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Abstract

This paper presents a novel training method,
Conditional Masked Language Modeling
(CMLM), to effectively learn sentence repre-
sentations on large scale unlabeled corpora.
CMLM integrates sentence representation
learning into MLM training by conditioning
on the encoded vectors of adjacent sentences.
Our English CMLM model achieves state-of-
the-art performance on SentEval (Conneau
and Kiela, 2018), even outperforming models
learned using supervised signals. As a fully
unsupervised learning method, CMLM can
be conveniently extended to a broad range
of languages and domains. We find that a
multilingual CMLM model co-trained with
bitext retrieval (BR) and natural language
inference (NLI) tasks outperforms the previ-
ous state-of-the-art multilingual models by a
large margin, e.g. 10% improvement upon
baseline models on cross-lingual semantic
search. We explore the same language bias
of the learned representations, and propose
a simple, post-training and model agnostic
approach to remove the language identifying
information from the representation while still
retaining sentence semantics.

1 Introduction

Sentence embeddings map sentences into a vector
space. The vectors capture rich semantic informa-
tion that can be used to measure semantic textual
similarity (STS) between sentences or train classi-
fiers for a broad range of downstream tasks (Con-
neau et al., 2017; Subramanian et al., 2018; Lo-
geswaran and Lee, 2018; Cer et al., 2018; Reimers
and Gurevych, 2019; Yang et al., 2019a,e). State-
of-the-art models are usually trained on supervised
tasks such as natural language inference (Conneau
et al., 2017), or with semi-structured data like
question-answer pairs (Cer et al., 2018) and trans-
lation pairs (Subramanian et al., 2018; Yang et al.,

∗Work done during internship at Google Research.

2019a). However, labeled and semi-structured data
are difficult and expensive to obtain, making it
hard to cover many domains and languages. Con-
versely, recent efforts to improve language mod-
els include the development of masked language
model (MLM) pre-training from large scale unla-
beled corpora (Devlin et al., 2019; Lan et al., 2020;
Liu et al., 2019). While internal MLM model rep-
resentations are helpful when fine-tuning on down-
stream tasks, they do not directly produce good sen-
tence representations, without further supervised
(Reimers and Gurevych, 2019) or semi-structured
(Feng et al., 2020) fine-tuning.

In this paper, we explore an unsupervised ap-
proach, called Conditional Masked Language Mod-
eling (CMLM), to effectively learn sentence rep-
resentations from large scale unlabeled corpora.
The CMLM model architecture is illustrated in
Fig. 1, which integrates sentence representation
learning into MLM training by conditioning on sen-
tence level representations produced by adjacent
sentences. The model therefore needs to learn ef-
fective sentence representations in order to perform
good MLM. Since CMLM is fully unsupervised,
it can be easily extended to new languages. We
explore CMLM for both English and multilingual
sentence embeddings for 100+ languages. Our En-
glish CMLM model achieves state-of-the-art per-
formance on SentEval (Conneau and Kiela, 2018),
even outperforming models learned using (semi-
)supervised signals. Moreover, models training on
the English Amazon review data using our multi-
lingual vectors exhibit strong multilingual transfer
performance on translations of the Amazon review
evaluation data to French, German and Japanese,
outperforming existing multilingual sentence em-
bedding models by > 5% for non-English lan-
guages and by > 2% on English.

We further extend the multilingual CMLM to co-
train with parallel text (bitext) retrieval task, and
finetune with cross-lingual natural language infer-
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Figure 1: The architecture of Conditional Masked Language Modeling (CMLM).

ence (NLI) data, inspired by the success of prior
work on multitask sentence representation learn-
ing (Subramanian et al., 2018; Yang et al., 2019a;
Reimers and Gurevych, 2020) and NLI learn-
ing (Conneau et al., 2017; Reimers and Gurevych,
2019). We achieve performance 3.6% better than
the previous state-of-the-art multilingual sentence
representation model (see details in Section 4.2).
On cross-lingual semantic search task, our model
outperforms baseline models by 10% on average
over 36 languages. Language agnostic represen-
tations require semantically similar cross-lingual
pairs to be closer in representation space than unre-
lated same-language pairs (Roy et al., 2020). While
we find our original sentence embeddings do have
a bias for same language sentences, we discover
that removing the first few principal components of
the embeddings eliminates the self language bias.

The rest of the paper is organized as follows.
Section 2 describes the architecture for CMLM
unsupervised learning. In Section 3 we present
CMLM trained on English data and evaluation re-
sults on SentEval. In Section 4 we apply CMLM
to learn sentence multilingual sentence representa-
tions. Multitask training strategies on how to effec-
tively combining CMLM, bitext retrieval and cross-
lingual NLI finetuning are explored. In Section 5,
we investigate self language bias in multilingual
representations and propose a simple but effective
approach to eliminate it. The pre-trained models
are released at https://tfhub.dev/s?q=
universal-sentence-encoder-cmlm.

2 Conditional Masked Language
Modeling

We introduce Conditional Masked Language Mod-
eling (CMLM) as a novel architecture for combin-

ing next sentence prediction with MLM training.
By “conditional”, we mean the MLM task for one
sentence depends on the encoded sentence level
representation of the adjacent sentence. This builds
on prior work on next sentence prediction that has
been widely used for learning sentence level rep-
resentations (Kiros et al., 2015; Logeswaran and
Lee, 2018; Cer et al., 2018; Yang et al., 2019a),
but has thus far produced poor quality sentence em-
beddings within BERT based models using MLM
loss (Reimers and Gurevych, 2019).

While existing MLMs like BERT include next
sentence prediction tasks, they do so without any
inductive bias to try to encode the meaning of a
sentence within a single embedding vector. We
introduce a strong inductive bias for learning sen-
tence embeddings by structuring the task as fol-
lows. Given a pair of ordered sentences, the first
sentence is fed to an encoder that produces a sen-
tence level embedding. The embedding is then
provided to an encoder that conditions on the sen-
tence embedding in order to better perform MLM
prediction over the second sentence. This is no-
tably similar to Skip-Thought (Kiros et al., 2015),
but replaces the generation of the complete second
sentence with the MLM denoising objective. It is
also similar to T5’s MLM inspired unsupervised
encode-decoder objective (Raffel et al., 2019), with
the second encoder acting as a sort of decoder given
the representation produced for the first sentence.
Our method critically differs from T5’s in that a
sentence embedding bottleneck is used to pass in-
formation between two model components and in
that the task involves denoising a second sentence
when conditioning on the first rather than denoising
a single text stream.

Fig. 1 illustrates the architecture of our model.

https://tfhub.dev/s?q=universal-sentence-encoder-cmlm
https://tfhub.dev/s?q=universal-sentence-encoder-cmlm
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The first sentence s1 is tokenized and input to a
transformer encoder and a sentence vector v ∈ Rd
is computed from the sequence outputs by average
pooling.1 The sentence vector v is then projected
into N spaces with one of the projections being the
identity mapping, i.e. vp = P (v) ∈ Rd×N . Here
we use a three-layer MLP as the projection P (·).
Details of P (·) are available in the supplementary
material. One motivation for the projections of s1 is
that MLM of s2 then can attend to various represen-
tations of s1 instead of only 1. In Section 5.1, we
explore various different configurations of CMLM,
including the number of projection spaces N .

The second sentence s2 is then masked follow-
ing the procedure described in the original BERT
paper, including random replacement and the use
of unchanged tokens. The second encoder shares
the same weights with the encoder used to embed
s1

2. Tokens in the masked s2 are first converted
into token vectors. The masked language modeling
of s2 depends on s1 such that the process involves
cross-attention between s2 token vectors and vp.
In practice, this is implemented by concatenating
token embeddings of s2 with vp

3. Other implemen-
tations are also experimented (see Section 5.1) and
we empirically find concatenation works the best.
The concatenated representations are then provided
to the transformer encoder to predict the masked
tokens in s2.

At inference time, we keep the first encoding
module and discard the subsequent MLM predic-
tion. Similar to skip-thought, CMLM trains the
encoder to produce sentence embeddings useful
for predicting material in the adjunct sentences.
CMLM adapts this existing idea to MLM training.
Appending multiple projections performs well due
to fine-grained attention between tokens and the
different views of the sentence embeddings. Note
that CMLM differs from SkipThought in the fol-
lowing aspects: (a) SkipThought relies on an extra
decoder network while CMLM only has the en-
coder. (b) SkipThought predicts the entire sentence
while CMLM predicts masked tokens only so the

1One can equivalently choose other pooling methods, such
as max pooling or use the vector output corresponding to a
special token position such as the [CLS] token.

2The dual-encoder sharing encoder weights for different
inputs can be also referred as “siamese encoder”

3Representation concatenation has been used in previous
work for enabling cross attention between global vectors and
local token embeddings to help the representations learning
of long/structured inputs (Ainslie et al., 2020; Manzil Zaheer,
2020).

predictions can be done in parallel. These two dif-
ferences make CMLM more efficient to train than
SkipThought.

3 Learning English Sentence
Representations with CMLM

For training English sentence encoders with
CMLM, we use three Common Crawl dumps.
The data are filtered by a classifier which detects
whether a sentence belongs to the main content of
the web page or not. We use WordPiece tokeniza-
tion and the vocabulary is the same as public En-
glish uncased BERT. In order to enable the model
to learn bidirectional information, for two consec-
utive sequences s1 and s2, we swap their order
for 50% of the time. This order-swapping process
echos with the preceding and succeeding sentences
prediction in Skip-Thought (Kiros et al., 2015).
The length of s1 and s2 are set to be 256 tokens
(the maximum length). The number of masked to-
kens in s2 are 80 (31.3%), moderately higher than
classical BERT. This change in the ratio of masked
tokens is to make the task more challenging, due to
the fact that in CMLM, language modeling has ac-
cess to extra information from adjacent sentences.
We train with batch size of 2048 for 1 million steps.
The optimizer is LAMB (You et al., 2020) with
learning rate of 10−3, β1 = 0.9, β2 = 0.999,
warm-up in the first 10,000 steps and linear decay
afterwards. We explore two transformer configura-
tions same as in the original BERT paper, i.e., base
and large. The number of projections N is 15 by
experimenting with multiple choices.

3.1 Evaluation

We evaluate the sentence representations on the
following tasks: (1) classification: MR (movie re-
views Pang and Lee (2005)), binary SST (sentiment
analysis, Socher et al. (2013)), TREC (question-
type, Voorhees and Tice (2000)), CR (product
reviews, Hu and Liu (2004)), SUBJ (subjectiv-
ity/objectivity, Pang and Lee (2004)). (2) En-
tailment: SICK dataset for entailment (SICK-E,
Marelli et al. (2014)). The evaluation is done using
SentEval (Conneau and Kiela, 2018) which is a pre-
vailing evaluation toolkit for sentence embeddings.
The classifier for the downstream is logistic regres-
sion. For each task, the encoder and embeddings
are fixed and only downstream neural structures
are trained.

The baseline sentence embedding models in-
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clude SkipThought (Kiros et al., 2015), InferSent
(Conneau et al., 2017), USE (Cer et al., 2018),
QuickThought (Logeswaran and Lee, 2018) and
English BERT using standard pre-trained mod-
els from TensorFlow Hub website (Devlin et al.,
2019), XLNet (Yang et al., 2019d), RoBERTa (Liu
et al., 2019), SBert (Reimers and Gurevych, 2019).
To evaluate the possible improvements coming
from training data and processes, we train standard
BERT models (English BERT base/large (CC)) on
the same Common Crawl Corpora that CMLM is
trained on. Similarly, we also train QuickThought,
a competitive unsupervised sentence representa-
tions learning model, on the same Common Crawl
Corpora (denoted as “QuickThought (CC)”). To
further address the possible advantage from using
Transformer encoder, we use a Transformer en-
coder as the sentence encoder in QuickThought
(CC). The representations for BERT are computed
by averaging the sequence outputs (we also explore
options including [CLS] vector and max pooling
and the results are available in the appendix).

3.2 Results

Evaluation results are presented in Table 1. The
numbers are averaged over 5 runs and the per-
formance variances are provided in the appendix.
CMLM outperforms existing models overall, best-
ing MLM (both English BERT and English BERT
(CC)) using both base and large configurations.
The closest competing model is SBERT, which
uses supervised NLI data rather than a purely un-
supervised approach. Interestingly, CMLM outper-
forms SBERT on the SICK-E NLI task even the
later model is trained with a NLI task. We also eval-
uate on Semantic Textual Similarity (STS) datasets.
As shown in Table 2, CMLM exhibits competi-
tive performance compared with BERT and GloVe.
One interesting observation is that CMLM base sig-
nificantly outperforms other baselines (including
CMLM large) on the STS Benchmark dataset.

4 Learning Multilingual Sentence
Representations with CMLM

As a fully unsupervised method, CMLM can be
conveniently extended to multilingual modeling
even for less well resourced languages. Learn-
ing good multilingual sentence representations is
more challenging than monolingual ones, espe-
cially when attempting to capture the semantic
alignment between different languages. As CMLM

does not explicitly address cross-lingual alignment,
we explore several modeling approaches besides
CMLM: (1) Co-training CMLM with a bitext re-
trieval task; (2) Fine-tuning with cross-lingual NLI
data.

4.1 Multilingual CMLM
We follow the same configuration used to learn
English sentence representations with CMLM, but
extend the training data to include more languages.
Results below will show that CMLM again exhibits
competitive performance as a general technique to
learn from large scale unlabeled corpora.

4.2 Multitask Training with CMLM and
Bitext Retrieval

Besides the monolingual pretraining data, we col-
lect a dataset of bilingual translation pairs {(si, ti)}
using a bitext mining system (Feng et al., 2020).
The source sentences {si} are in English and the
target sentences {ti} covers over 100 languages.
We build a retrieval task with the translation paral-
lel data, identifying the corresponding translation
of the input sentence from candidates in the same
batch. Concretely, incorporating Additive Margin
Softmax (Yang et al., 2019b), we compute the bi-
text retrieval loss Lsbr for the source sentences as:

Lsbr = −
1

B

B∑
i=1

eφ(si,ti)−m

eφ(si,ti)−m +
∑B

j=1,j 6=i e
φ(si,tj)

Above φ(si, tj) denotes the the inner products
of sentence vectors of si and tj (embedded by the
transformer encoder); m and B denotes the addi-
tive margin and the batch size respectively. Note
the way to generate sentence embeddings is the
same as in CMLM. We can compute the bitext
retrieval loss for the target sentences Ltbr by nor-
malizing over source sentences, rather than target
sentences, in the denominator.4 The final bitext
retrieval loss Lbr is given as Lbr = Lsbr + Ltbr.

There are several ways to incorporate the mono-
lingual CMLM task and bitext retrieval (BR). We
explore the following multistage and multitask pre-
training strategies:
S1. CMLM+BR: Train with CMLM and BR from

the start;
S2. CMLM→ BR: Train with CMLM in the first

stage and then train with on BR;
4i.e., by swapping the i and j subscripts in the last term of

the denominator.
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.

SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0 82.3 85.8 83.8
InferSent 81.6 86.5 92.5 90.4 84.2 88.2 75.8 84.3 86.4 85.5
USE 80.1 85.2 94.0 86.7 86.4 93.2 70.1 82.4 85.9 84.9
QuickThought (CC) 75.7 81.9 94.3 84.7 79.7 83.0 70.4 75.0 78.5 80.4
XLNet 83.6 82.1 90.8 89.0 89.0 90.4 70.1 82.1 78.4 83.9

BERT-based models

English BERT base 81.6 87.4 95.2 87.8 85.8 90.6 71.1 79.3 80.5 84.3
English BERT base (CC) 82.5 88.5 95.6 87.3 88.0 91.4 72.0 79.3 79.0 84.6
SBERT (NLI, base) 83.6 89.4 94.4 89.9 88.9 89.6 76.0 79.9 80.6 85.8
CMLM base (ours) 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0

English BERT large 84.3 88.9 95.7 86.8 88.9 91.4 71.8 75.7 77.0 84.5
English BERT large (CC) 85.4 89.0 95.7 86.9 90.5 91.2 75.5 74.3 77.0 85.0
RoBERTa (large) 85.2 90.6 97.0 90.0 89.5 93.6 74.2 75.1 78.9 86.0
SBERT (NLI, large) 84.8 90.0 94.5 90.3 90.7 87.4 76.0 74.9 84.2 85.9
CMLM large (ours) 85.6 89.1 96.6 89.3 91.4 92.4 70.0 82.2 84.5 86.8

Table 1: Transfer learning test set results on SentEval for English models. Baseline models include BERT-based
(BERT, RoBERTA and SBERT) and non-BERT models (XLNet, SkipThought, InferSent and USE).

Model STS12 STS13 STS14 STS15 STS16 STSB SICK-R Avg.

Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT Mean embeddings 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
CMLM base (ours) 58.20 61.07 61.67 73.32 74.88 76.60 64.80 67.22
CMLM large (ours) 59.02 61.68 62.80 74.16 75.64 69.39 66.56 67.03

Table 2: Spearman rank correlation on Semantic Textual Similarity (STS) datasets. SICK-R is zero-shot evalua-
tion by directly computing the cosine similarity of sentence embeddings, without training the task-specific neural
network.

S3. CMLM → CMLM+BR: Train with only
CMLM in the first stage and then with both
tasks.

When training with both CMLM and BR, the
optimization loss is a weighted sum of the lan-
guage modeling and the retrieval loss Lbr, i.e.
L = LCMLM+αLbr. We empirically findα = 0.2
works well. As shown in Table 4, S3 is found to be
the most effective. Unless otherwise denoted, our
models trained with CMLM and BR follow S3. We
also discover that given a pre-trained transformer
encoder, e.g. mBERT, we can improve the quality
of sentence representations by finetuning the trans-
former encoder with CMLM and BR. As shown in
Table 4, the improvements of f-mBERT (finetuned
mBERT) upon mBERT are significant.

4.3 Finetuning with Cross-lingual Natural
Language Inference

Finetuning with NLI data has proved to be an ef-
fective method to improve the quality of embed-
dings for English models. We propose to leverage
cross-lingual NLI finetuning in multilingual repre-
sentations. Given a premise sentence u in language

l1 and a hypothesis sentence v in language l2, we
train a 3-way classifier on the concatenation of
[u,v, |u − v|,u ∗ v]. Weights of transformer en-
coders are also updated in the finetuning process.
Different from previous work also using multilin-
gual NLI data (Yang et al., 2019a), the premise u
and hypothesis v are in different languages. The
cross-lingual NLI data are generated by translating
Multi-Genre NLI Corpus (Williams et al., 2018)
into 14 languages using Google Translate API.

4.4 Configurations

Monolingual training data for CMLM are gener-
ated from 3 versions of Common Crawl data in
113 languages. The data cleaning and filtering is
the same as the English-only ones. A new cased
vocabulary is built from the all data sources using
the WordPiece vocabulary generation library from
Tensorflow Text. The language smoothing expo-
nent from the vocab generation tool is set to 0.3,
as the distribution of data size for each language is
imbalanced. The final vocabulary size is 501,153.
The number of projections N is set to be 15, the
batch size B is 2048 and the positive margin is 0.3.
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Model ar bg de el en es fr hi ru sw th tr ur vi zh Avg.

mBERT 76.3 76.1 77.7 76.1 80.1 78.5 78.7 75.6 77.3 70.5 73.6 75.7 74.2 78.8 78.7 76.5
MLM (CC) 79.2 79.1 81.7 79.9 84.4 82.1 82.2 79.2 81.2 70.3 76.9 79.0 74.3 81.3 81.0 79.4
XLM-R 78.1 78.0 76.2 78.2 82.8 81.2 80.4 77.2 80.2 71.0 77.5 79.7 76.7 80.3 80.8 78.5
CMLM 80.6 81.2 82.6 81.4 85.0 82.3 83.4 80.0 82.3 76.2 78.8 81.0 78.5 81.6 81.7 81.2

Table 3: Performance (accuracy) of multilingual models trained with monolingual data on XEVAL. Highest num-
bers are highlighted in bold.

Model ar bg de el en es fr hi ru sw th tr ur vi zh Avg.

LASER 82.1 81.2 81.7 78.1 82.3 81.0 80.8 78.9 82.2 75.8 80.3 81.8 77.2 81.6 82.1 80.4
mUSE 80.4 – 82.2 – 83.3 82.7 82.4 – 82.3 – 81.6 80.3 – – 82.0 81.9
S1 78.3 78.9 79.3 78.1 81.0 78.7 79.5 78.0 79.0 76.6 77.8 78.6 77.7 79.0 78.6 78.6
S2 81.3 81.0 83.0 81.4 85.6 83.0 83.6 80.4 82.3 77.6 80.1 81.0 79.8 82.4 82.3 81.6
S3 82.6 83.0 84.0 81.8 85.8 84.2 84.6 81.7 84.0 79.3 81.2 82.7 81.2 83.0 83.0 82.8
S3+NLI 84.2 83.7 85.0 83.4 87.0 85.9 85.8 83.0 85.6 79.6 83.0 84.2 81.2 84.2 84.4 84.0

mBERT 76.3 76.1 77.7 76.1 80.1 78.5 78.7 75.6 77.3 70.5 73.6 75.7 74.2 78.8 78.7 76.5
f-mBERT 77.2 78.5 79.7 76.7 81.4 80.0 80.3 77.2 79.1 73.3 76.1 77.1 76.9 79.8 80.4 78.3

Table 4: Performance (accuracy) of models trained with cross-lingual data on XEVAL. We test with multiple
strategies for multitask pretraining: [S1]: CMLM → BR; [S2]: CMLM+BR; [S3]: CMLM → CMLM+BR.
[f-mBERT] denotes finetuning mBERT with CMLM and BR.

For CMLM only pretraining, the number of steps
is 2 million. In multitask learning, for S1 and S3,
the first stage is of 1.5 million and the second stage
is of 1 million steps; for S2, number of training
steps is 2 million. The transformer encoder uses
the BERT base configuration. Initial learning rate
and optimizer chosen are the same as the English
models. Motivations for choosing such configura-
tions, training details and potential limitations of
CMLM are discussed in the appendix.

4.5 Evaluations

4.5.1 XEVAL: Multilingual Benchmarks for
Sentence Representations Evaluation

Evaluations in previous multilingual literature fo-
cused on the cross-lingual transfer learning ability
from English to other languages. However, this
evaluation protocol that treats English as the “an-
chor” does not equally assess the quality of non-
English sentence representations with English ones.
To address the issue, we prepare a new benchmark
for multilingual sentence vectors, XEVAL, by trans-
lating SentEval (English) to other 14 languages
with Google Translate API. The reliability of XE-
VAL is discussed in the appendix.

Results of models trained with monolingual data
are shown in Table 3. Baseline models include
mBERT (Devlin et al., 2019), XLM-R (Ruder et al.,
2019) and a transformer encoder trained with MLM
on the same Common Crawl data (MLM(CC),
again this is to control the effects of training data).

The method to produce sentence representations
for mBERT and XLM-R is chosen to be average
pooling after exploring options including [CLS]
representations and max pooling. The multilingual
model CMLM trained on monolingual data outper-
form all baselines in all 15 languages.

Results of models trained with cross-lingual data
are presented in Table 4. Baseline models for com-
parison include LASER (Artetxe and Schwenk
(2019), trained with parallel data) and multilin-
gual USE ((Yang et al., 2019a), trained with cross-
lingual NLI. Note it only supports 16 languages).
Our model (S3) outperforms LASER in all 15 lan-
guages. Notably, finetuning with NLI in the cross-
lingual way produces significant improvement (S3
+ NLI v.s. S3). Multitask learning with CMLM and
BR can also be used to increase the performance of
pretrained encoders, e.g. mBERT. mBERT trained
with CMLM and BR (f-mBERT) has a significant
improvement upon mBERT.

4.5.2 Amazon Reviews

We conduct a zero-shot transfer learning evalua-
tion on Amazon reviews dataset (Prettenhofer and
Stein, 2010). Following Chidambaram et al. (2019),
the original dataset is converted to a classification
benchmark by treating reviews with strictly more
than 3 stars as positive and negative otherwise. We
split 6000 English reviews in the original training
set into 90% for training and 10% for develop-
ment. The two-way classifier, upon the concatena-
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Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja

mBERT 42.7 25.8 49.3 17 77.2 29.8 68.7 29.3 25.5 46.1 39 66.3 41.9 34.8 38.7 54.6 58.4 42
MLM (CC) 60.5 51.4 74.8 45 89.3 68.3 81.8 56.8 59.5 81.3 76.6 82.6 72.2 76.2 68.4 82.6 72.8 65.7
XLM 43.2 18.2 40 13.5 66.2 25.6 58.4 24.8 17.1 32.2 32.2 54.5 32.1 26.5 30.1 45.9 56.5 40
XLM-R 58.2 47.5 71.6 43 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77 68.3 60.6
LASER 89.4 91.9 95.0 89.6 99.0 94.9 98.0 96.7 94.6 71.6 96.3 95.6 92.1 94.7 96.0 94.5 95.4 95.3
CMLM 62.0 53.2 75.0 45.1 89.9 69.9 82.7 59.2 61.6 83.7 77.1 83.5 73.1 76.7 70.3 83.0 73.5 67.2
CMLM+BR 96.3 90.6 95.4 91.2 97.7 95.4 98.1 95.6 92.0 95.6 95.9 96.1 92.8 97.6 96.5 95.6 94.2 95.6
CMLM+BR+NLI 90.5 83.6 92.6 86.4 97.6 91.6 95.5 82.6 76.3 90.7 88.9 93.5 86.8 94.6 89.6 91.7 90.4 88.4

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Mean

mBERT 17.6 20.5 27.1 38.5 19.8 20.9 68 69.9 61.2 11.5 14.3 16.2 13.7 16 34.8 31.6 62 71.6 38.7
MLM (CC) 49.5 65.8 61.3 66.4 65.3 56.8 83.4 83.1 74.8 65.9 61.3 68.5 70.0 62.7 70.3 80.1 77.0 71.3 69.4
XLM 22.4 22.9 17.9 25.5 20.1 13.9 59.6 63.9 44.8 12.6 20.2 12.4 31.8 14.8 26.2 18.1 47.1 42.2 32.6
XLM-R 14.1 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3 57.3
LASER 23.0 35.9 18.6 88.9 96.9 91.5 96.3 95.2 94.4 57.5 69.4 79.7 95.4 50.6 97.5 81.9 96.8 95.5 84.4
CMLM 51.8 65.5 62.7 67.2 65.8 57.0 83.8 83.6 75.5 66.6 61.7 68.8 70.3 63.5 70.5 80.3 77.4 71.7 70.3
CMLM+BR 83.4 94.9 88.6 92.4 98.9 94.5 97.3 95.3 94.9 87.0 91.2 97.9 96.6 95.3 98.6 94.4 97.5 95.6 94.7
CMLM+BR+NLI 66.9 88.1 80.3 85.6 94.9 90.7 93.2 92.3 91.7 76.7 88.6 92.8 94.7 82.0 94.3 84.7 94.3 93.1 88.8

Table 5: Tatoeba results (retrieval accuracy) for each language. Our model CMLM+BR achieves the best results
on 30 out of 36 languages.

Models English French German Japanese

Encoder parameters are frozen during finetuning

Eriguchi et al. (2018) 83.2 81.3 - -
MTDE en-fr 87.4 82.3 - -
MTDE en-de 87.1 - 81.0 -
mBERT 80.0 73.1 70.4 71.7
XLM-R - 85.3 81.5 82.5
MLM (CC) 84.6 84.9 84.3 82.1
CMLM 88.4 88.2 87.5 83.7
CMLM+ BR 88.3 87.2 86.4 83.2
CMLM+ BR + NLI 89.4 88.8 88.4 82.8

Encoder parameters are trained during finetuning

mBERT 89.3 83.5 79.4 74.0
MLM (CC) 92.9 88.7 88.4 86.3
CMLM 93.4 92.4 92.1 88.6
CMLM+ BR 93.6 93.1 92.3 88.1
CMLM+ BR + NLI 93.7 92.4 93.5 86.8

Table 6: Classification accuracy on the Amazon Re-
views dataset.

tion of [u,v, |u− v|,u ∗ v] (following works e.g.
Reimers and Gurevych (2019)), is trained on the
English training set and then evaluated on English,
French, German and Japanese test sets (each has
6000 examples). The same multilingual encoder
and classifier are used for all the evaluations. We
also experiment with whether freezing the encoder
weights or not during training. As presented in Ta-
ble 6, CMLM alone has already outperformed base-
line models, including Multi-task Dual-Encoder
(MTDE, Chidambaram et al. (2019)), mBERT and
XLM-R. Training with BR and cross-lingual NLI
finetuning further boost the performance.

4.6 Tatoeba: Semantic Search

We test on Tatoeba dataset proposed in Artetxe and
Schwenk (2019) to asses the ability of our mod-
els on capturing cross-lingual semantics. The task

is to find the nearest neighbor for the query sen-
tence in the other language. The experiments is
conducted on the 36 languages as in XTREME (Hu
et al., 2020). The evaluation metric is retrieval accu-
racy. Results are presented in Table 5. Our model
CMLM+BR outperforms all baseline models in 30
out of 36 languages and has the highest average
performance. One interesting observation is that
finetuning with NLI actually undermines the model
performance on semantic search, in contrary with
the significant improvements from CMLM+BR to
CMLM+BR+NLI on XEVAL (Table 4). We spec-
ulate this is because unlike semantic search, NLI
inference is not a linear process. Finetuning with
NLI is not expected to help the linear retrieval by
nearest neighbor search.

5 Analysis

5.1 Ablation Study

We explore different configurations of CMLM, in-
cluding the number of projection spaces N (Ta-
ble 7). Projecting the sentence vector into N = 15
spaces produces highest overall performance. We
also try a different CMLM architecture. Besides
the concatenation with token embeddings of s2 be-
fore input to the transformer encoder, the projected
vectors are also concatenated with the sequence
outputs of s2 for the masked token prediction. This
version of architecture is denoted as “skip” and the
model performance is actually worse.

Note that the projected vector can also be used to
produce the sentence representation vs, e.g. using
the average of projected vectors vs = 1

N

∑
i v

(i)
p

as the sentence embeddings. Recall v(i)
p is the ith
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.

N = 1 82.3 89.7 95.8 88.8 87.6 90.4 71.5 80.8 83.4 85.5
N = 5 83.7 90.0 95.5 89.0 89.4 86.6 69.5 79.3 81.7 85.0
N = 10 83.4 89.0 96.1 88.9 88.2 90.2 68.5 79.7 81.5 84.9
N = 15 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0
N = 20 81.1 89.5 95.8 88.9 85.9 89.8 69.7 80.2 85.0 85.1
skip 80.3 86.8 94.5 87.5 84.9 86.0 69.2 72.8 74.7 81.9
proj 82.6 89.7 96.0 87.3 87.5 89.2 70.5 81.7 83.8 85.4

Table 7: Ablation study of CMLM designs, including the number of projection spaces, architecture and sentence
representations. The experiments are conducted on SentEval.

de

fr

zh

mBERT mBERT + PCR ours ours + PCR

Figure 2: Language distribution of retrieved sentences. The histogram values represent the percentage of sentences
retrieved in a language. The first and third columns are mBERT and our models. Our model already in general has
a more uniform distribution than mBERT. The second and fourth columns are mBERT and our model with PCR.

projection. This version is denoted as “proj” in
Table 7. Sentence representations produced in this
way still yield competitive performance, which fur-
ther confirm the effectiveness of the projection.

fra cmn spa deu rus ita

mBERT 60.2 60.2 62.8 65.9 53.8 55.7
mBERT + PCR 59.9 64.3 61.7 67.5 57.4 56.2

ours 96.1 95.6 98.1 97.7 94.9 94.2
ours + PCR 95.5 96.0 98.2 97.9 95.1 94.1

tur por hun jpn nld Avg.

mBERT 32.4 62.4 31.9 39.0 56.2 52.8
mBERT + PCR 33.3 64.4 36.5 42.3 61.1 54.8

ours 98.6 95.3 96.5 95.6 97.3 96.3
ours + PCR 98.5 95.8 96.6 95.3 97.2 96.4

Table 8: Average retrieval accuracy on 11 languages
of multilingual representations model with and without
PCR on Tatoeba dataset.

5.2 Language Agnostic Properties

Language Agnosticism has been a property of
great interest for multilingual representations.

However, there has not been a qualitative measure-
ment or rigid definition for this property. We pro-
pose that “language agnostic” refers to the property
that sentences representations are neutral w.r.t their
language information. E.g., two sentences with
similar semantics should be close in embedding
space whether they are of the same languages or
not. To capture this intuition, we convert the PAWS-
X dataset (Yang et al., 2019c) to a retrieval task to
measure the language agnostic property. Specifi-
cally, PAWS-X consists of English sentences and
their translations in other six languages. Given a
query, we inspect the language distribution of the
retrieved sentences. The similarity between a query
vl1 in language l1 and a candidate vl2 in language

l2 is computed as the cosine similarity
vT
l1
vl2

‖vl1
‖2‖vl2

‖2 .
In Fig. 2, representations of mBERT have a strong
self language bias, i.e. sentences in the language
matching the query are dominant. In contrast, the
bias is much weaker in our model, probably due to
the cross-lingual retrieval pretraining.
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Figure 3: Visualizations of sentence embeddings of CMLM (first row) and mBERT (second row) in Tatoeba dataset
in 2D. The target languages are all English and the source languages are French, German, Russian and Spanish.

We also discover that removing the first princi-
pal component of each monolingual space from
sentence representations effectively eliminates the
self language bias. Given a monolingual space
M l1 ∈ RN×d, where each row of M l1 is a em-
bedding in language l1. For example, in the eval-
uation on Tatoeba dataset, the monolingual space
matrix M l1 is computed with texts in language
l1 in Tatoeba. The principal component cl1 is the
first right singular vector of M l1 . Given a repre-
sentation vl1 in language l1, the projection of vl1
onto cl1 is removed: v̂l1 = vl1 −

vT
l1
cl1

‖vl1
‖2 . The simi-

larity score between vl1 and vl2 for cross-lingual

retrieval is computed as:
v̂T
l1
v̂l2

‖v̂l1
‖2‖v̂l2

‖2 .

As shown in the second and the fourth column
in Fig. 2, with principal component removal (PCR),
the language distribution of retrieved texts is much
more uniform. We also explore PCR on the Tatoeba
dataset. Table 8 shows the retrieval accuracy of
multilingual model with and w/o PCR. PCR in-
creases the overall retrieval performance for both
models. This suggests the first principal compo-
nents in each monolingual space primarily en-
codes language identification information.

We also visualize sentence embeddings on
Tatoeba dataset in Fig. 3. Our model shows both
weak and strong semantic alignment (Roy et al.,
2020). Representations are close to others with
similar semantics regardless of their languages
(strong alignment), especially for French and Rus-
sian, where representations form several distinct
clusters. Also representations from the same lan-
guage tend to cluster (weak alignment). While rep-
resentations from mBERT generally exhibit weak
alignment.

6 Conclusion

We present a novel sentence representation learn-
ing method Conditional Masked Language Model-
ing (CMLM) for training on large scale unlabeled
corpus. CMLM outperforms the previous state-
of-the-art English sentence embeddings models,
including those trained with (semi-)supervised sig-
nals. For multilingual representations, we discover
that co-training CMLM with bitext retrieval and
cross-lingual NLI finetuning achieves state-of-the-
art performance. We also find that multilingual
representations have the same language bias and
principal component removal can eliminate the bias
by separating language identity information from
semantics.

Acknowledgments

We would like to thank our teammates from
Descartes, Google Brain and other Google groups
for their feedback and suggestions. We also thank
anonymous reviewers for their comments. Special
thanks goes to Chen Chen and Hongkun Yu for help
with TensorFlow model garden, and Arno Eigen-
willig for help on releasing models on TensorFlow
Hub.

References

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284, Online. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2020.emnlp-main.19


6225

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Muthu Chidambaram, Yinfei Yang, Daniel Cer, Steve
Yuan, Yunhsuan Sung, Brian Strope, and Ray
Kurzweil. 2019. Learning cross-lingual sentence
representations via a multi-task dual-encoder model.
In Proceedings of the 4th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2019), pages
250–259, Florence, Italy. Association for Computa-
tional Linguistics.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 670–680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto
Kazawa, and Wolfgang Macherey. 2018. Zero-
shot cross-lingual classification using multilin-
gual neural machine translation. arXiv preprint
arXiv:1809.04686.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. arXiv preprint arXiv:2003.11080.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28, pages 3294–3302. Cur-
ran Associates, Inc.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An ef-
ficient framework for learning sentence representa-
tions. In International Conference on Learning Rep-
resentations.

Kumar Avinava Dubey Joshua Ainslie Chris Alberti
Santiago Ontanon Philip Pham Anirudh Ravula Qi-
fan Wang Li Yang Amr Ahmed Manzil Zaheer,
Guru Guruganesh. 2020. Big bird: Transformers for
longer sequences. In Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
et al. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In LREC,
pages 216–223.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting on Association for Computa-
tional Linguistics, pages 115–124.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th an-
nual meeting of the association for computational
linguistics, pages 1118–1127.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/W19-4330
http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683


6226

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3973–3983.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Uma Roy, Noah Constant, Rami Al-Rfou, Aditya
Barua, Aaron Phillips, and Yinfei Yang. 2020.
Lareqa: Language-agnostic answer retrieval
from a multilingual pool. arXiv preprint
arXiv:2004.05484.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić.
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A Methods for Representations

We evaluate different representations method in
Transformer-base models, including CMLM and
BERT base (using the model on official Tensorflow
Hub). The experiments are conducted on SentEval.
Results in Table 9 show that MEAN representation
exhibit better performance than CLS and MAX
representations.

B Experiments with different Masking
ratios

We test with different masking ratios in CMLM
training data. Specifically, We tried masking 40,
60, 80 and 100 tokens of 256 tokens in the CMLM
data. Performance of obtained models on SentEval
are presented in Appendix B.

C Training Configurations and
Implementation Details

Projection P in the CMLM modeling. Let h de-
note the dimension of the input sentence vector
(e.g. h = 768 in BERT base; h = 1024 in BERT
large). Let FC(h1, h2, n) denote a fully connected
layer with input dimension h1, output dimension
h2 and nonlinearity function n. The three layers
are FC(h, 2×h,ReLU), FC(2×h, 2×h,ReLU),
FC(2× h, h,None). We tried projections without
intermediate layers and observed a drop in training
LM accuracy. Adding more layers doesn’t improve
the MLM accuracy or downstream tasks perfor-
mance. Using 2 × h is empirically chosen based
on preliminary experiments. Other hidden sizes are
also explored.

Configurations for multilingual representa-
tions learning. In general, larger batch sizes im-
prove performance until we reach 2048, since each
example will see more “mismatched” examples.
After 2048, we do not see obvious improvements
in performance from increasing batch size. We’ll
add detailed results on this in the final version. The
training steps for different stages are decided on a
validation set.

Training Data and infrastructure. English
pretraining takes 5 days on 64 TPUs using 1TB
of data from Common Crawl dumps 2020-1, 2020-
05, 2020-10. More data could be beneficial, but
would increase training time.

D Reliability of XEVAL

In this section, we want to discuss the reliability
of XEVAL. XEVAL contains sentence-level data
and we expect its translation not to be too challeng-
ing. Inspection by in-house bilingual speakers also
confirms the high quality of translation. Human
translation is always preferred but we are limited
by budget and annotator resources (especially for
low-resource languages).

E CMLM’s Comparison with Next
Sentence Prediction (NSP) and
Potential Limitations.

We tried MLM (CC) with and w/o NSP and it does
not make much difference on SentEval. Training
NSP accuracy quickly converge to 95%, indicating
that NSP is not a challenging task.

Sentence embedding methods like CMLM can
be less effective for sequence labeling (e.g., NER)
and natural language generation (NLG) and ques-
tion answering (Q&A).

F Performance Variances

We provide the performance variances of CMLM
base and CMLM large on SentEval dataset in Ta-
ble 11.
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.

CMLM MAX 82.8 88.9 96.2 89.2 87.81 89.8 72.1 82.1 83.7 85.8
CMLM MEAN 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0
CMLM CLS 79.1 84.3 94.2 86.9 84.9 82.6 68.4 79.3 81.7 82.4

BERT base MAX 79.6 85.5 94.6 87.3 83.0 90.0 65.6 75.5 78.1 82.1
BERT base MEAN 81.6 87.4 95.2 87.8 85.8 90.6 71.1 79.3 80.5 84.3
BERT base CLS 79.9 83.9 93.8 85.4 86.1 81.0 69.5 62.5 48.8 76.8

Table 9: Performance of sentence representations model with different representations method (MAX, MEAN and
CLS).

Mask Tokens MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.

40 81.8 89.3 95.3 87.8 87.0 90.2 68.5 77.5 77.6 83.9
60 83.7 89.5 95.8 88.9 88.0 90.3 68.7 79.5 82.8 85.4
80 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0

100 83.2 89.5 95.5 88.7 88.0 90.8 70.0 81.5 82.7 85.6

Table 10: Performance with different masking ratios in data (X-out-of-256) of CMLM base on SentEval.

Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R

CMLM base 83.6±0.2 89.9±0.4 96.2±0.1 89.3±0.3 88.5±0.2 91.0±0.8 69.7±0.6 82.3±0.3 83.4±0.4
CMLM large 85.6±0.2 89.1±0.3 96.6±0.2 89.3±0.3 91.4±0.1 92.4±0.7 70.0±1.0 82.2±0.5 84.5±0.4

Table 11: Performance variances of CMLM base and CMLM large on SentEval.


