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Abstract

This survey/position paper discusses ways to
improve coverage of resources such as Word-
Net. Rapp estimated correlations, ρ, between
corpus statistics and psycholinguistic norms. ρ
improves with quantity (corpus size) and qual-
ity (balance). 1M words are enough for simple
estimates (unigram frequencies), but at least
100M are required for pairs of words (word as-
sociations, edges). Knowledge Graph Comple-
tion (KGC) attempts to learn missing links in
WN18. Unfortunately, WN18 is flawed with
information leaking from train to test. More se-
riously, WN18 is based on SemCor (just 200k
words) and dated (collected in 1960s). KGC
cannot learn anything that happened since the
1960s, or associations requiring 100M words.

1 Quantity (Size) and Quality (Balance)

How large do the corpora have to be to learn what?
In the early 1980s, corpora were about 1M words.
The Brown Corpus (Kučera and Francis, 1967;
Francis and Kučera, 1979, 1982) was large enough
for first order statistics (counts of words), but not
for second order statistics (word associations and
counts of pairs of words).

The Brown Corpus was a balanced corpus. That
is, the corpus was intended to be a representative
sample of text that the system will see at inference
time. The 1M word Brown Corpus consists of 500
samples1 of 2000 words, representative of contem-
porary American English (from 1960s).

Over time, balanced corpora became larger.
When the community decided to increase the size
of balanced corpora from 1M words for the Brown
Corpus to 100M for the British National Corpus
(BNC) (Aston and Burnard, 1998; Burnard, 2002),

1500 samples span 15 categories: Press Reportage (44
texts), Press Editorial (27), Press Reviews (17), Religion (17),
Skills and Hobbies (36), Popular Lore (48), Miscellaneous US
Government & House Organs (30), Learned (80), General Fic-
tion (29), Mystery and Detective Fiction (24), Science Fiction
(6), Adventure and Western (29), Romance (29), Humor (9).

it was known that 1M was too small for second or-
der statistics (collocations and word associations),
but it was hoped that 100M would be sufficient.

Around this time, Church and Hanks (1990) used
an unbalanced sample of 44M words from the AP
(Associated Press) to make the case for PMI (point-
wise mutual information). Given the estimates in
Table 1, it appears in retrospect that 44M words
were just barely enough to make the case for PMI.

It was also believed that quality (balance) mat-
tered, but there were few, if any, empirical studies
to justify such beliefs. It was extremely contro-
versial when engineers such as Mercer questioned
these deeply held beliefs in 19852 with: “there is
no data like more data.” Most people working on
corpus-based methods in lexicography were deeply
committed to balance as a matter of faith, and were
deeply troubled by Mercer’s heresy.

More recently, Rapp (2014a,b) provided some
empirical evidence that bears on this debate. He
used 5 corpora to study quantity (sample size) and
quality (balance). In addition to the two balanced
corpora mentioned above, Brown and BNC, Rapp
looked at 3 unbalanced corpora:

1. 300M words of Wikipedia (Wiki)
2. 2B words of web pages (ukWaC)
3. 4B words of newswire (Gigaword)

This study used correlations, ρ, to compare sta-
tistical summaries with psycholinguistic norms: fa-
miliarity (Coltheart, 1981), association (Kiss et al.,
1973) and relatedness (Fernald, 1896). We will
refer to unigram statistics and familiarity norms
as first order; statistics on pairs of words (such as
PMI) and the other norms will be referred to as
second order. In Table 1, ρ1 refers to correlations
of first order quantities and ρ2 refers to correlations
of second order quantities.

2http://www.lrec-conf.org/lrec2004/
doc/jelinek.pdf

http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf
http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf
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First Order: ρ1 Second Order: ρ2
N words 1M 10M 100M 10M 100M 1B

Brown 0.67 NA NA NA NA NA
BNC 0.69 0.74 0.75 0.35 0.53 NA

ukWaC 0.64 0.71 0.73 0.30 0.48 0.56
Wiki 0.60 0.66 0.67 0.27 0.43 NA
Giga 0.55 0.62 0.66 0.14 0.25 0.36

Table 1: ρ1 and ρ2 increase with quantity (N ) and qual-
ity (balance: top 2 rows). Results from (Rapp, 2014b)

Rapp (2014a,b) showed that both ρ1 and ρ2 in-
crease with quantity and quality, as shown in Ta-
ble 1. We suggest two simple rules of thumb:

1. Balance Trade-off: ρ1 over N balanced words
≈ ρ1 over 100N unbalanced words

2. First order is 100x easier than second order:
ρ1 on N words > ρ2 on 100N words

Among the unbalanced corpora, web pages
(ukWaC) have relatively large ρ, better than Wiki
and Giga, though not as good as BNC. Note that
1B words of web pages has a better ρ2 than 100M
words of BNC.

It is hard to know what will happen for much
(1000x) larger corpora, but one might expect dimin-
ishing returns. Of course, extrapolating estimates
like these by 10x or more is known to be risky
(Efron and Thisted, 1976). Figures 1a-b of (Rapp,
2014b) suggest that while ρ is increasing almost
everywhere, there may be some deceleration (nega-
tive second derivative), especially for large N .

Although Rapp’s estimates predate much of the
work on embeddings, we expect these estimates of
quantity and quality to hold for static embeddings
(Mikolov et al., 2013; Pennington et al., 2014) and
contextual embeddings (Devlin et al., 2019; Sun
et al., 2020), assuming the connection between PMI
and Word2vec in Levy and Goldberg (2014).

In addition to size and balance, there are many
other factors to consider. Different languages are
different. Languages are constantly evolving. Vari-
ations are to be expected over time3,4 (Hamilton
et al., 2016; Szymanski, 2017)5 and space, as well
as sociolinguistic factors, demographics, gender
bias (Pearce, 2008; Drozd et al., 2016; Sheng et al.,
2019; Nissim et al., 2020; Kumar et al., 2020), etc.

In addition to language change, topics and do-
mains are also constantly evolving. Obviously,

3https://books.google.com/ngrams
4https://github.com/dimazest/

google-ngram-downloader
5https://nlp.stanford.edu/projects/

histwords/

news, Wikipedia and web pages are very differ-
ent from social media (Twitter) and academic writ-
ing (ACL Anthology (Radev et al., 2013), ArXiv,6

PubMed7). The Brown Corpus predates social
media, and most publications in repositories such
as: PubMed, ACL Anthology and ArXiv (Church,
2017). The Brown Corpus also predates huge
changes in technology (computers and cell phones),
the news media (cable TV and the Internet), and
modern medicine (e.g., COVID-19, SARS, HIV, af-
fordable DNA sequencing). Nevertheless, many re-
sources in our field are still based on the Brown Cor-
pus, including the Penn TreeBank (Marcus et al.,
1993) and SemCor8.

2 WordNet Coverage and SemCor

WordNet9 (Miller et al., 1990; Miller, 1995; Feld-
baum, 1998; Miller and Fellbaum, 2007; Vossen
and Fellbaum, 2021) is widely cited because of
accessibility10 as well as coverage. Why is the
coverage as good as it is, and how can it be im-
proved? Unlike other methods for constructing lex-
ical resources (Lenat, 1995; Sinclair, 1989; Hanks,
2008), WordNet was developed in tandem with
SemCor, a small subset of the Brown Corpus,
tagged with pointers into WordNet. The team con-
stantly tracked coverage as indicated by the refer-
ence to 96% below:

[SemCor] starts with the corpus and pro-
ceeds through it word by word... This
procedure has the advantage of imme-
diately revealing deficiencies in the lex-
icon: not only missing words (which
could be found more directly), but also
missing senses and indistinguishable
definitions–deficiencies that would not
surface so quickly with [alternatives]...
we ... adopted the [SemCor] approach
for the bulk of our semantic tagging...
over several months ... estimates of ...
coverage have been slowly improving...
it is currently averaging a little better
than 96%. (Miller et al., 1993)

The SemCor process helped manage growth. In
1993, they were adding almost 1k concepts per

6https://arxiv.org/help/bulk_data
7https://pubmed.ncbi.nlm.nih.gov/
8https://web.eecs.umich.edu/~mihalcea/

downloads.html
9https://wordnet.princeton.edu/

10www.nltk.org/howto/wordnet.html

https://books.google.com/ngrams
https://github.com/dimazest/google-ngram-downloader
https://github.com/dimazest/google-ngram-downloader
https://nlp.stanford.edu/projects/histwords/
https://nlp.stanford.edu/projects/histwords/
https://arxiv.org/help/bulk_data
https://pubmed.ncbi.nlm.nih.gov/
https://web.eecs.umich.edu/~mihalcea/downloads.html
https://web.eecs.umich.edu/~mihalcea/downloads.html
https://wordnet.princeton.edu/
www.nltk.org/howto/wordnet.html
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month. The number of synsets (word senses) nearly
doubled from 63k in 1993 to 118k today. In addi-
tion, the process led to the creation of SemCor 3.0,
a subset of about 20% of the Brown Corpus tagged
with WordNet senses.

While SemCor has much to recommend it, there
are also some obvious concerns. SemCor is only
200k words, probably not enough given Rapp’s
estimates above. Coverage of WordNet could be
improved by building something like SemCor, but
based on a larger corpus of more modern material.
Alternatively, it might be possible to combine small
annotated corpora with larger unannotated corpora.

3 Knowledge Graph Completion (KGC)

An alternative suggestion for improving Word-
Net coverage is: Knowledge Graph Completion
(KGC)11 (Nguyen, 2017; Wang et al., 2017; Yu
et al., 2019). A standard KGC benchmark is
WN18.12 WN18 is a graph G = (V,E). There
are 41k vertices, V . Each vertex is a WordNet
synset, a pointer to a set of synonymous lemmas in
WordNet. There are 118k such synsets in WordNet.

The edges, E, connect two vertices with one of
18 relations. The relations also come from Word-
Net. Some relations are more frequent than others.

Many of the relations come in pairs, as shown
in Table 2. By construction, if x is-a y, then there
will be a hypernym link from x to y, as well as a
hyponym link from y to x. We will refer to the
backward links as inverses.

The KGC task is to infer subsets of these graphs
from other subsets of these graphs. That is, KGC
splits E randomly into three sets: train, validation
and test. WN18 consists of 141k edges in train, 5k
in validation and 5k in test.

For each set, we have a set of input features,
X , and a set of output labels, Y . The standard
procedure uses Xtrain and Ytrain to fit a model.
This model is used to predict Ŷtest from Xtest. The
predicted values, Ŷtest, are compared with the gold
labels, Ytest, to compute a score.

There is a considerable literature on KGC meth-
ods, e.g., Trans[DEHRM], KG2E, ConvE, Com-
plex, DistMult (Bordes et al., 2013; Wang et al.,
2014; Yang et al., 2014; Lin et al., 2015; Nickel
et al., 2016; Trouillon et al., 2016; Nguyen et al.,
2017; Sun et al., 2019).

11https://github.com/Sujit-O/pykg2vec
12https://paperswithcode.com/dataset/

wn18

Relation Edges Inverse Edges
hypernyms 37,221 hyponyms 37,221

derivationally
related forms 31,867

member
meronym 7928 member

holonum 7928

has part 5142 part of 5148
synset domain

topic of 3335 member of
domain topic 3341

instance
hypernym 3150 instance

hyponym 3150

also see 1396
verb group 1220
member of

domain region 983 synset domain
region of 982

member of
domain usage 675 synset domain

usage of 669

similar to 86

Table 2: 18 Relations in WN18. By construction, many
of these relations have inverses (with similar counts).

Cum % Freq Relation
40% 1251 hypernym
74% 1074 derivationally related form
82% 253 member meronym
88% 172 has part
92% 122 instance hypernym
95% 114 synset domain topic of

Table 3: Six relations cover 95% of WN18RR test set.

The next two subsections address two concerns
with the KGC literature and the WN18 benchmark:

1. information leakage and
2. size: WN18 is based on SemCor (20% of

Brown Corpus), too small for ρ2 given Table 1

3.1 Information Leakage in KGC
Some of the leakage in the WordNet benchmark,
WN18, is well-known and some is not. WN18RR
is a reduced subset of WN18 that corrects for the
known leakage (Dettmers et al., 2018).13 The cor-
rection removes the 7 inverse relations on the right
hand side of Table 2, resulting in the test set shown
in Table 3. Before the correction, there are 5000
edges over 18 relations in the WN18 test set. Af-
ter the correction, there are 3134 edges over 11
relations in the WN18RR test set.

Unfortunately, there is even more leakage in
WN18RR that has not been previously reported.
Note that “derivationally related forms” also come
in pairs. By construction, derivationally related
links are symmetric: xRy ⇒ yRx. That is, if there

13See Elangovan et al. (2021) for discussion of leakage in
other benchmarks.

https://github.com/Sujit-O/pykg2vec
https://paperswithcode.com/dataset/wn18
https://paperswithcode.com/dataset/wn18
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Forward Inverse Links: yRx
Links test train valid Totals

xRy test 24 1011 39 1074
xRy train 1011 27,701 1003 29,715
xRy valid 39 1003 36 1078

Totals 1074 29,715 1078 31,867

Table 4: Information Leakage in WN18RR: Deriva-
tionally related links are symmetric (xRy ⇒ yRx).

is an edge in one direction, then there will also
be an inverse edge in the reverse direction. This
symmetry will leak information between train and
test because it is likely that one member of the pair
appears in train and the other appears in test.

Table 4 shows that many of these pairs are indeed
leaking information in this way. The table shows
how these “derivationally related” edges, xRy,
and their inverses, yRx, are distributed across the
WN18RR test, train and validation splits.

In particular, of the 1074 derivationally related
edges in the WN18RR test set, all of them are also
in one of the other sets, but in the reverse direction.
The 1074 reversed edges are split across test (24),
train (1011) and valid (39).

Because of this leakage, a system can do very
well on this benchmark without learning anything
useful about WordNet. Simply reverse edges in the
training set and predict that those reversed edges
will appear in the test set (unless they have already
been seen in the training or validation sets). Such a
system will correctly predict 1− 24/1074 = 98%
of the derviationally related edges (1074/3134 =
34% of the test set).

One could correct for this leakage by removing
the redundant edges, just as we removed redundant
edges to reduce WN18 to WN18RR.

3.2 Corpus Sizes

Size is perhaps more serious than leakage. Leaning
edges in WN18 is a second order task. As shown
in Table 1, second order tasks typically require a
corpus of 100M words or more. Unfortunately,
WN18 is based on SemCor (indirectly via Word-
Net). SemCor is a 200k word sample, too small
for second order tasks. Inferences on downstream
graphs (such as WN18) are unlikely to capture as-
sociations on pairs of words.

KGC is learning subsets of WordNet from other
subsets of WordNet. But given Table 1, to improve
WordNet, we need more data, not less. Modern

corpora are 1000x larger than SemCor, and more
representative of text from this century. We believe
it is more profitable to collect more data (and more
representative data) than to infer information that
is not in the WordNet graph (or the underlying
SemCor corpus).

KGC can be viewed as similar to downsampling
in speech, where there is a well-known difference
between upsampling and downsampling. In speech,
it is relatively easy to downsample a waveform
from 16 kHz down to telephone bandwidth (8 kHz),
but harder to invert the process (upsampling). That
is, we can always throw away information by low
pass filtering and decimating. But it is harder to
recover the high frequency information after it has
been thrown away.

SemCor can be viewed as a small sample of con-
temporary language, downsampled with a strong
bias favoring American English from the 1960s.
Rapp’s estimates suggest there is more information
in larger corpora than in smaller corpora. Thus,
the downsampling process is throwing away infor-
mation that cannot be recovered. Obviously, KGC
cannot recover information that cannot be recov-
ered, but it is also unlikely to learn anything since
1960, let alone other dialects/languages.

4 Conclusions

What is needed to improve WordNet coverage? We
started with Rapp’s estimates of ρ, correlations of
corpus statistics and psycholinguistic norms. ρ im-
proves with quantity (corpus size) and quality (bal-
ance). Unbalanced corpora need to be larger (100x)
than balanced. Estimates of second order quantities
(word associations and edges in WordNet) require
at least 100x more data than first order quantities
(frequency/familiarity). Rapp’s estimates suggest
there is more information in larger samples than in
smaller samples.

WordNet is based on SemCor. It is remark-
able that WordNet works as well as it does, given
Rapp’s estimates. One approach to improving cov-
erage is Knowledge Graph Completion (KGC).
KGC attempts to learn missing links from sub-
sets. The KGC Benchmarks, WN18 and WN18RR,
are deeply flawed. Information is leaking between
training and test sets. Some of this leakage has
been previously reported, and some has not. But
more seriously, if SemCor is already too small and
dated, data collection is more likely to succeed than
attempts to infer information that is not there.
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Henry Kučera and Winthrop Nelson Francis. 1967.
Computational analysis of present-day American
English. Brown University Press, Providence, RI,
USA.

Vaibhav Kumar, Tenzin Singhay Bhotia, Vaibhav Ku-
mar, and Tanmoy Chakraborty. 2020. Nurse is
closer to woman than surgeon? mitigating gender-
biased proximities in word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 8:486–503.

Douglas B Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the
ACM, 38(11):33–38.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI conference on artificial intelli-
gence.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

George A Miller. 1995. Wordnet: A lexical database
for english. COMMUNICATIONS OF THE ACM,
38(11):39.

https://doi.org/10.1017/S1351324917000286
https://www.aclweb.org/anthology/J90-1003
https://www.aclweb.org/anthology/J90-1003
https://www.aclweb.org/anthology/J90-1003
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/C16-1332
https://www.aclweb.org/anthology/C16-1332
https://www.aclweb.org/anthology/C16-1332
https://www.aclweb.org/anthology/2021.eacl-main.113
https://www.aclweb.org/anthology/2021.eacl-main.113
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.1162/tacl_a_00327
https://doi.org/10.1162/tacl_a_00327
https://doi.org/10.1162/tacl_a_00327
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf


6215

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 3(4):235–
244.

George A Miller and Christiane Fellbaum. 2007. Word-
net then and now. Language Resources and Evalua-
tion, 41(2):209–214.

George A Miller, Claudia Leacock, Randee Tengi, and
Ross T Bunker. 1993. A semantic concordance.
In HUMAN LANGUAGE TECHNOLOGY: Proceed-
ings of a Workshop Held at Plainsboro, New Jersey,
March 21-24, 1993.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2017. A novel embed-
ding model for knowledge base completion based
on convolutional neural network. arXiv preprint
arXiv:1712.02121.

Dat Quoc Nguyen. 2017. An overview of embedding
models of entities and relationships for knowledge
base completion. arXiv preprint arXiv:1703.08098.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Thirtieth Aaai conference on artifi-
cial intelligence.

Malvina Nissim, Rik van Noord, and Rob van der Goot.
2020. Fair is better than sensational: Man is to doc-
tor as woman is to doctor. Computational Linguis-
tics, 46(2):487–497.

Michael Pearce. 2008. Investigating the collocational
behaviour of man and woman in the bnc using sketch
engine. Corpora, 3(1):1–29.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Dragomir R Radev, Pradeep Muthukrishnan, Vahed
Qazvinian, and Amjad Abu-Jbara. 2013. The acl an-
thology network corpus. Language Resources and
Evaluation, 47(4):919–944.

Reinhard Rapp. 2014a. Using collections of human lan-
guage intuitions to measure corpus representative-
ness. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguis-
tics: Technical Papers, pages 2117–2128, Dublin,
Ireland. Dublin City University and Association for
Computational Linguistics.

Reinhard Rapp. 2014b. Using word familiarities and
word associations to measure corpus representative-
ness. In Proceedings of the Ninth International
Conference on Language Resources and Evalua-
tion (LREC’14), pages 2029–2036, Reykjavik, Ice-
land. European Language Resources Association
(ELRA).

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan,
and Nanyun Peng. 2019. The woman worked as
a babysitter: On biases in language generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3407–
3412, Hong Kong, China. Association for Computa-
tional Linguistics.

John Sinclair. 1989. Collins COBUILD English lan-
guage dictionary. BOOK. Collins Publishers.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. AAAI.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Terrence Szymanski. 2017. Temporal word analogies:
Identifying lexical replacement with diachronic
word embeddings. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 448–
453, Vancouver, Canada. Association for Computa-
tional Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional Conference on Machine Learning (ICML).

Piek Vossen and Christiane Fellbaum, editors. 2021.
Proceedings of the 11th Global Wordnet Conference.
Global Wordnet Association, University of South
Africa (UNISA).

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–
2743.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Twenty-Eighth AAAI con-
ference on artificial intelligence.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Shih Yuan Yu, Sujit Rokka Chhetri, Arquimedes
Canedo, Palash Goyal, and Mohammad Abdul-
lah Al Faruque. 2019. Pykg2vec: A python library
for knowledge graph embedding. arXiv preprint
arXiv:1906.04239.

https://doi.org/10.1162/coli_a_00379
https://doi.org/10.1162/coli_a_00379
https://www.aclweb.org/anthology/C14-1200
https://www.aclweb.org/anthology/C14-1200
https://www.aclweb.org/anthology/C14-1200
http://www.lrec-conf.org/proceedings/lrec2014/pdf/492_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/492_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/492_Paper.pdf
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/P17-2071
https://doi.org/10.18653/v1/P17-2071
https://doi.org/10.18653/v1/P17-2071
https://www.aclweb.org/anthology/2021.gwc-1.0

