain.

Labels for the sentiments are limited to positive,
negative, neutral, and conflict. neutral refers to
the case where the opinion towards the aspect is nei-
ther positive nor negative, and conflict is for both
positive and negative sentiments being expressed
for one aspect.

To make our work comparable with previous
efforts (Xu et al., 2019; Rietzler et al., 2020), we
use the following preprocessing procedure:

1. Reviews with conflict labels were removed.
They have been usually ignored due to having
a very small number of examples.

2. Multiple aspect-sentiment labels within one
text piece were split up into different data
points.

Dataset statistics after preprocessing are pro-
vided in Table 4.

Class
Restaurant Laptop
Train Test Train Test

Positive 2164 728 987 341
Negative 645 196 866 128
Neutral 496 196 460 169

All 3602 1120 1850 638

Table 4: SemEval 2014 dataset statistics after prepro-
cessing.

Aspect Category Sentiment Classification
(ACSC, Subtask 4) For this task, the labeled
data is available only for the restaurant domain.
While the class labels are the same as ATSC, this
task has predefined aspect categories: food, price,
service, ambience, anecdotes/miscellaneous.
We only use the test split with 973 examples,
containing 657 positives, 222 negatives, and 94
neutrals. The train split for ACSC is never used in
any manner throughout our experiments.

A.2 LM Pretraining Corpora

We note the following sources of unlabeled review
texts to further pretrain BERT and GPT-2 language
models for two target domains of SemEval 2014
Task 4:

1. Amazon Review Data (Ni et al., 2019) is the
collection of customer reviews extracted from
the online shopping website Amazon. We
used 20,994,353 reviews written for the prod-
ucts from the electronics category. The LMs
pretrained with this collection are used to tar-
get the ATSC laptop domain.

2. Yelp Open Dataset6 consists of over 8 mil-
lion business reviews. We extracted the re-
views associated with restaurants (2,152,007
reviews). The LMs pretrained with this collec-
tion are used to target the ATSC restaurants
domain.

B Training and Testing Settings

Our training and testing settings are summarized in
Figure 2.

All the program codes used to produce results
presented in this paper are available at https:
//link.iamblogger.net/atscprompts.

Publicly available BERT MLM, GPT-2 CLM,
and BERT NLI weights Following the common
practice in recent NLP transfer learning literature,
we use publicly available weights pretrained on
large unlabeled corpora and task datasets for further
training. For BERT MLM and GPT-2 CLM, we use
the weights obtained from the transformers
library (Wolf et al., 2020). For BERT NLI, we use
the weights released by Morris et al. (2020), which
were trained on the MNLI dataset (Williams et al.,
2018).

BERT / GPT-2 main layer finetuning Unlike
more usual ways of using prompts where the main
layers of language models are left frozen and do
not get to see any updates, we simply leave them
open for further finetuning. While this technically
leads to more amount of computation, we antici-
pated that the cost would be negligible given that
the amount of labeled data for the task is fairly
small, especially for few-shot learning cases we are
particularly interested in.

6https://www.yelp.com/dataset

https://link.iamblogger.net/atscprompts
https://link.iamblogger.net/atscprompts
https://www.yelp.com/dataset
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BERT Pretraining  
(Devlin et al., 2019)

NLI Pretraining 
(Section 3.2)

In-domain LM 
Pretraining 

(Section 3.1)

In-domain Label 
Finetuning

Cross-domain Label 
Finetuning

Zero-shot (Table 1)

Zero-shot (Table 7)

Few-shot and Full-shot 
(Table 1)

Cross-domain Testing 
(Table 2)

Few-shot and Full-shot 
(Table 3 and 7)

In-domain Label 
Finetuning

In-domain Zero-shot, Few-shot, 
and Full-shot Testing (Table 8)

Prompt Comparison 
(Table 5 and 6)

In-domain Testing

ACSC Testing

Figure 2: The flow chart of our methods and experiments. The blue blocks represent the training steps and the
orange blocks represent the testing steps.

Train-test split and training hyperparameters
For the full-shot training, we use the entirety of the
train split of the SemEval dataset following Rietzler
et al. (2020).

For ATSC training, we train with the SemEval
datasets for 20 epochs. Following the recommenda-
tions regarding BERT finetuning made by Mosbach
et al. (2020), we finetune all our prompt-based mod-
els and no-prompt baselines until the minimum
training loss reaches near zero to achieve stable
task performance, where the minimum losses are
around 1e-07 and 1e-06.

For each ATSC model, we train them 5 times
with different random seeds. Using different ran-
dom seeds changes the data loading order, and the
subset of training examples chosen for few-shot
settings.

Hardwares and Softwares Used For each
ATSC model, we used one NVIDIA TITAN
X GPU for training. The version 4.3.3 of
transformers library (Wolf et al., 2020) is
used with pytorch version 1.7.1. We also im-
plemented all the loading scripts for our datasets
to be compatible with the version 1.2.1 of the Hug-
gingface datasets library7. We have used the
spacy library (Honnibal and Montani, 2017) for
POS tagging, and pytokenizations8 for tok-
enizer alignment.

Prompt Accuracy Macro F1
(Std. Error) (Std. Error)

BERT NSP (No prompt)
48.24 31.35

(0.0283) (0.0198)

"I felt the {aspect} was [MASK]."
69.06 59.71

(0.0060) (0.0214)

"The {aspect} made me feel [MASK]."
68.15 56.59

(0.0069) (0.0205)

"The {aspect} is [MASK]."
69.94 59.51

(0.0061) (0.0179)

(a) Laptops

Prompt Accuracy Macro F1
(Std. Error) (Std. Error)

BERT NSP (No prompt)
61.05 32.46

(0.0238) (0.0374)

"I felt the {aspect} was [MASK]."
73.59 59.03

(0.0247) (0.0168)

"The {aspect} made me feel [MASK]."
69.38 51.65

(0.0223) (0.0114)

"The {aspect} is [MASK]."
73.02 59.25

(0.0209) (0.0152)

(b) Restaurants

Table 5: Comparing different prompts on 16-shot train-
ing of our prompt models and baselines.

C Comparing Performance of Different
Prompts

While Table 1 shows the scores averaged over dif-
ferent prompts, the performances are very similar
across different manual prompts we have chosen,
as seen during the full-shot training for the laptops
domain in Table 5. We observed similar trend in
the restaurant domain, and few-shot scenarios we

7https://huggingface.co/docs/datasets
/master/

8https://github.com/tamuhey/tokenizat
ions

https://huggingface.co/docs/datasets/master/
https://huggingface.co/docs/datasets/master/
https://github.com/tamuhey/tokenizations
https://github.com/tamuhey/tokenizations
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have tested. This suggests that practically reason-
able choices of prompts could still achieve good
ATSC performance.

D Importance of Aspect Dependent
Prompts

Prompt Accuracy Macro F1

"I felt the {aspect} was [good/bad]." 77.77 73.56
"I felt the things were [good/bad]." 74.06 70.69

-3.71 -2.88

(a) Laptops

Prompt Accuracy Macro F1

"The aspect is [good/bad]." 85.93 79.18
"The things are [good/bad]." 74.80 64.95

-11.13 -14.22

(b) Restaurants

Table 6: Performance changes with aspect terms re-
moved from the best performing prompt for our NLI
model.

We performed small sanity check experiments
where we confirm that given aspect terms in the
prompts are actually being utilized to produce cor-
rect predictions. We take the best performing
prompts for our NLI model, and replace all aspect
terms with things for all test examples in the
full-shot setting, regardless of actual aspect terms.
Then, the exact prompt wording would become
global for all inputs. Table 6 shows that this brings
significant drops in performance for both test do-
mains, showing that the prompt needs to be aspect
dependent to produce accurate predictions.

E Detailed ACSC Results

In Table 7, we can see that BERT NLI is generally
performing worse than BERT LM and BERT NSP
in most cases. Unlike BERT LM, its performance
appears to be stagnating even with more ATSC
training examples. This trend is very different from
what we observed in the main ATSC results in
Table 1, where BERT NLI maintained high per-
formance advantages in few-shot cases. The most
probable cause for BERT NLI’s worse performance
is that it cannot fully comprehend the entailment
relationships expressed with domain-specific vo-
cabularies - due to not having done in-domain text
pretraining, it seems quite likely for BERT NLI
that it cannot recognize the facts such as fajita
being a sort of food.

F Effectiveness of In-domain LM
Pretraining

In Table 8, we show both BERT NSP and BERT
LM results with the original pretrained weights
(“Original") the weights further trained with
domain-specific review texts (“Amazon, Yelp").
We could see that BERT LM with the original
weights performs better than BERT NSP with
domain-specific further pretraining in few shot set-
tings. As previously suggested in Scao and Rush
(2021), it appears that just using prompts alone
does bring the positive benefits of alleviating the
labeled data scarcity. We also note that the gap
between the original weights and the further pre-
trained ones is relatively small when more number
of labeled examples becomes available for training.

G Further Error Analysis

Model Restaurants Laptops
Pos Neg Neu Pos Neg Neu

BERT NSP 75.50 14.47 7.40 63.65 22.76 7.64

BERT LM 86.34 57.65 25.95 83.51 60.83 31.46
GPT-2 LM 87.95 65.68 26.54 82.85 66.83 20.47
BERT NLI 80.86 66.30 51.55 83.60 69.60 50.98

Table 10: F1 scores for each class achieved by the base-
line and our models with 16 examples.

In Table 10, we show F1 scores for each classes.
Over the baseline BERT NSP, all our prompt mod-
els show large improvements. Particularly with
BERT NLI, we see that F1 for the neutral class
has greatly improved, doing better than both BERT
NSP and BERT LM. It appears that BERT NLI is
particularly better than BERT LM at detecting neu-
tral and negative examples, quite possibly because
the MNLI dataset contains many examples with
neutral and negative labels.

In Table 9, we present a few notable examples
from test data that one or more of our prompt-based
models had predicted correctly while the baseline
did not. R1 shows an example, which our model
correctly classifies as neutral while the no-prompt
baseline wrongly predicts positive. R2 shows an
example where our models are able to make the
correct prediction despite having multiple aspects
within one sentence. We found R3 quite interest-
ing, where there are no explicit terms to express
negative sentiment, intuitively making it difficult
for the model to detect sentiment; Yet only the NLI
model is able to make the correct prediction. For
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Model
Number of ATSC Examples

Zero 16 64 256 1024 Full
Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1

BERT NSP – – 64.73 33.22 81.05 56.77 84.60 70.88 85.28 74.52 82.45 70.91

BERT LM 76.40 50.11 76.67 56.77 82.75 64.26 84.70 68.31 86.28 74.80 84.31 74.14
– – +11.94 +23.55 +1.70 +7.49 +0.1 -2.57 +1.00 +0.28 +1.86 +3.23

BERT NLI 44.36 40.77 66.92 58.18 73.41 63.67 69.52 60.66 70.81 61.61 67.42 59.24
– – +2.19 +24.96 -7.64 +6.90 -15.08 -10.22 -14.47 -12.91 -15.03 -11.66

Table 7: Performance on ACSC test data with our ATSC prompt models and baselines. We use 5 random seeds for
each of the prompts and baselines, and average their scores.

Model Pretraining Corpora
Number of Training Examples

Zero 16 64 256 1024 Full
Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1

BERT NSP Original – – 45.74 30.25 50.88 36.81 69.69 63.21 76.14 70.64 77.96 73.24
Original + Amazon – – 48.24 31.35 60.91 49.27 72.38 64.64 76.77 71.12 80.25 75.46

+2.5 +1.10 +10.03 +12.46 +2.69 +1.43 +0.63 +0.48 +2.29 +2.22

BERT LM Original 59.20 38.42 65.25 55.82 70.54 63.30 73.33 66.86 76.67 71.73 77.61 73.06
Original + Amazon 63.58 46.17 69.05 58.60 72.80 65.54 76.59 70.65 79.30 74.80 81.10 76.83

+4.38 +7.75 +3.80 +2.78 +2.26 +2.24 +3.26 +3.79 +2.63 +3.07 +3.49 +3.77

(a) Laptops

Model Pretraining Corpora
Number of Training Examples

Zero 16 64 256 1024 Full
Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1

BERT NSP Original – – 55.00 34.09 63.36 37.26 74.39 58.16 80.57 70.09 84.77 76.93
Original + Yelp – – 61.05 32.46 74.73 53.00 79.34 65.51 83.61 74.15 87.09 79.98

+6.05 -1.63 +11.37 +15.74 +4.95 7.35 +3.04 +4.06 +2.32 +3.05

BERT LM Original 68.04 36.44 65.73 51.93 74.88 58.21 77.24 63.76 81.82 72.21 84.26 75.90
Original + Yelp 70.86 48.17 71.99 56.65 77.79 63.30 81.10 69.27 85.12 76.60 87.50 80.78

+2.82 +11.73 +6.26 +4.72 +2.91 +5.09 +3.86 +5.51 +3.30 +4.39 +3.24 +4.88

(b) Restaurants

Table 8: Comparing our prompt model performance between the original pretrained weights (“Original") and the
weights further trained with domain-specific review texts (“Amazon, Yelp").

Type Review Truth Baseline NLI MLM GPT-2

R1 the good place to hang out during the day after shop-
ping or to grab a simple soup or classic french dish
over a glass of wine.

Neu Pos Neu Neu Neu

R2 My friend had a burger and I had these wonderful
blueberry pancakes.

Neu Pos Neu Neu Neu

R3 The sushi is cut in blocks bigger than my cell phone. Neg Neu Neg Neu Neu

R4 The absolute worst service I’ve ever experienced and
the food was below average (when they actually gave
people the meals they ordered).

Neu Neu Neg Neg Neg

R5 Food was decent, but not great. Pos Neu Neu Neu Neu

Table 9: Analysis of various scenarios where our models and baselines fail. Aspect words are underlined, predic-
tions are highlighted in green (correct) or red (incorrect).
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future studies, it would be an interesting direction
to perform further statistical analysis on whether
phenomena we see here generally hold for prompt-
based models and strong linguistic patterns emerge
among them.

We also note some examples that our models
were not able to classify correctly. For R4, all the
models got wrong except for the baseline. This
example seems particularly challenging, as there
is another sentence showing negative sentiment
about a very similar aspect (“the food was below
average") R5 shows an example where the baseline
and all our models fail — we find the true label here
somewhat questionable, as intuitively the reviewer
indeed appears to be neutral about food and not
particularly positive.


