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Abstract

The impressive capabilities of recent genera-
tive models to create texts that are challeng-
ing to distinguish from the human-written ones
can be misused for generating fake news, prod-
uct reviews, and even abusive content. Despite
the prominent performance of existing meth-
ods for artificial text detection, they still lack
interpretability and robustness towards unseen
models. To this end, we propose three novel
types of interpretable topological features for
this task based on Topological Data Analysis
(TDA) which is currently understudied in the
field of NLP. We empirically show that the
features derived from the BERT model outper-
form count- and neural-based baselines up to
10% on three common datasets, and tend to be
the most robust towards unseen GPT-style gen-
eration models as opposed to existing meth-
ods. The probing analysis of the features re-
veals their sensitivity to the surface and syn-
tactic properties. The results demonstrate that
TDA is a promising line with respect to NLP
tasks, specifically the ones that incorporate sur-
face and structural information.

1 Introduction

Recent text generation models (TGMs) based on
the transformer architecture (Vaswani et al., 2017)
have demonstrated impressive capabilities of cre-
ating texts which are very close to human in terms
of fluency, coherence, grammatical and factual
correctness (Keskar et al., 2019; Zellers et al.,
2020; Yang et al., 2019). Extensive GPT-style
TGMs (Radford et al., 2018) have achieved out-
standing results over a great scope of NLP tasks
employing zero-shot, one-shot, and few-shot tech-
niques, even outperforming state-of-the-art fine-
tuning approaches (Brown et al., 2020). However,
such models can be misused for generating fake
news (Zellers et al., 2020; Uchendu et al., 2020),
product reviews (Adelani et al., 2020), and even
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extremist and abusive content (McGuffie and New-
house, 2020).

Many attempts have been made to develop
artificial text detectors (Jawahar et al., 2020),
ranging from classical ML methods over count-
based features (Uchendu et al., 2019) to advanced
transformer-based models (Adelani et al., 2020)
and unsupervised approaches (Solaiman et al.,
2019). Despite the prominent performance of these
methods across various domains, they still lack in-
terpretability and robustness towards unseen mod-
els.

This paper introduces a novel method for artifi-
cial text detection based on Topological Data Anal-
ysis (TDA) which has been understudied in the
field of NLP. The motivation behind this approach
relies on the fact that (i) the attention maps gener-
ated by the transformer model can be represented
as weighted bipartite graphs and thus can be effi-
ciently investigated with TDA, (ii) TDA methods
are known to capture well surface and structural
patterns in data which, we believe, are crucial to
the task.

The contributions are summarized as follows. (i)
To the best of our knowledge, this work is the first
attempt to apply TDA methods over the transformer
model’s attention maps and interpret topological
features for the NLP field. (ii) We propose three
types of interpretable topological features derived
from the attention graphs for the task of artificial
text detection. We empirically show that a simple
linear classifier trained on the TDA features pro-
duced over BERT attentions (Devlin et al., 2019)
outperforms count- and neural-based baselines up
to 10%, and can perform on par with the fully fine-
tuned BERT model across three domains: social
media, news articles and product reviews. (iii) Test-
ing the robustness towards unseen TGMs, we find
that the TDA-based classifiers tend to be more ro-
bust as opposed to the existing detectors. (iv) The
probing analysis of the features demonstrates their



sensitivity to surface and syntactic properties. (v)
Finally, we are publicly releasing the code1, hoping
to facilitate the applicability of the TDA methods
to other NLP tasks, specifically the ones that incor-
porate structural information.

2 Related Work

Applications of Topological Data Analysis
TDA has been applied in NLP to study textual struc-
tural properties, independent of their surface and
semantic peculiarities. These applications include
detection of children and adolescent writing (Zhu,
2013), discourse and entailment in law documents
(Savle et al., 2019), and exploring discourse proper-
ties of the plot summary to identify the movie genre
(Doshi and Zadrozny, 2018). Guan et al. (2016)
apply the topologically motivated transformation
of the document’s semantic graph to summarize
it further. However, these studies neither incor-
porate neural data representations nor explore the
properties of neural language models.

The research in the emerging scope of TDA ap-
plications to neural networks and neural data repre-
sentations has mainly focused on artificial datasets
or common problems in computer vision. The de-
sired topological properties of the data representa-
tion can be incorporated into the objective function
during the training of a neural network, improving
its robustness and performance on the downstream
tasks such as human action recognition and image
classification (Som et al., 2020), image simplifica-
tion (Solomon et al., 2021), image segmentation
(Clough et al., 2020) or generation (Gabrielsson
et al., 2020). Another line aims to develop the topo-
logical criteria of the network’s generalization prop-
erties (Rieck et al., 2019; Corneanu et al., 2020;
Naitzat et al., 2020; Barannikov et al., 2020) or its
robustness to adversarial attacks (Corneanu et al.,
2019).

Exploring Attention Maps Several studies have
shown that attention maps of pre-trained language
models (LMs) capture linguistic information. For
the sake of space, we will discuss only a few well-
known recent works. Clark et al. (2019) attempt to
categorize the types of attention patterns observed
in the BERT model. In particular, they discover
certain attention heads in which prepositions attend
to their objects or coreferent mentions attend to
their antecedents. Further, they explore the typi-

1https://github.com/danchern97/tda4atd

cal behavior of the attention heads and introduce
five patterns, e.g. attending to the next token or
previous token, which the vast majority of the at-
tention heads follow. Htut et al. (2019) explore the
syntactic information encoded in intra-word rela-
tion in the attention maps. A maximum spanning
tree (MST) is constructed from the computed at-
tention weights and mapped to the corresponding
dependency tree for a given sentence. This method
achieves a prominent Undirected Unlabeled Attach-
ment Score (UUAS), indicating that the attention
graphs indeed can capture the dependency-based
relations. Michel et al. explore the importance of
the attention heads with respect to a downstream
task. They show that a large proportion of the at-
tention heads can be pruned without harming the
model downstream performance. Beneficially, the
pruned model speeds up at the inference time. Fi-
nally, visualization of the attention maps (Hoover
et al., 2020) allows introspecting the model’s inner
workings interactively.

Supervised Artificial Text Detectors Several
well-established classical ML methods have been
applied to the task of artificial text detection com-
bined with topic modeling and linguistic features
(Manjavacas et al., 2017; Uchendu et al., 2019,
2020). The rise of pre-trained LMs has stimu-
lated various improvements of the detectors. The
RoBERTa model (Liu et al., 2019) has demon-
strated an outstanding performance with respect
to many TGMs and domains (Adelani et al., 2020;
Fagni et al., 2021). The capabilities of generative
models such as GROVER (Zellers et al., 2020) and
GPT-2 (Radford et al., 2019) have been also eval-
uated on the task (Bahri et al., 2021). Last but
not least, Bakhtin et al. (2019) discriminate artifi-
cial texts by training a ranking energy-based model
over the outputs of a pre-trained LM.

Unsupervised Artificial Text Detectors An-
other line of methods incorporates probability-
based measures combined with a set of pre-defined
thresholds (Solaiman et al., 2019). Such methods
open up a possibility of the human in the loop
approach where a human makes decisions with
the help of pre-trained LMs (Ippolito et al., 2020).
The GLTR tool (Gehrmann et al., 2019) supports
human-model interaction by visualizing the prop-
erties of a text inferred by the model, which im-
proves the human detection rate of artificial texts.
A promising direction is involving acceptability
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and pseudo-perplexity metrics (Lau et al., 2020;
Salazar et al., 2020) that can be used to evaluate
text plausibility.

3 Background

3.1 BERT Model

BERT is a transformer-based LM that has pushed
state-of-the-art results in many NLP tasks. The
BERT architecture comprises L encoder layers
with H attention heads in each layer. The input
of each attention head is a matrix X consisting of
the d-dimensional representations (row-wise) of m
tokens, so that X is of shape m × d. The head
outputs an updated representation matrix Xout:

Xout = W attn(XWV)

with W attn = softmax

(
(XWQ)(XWK)T√

d

)
,

(1)

where WQ, WK, WV are trained projection matri-
ces of shape d× d and W attn is of shape m×m
matrix of attention weights. Each element wattn

ij

can be interpreted as a weight of the j-th input’s
relation to the i-th output: larger weights mean
stronger connection between the two tokens.

3.2 Attention Map and Attention Graph

An attention map displays an attention matrix
W attn (Equation 1) in form of a heat map, where
the color of the cell (i, j) represents the relation
of the i-th token to the output representation of
the j-th token. We use a graph representation of
the attention matrix. The attention matrix is con-
sidered to be a weighted graph with the vertices
representing tokens and the edges connecting pairs
of tokens with strong enough mutual relation (the
higher the weight, the stronger the relation). The
construction of such graph appears to be quite prob-
lematic: a threshold needs to be set to distinguish
between weak and strong relations. This leads to
instability of the graph’s structure: changing the
threshold affects the graph properties such as the
number of edges, connected components, cycles.
The choice of the optimal thresholds is essential
to define which edges remain in the graph. TDA
methods allow extracting the overall graph’s prop-
erties which describe the development of the graph
with respect to changes in the threshold.

3.3 Topological Data Analysis

TDA instruments permit tracking the changes of
a topological structure across varying thresholds
for different objects: scalar functions, point clouds,
and weighted graph (Chazal and Michel, 2017).
Given a set of tokens V and an attention matrix of
pair-wise weights W , we build a family of graphs
termed as filtration: an ordered set of graphs for
the sequence of increasing thresholds. Figure 1
depicts the filtration for a toy example. First, we
build a graph for a small threshold, using which we
filter out the edges with the weights lower than this
threshold. Next, we increase the threshold and con-
struct the next graph. Then we compute the core
topological features of different dimensions: for
d = 0 these are connected components, for d = 1 –
“loops” (loosely speaking, they corresponds to basic
cycles in a graph), and d-dimensional “holes” for
higher dimensions. The amounts of these features
at each dimension β0, β1, ..., βd are referred to as
Betti numbers and serve as the main invariants of
the objects in topology (see Appendix B for formal
definitions). While the threshold is increasing and
the edges are being filtered, new features may arise.
For example, the graph can decay into several con-
nected components. At the same time, the features
can also disappear when a cycle is broken. For each
feature, we check the moment in the filtration when
it appears (i.e., its “birth”) and when it disappears
(i.e., its “death”). These moments are depicted on
a diagram called barcode (see Figure 1). The bar-
code’s horizontal axis corresponds to the sequence
of thresholds. Each horizontal line (“bar”) corre-
sponds to a single feature (“hole”): the line lasts
from the feature’s “birth” to the feature’s “death”.
Barcodes characterize the “persistent” topological
properties of the graph, showing how stable topo-
logical features are.

We now detail building the attention graphs,
the filtration procedure, and the proposed features
which are derived from the attention graphs.

4 Persistent Features of the Attention
Graphs

Informal Definition and Interpretation We ex-
tract three groups of features from the attention
graphs. Topological features (Section 4.1) include
a set of standard graph properties: the number of
connected components, the number of edges, and
the number of cycles. These features are calcu-
lated for each pre-defined threshold separately and
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 1: Let us consider an attention map computed on the sentence “I love you” with the BERT model (Layer:
1, Attention Head: 6) which is depicted in (a). After matching the vertices of the corresponding graph (b) and
removing directions as shown in (c) and (d), we get graph (e) with 5 vertices and 6 edges. For the sake of better
visualization, we do not draw edges with a weight less than 0.2. The graph has one connected component (β0 = 1)
and two “loops” (β1 = 2). After filtering out edges with small weight, we get graph (f) which has one new
connected component (it is often referred to as “birth” of a new component) and does not have any “loops” (i.e.,
the loops that we can see in the previous version of the graph have “died”). Consequently, after removing all
edges, we get graph (g) where 3 new connected components are born, and now there are 5 connected components
(β0 = 5) in total. The barcode (h) depicts 0-dimensional features (connected components) for the filtration ((e),
(f) and (g)). Here, the X-axis denotes the filtration parameter ε, and the Y-axis denotes the number of the bars. We
ignore the “infinite” feature persisting through the whole filtration. Note that conventionally on barcodes the x axis
is inverted.



then concatenated. We consider two following vari-
ants of the feature calculation: for a directed and
an undirected attention graph. Barcode features
(Section 4.2) are extracted from barcodes. Dis-
tance to patterns (Section 4.3) is the group of
features derived from the attention maps by com-
puting the distance to the attention patterns (Clark
et al., 2019).

To give the linguistic interpretation of our fea-
tures, recall that the graph structures are used in
lexicology for describing semantic change laws
(Hamilton et al., 2016; Lipka, 1990; Arnold, 1973).
The evolution of the meaning of a word with time
can be represented as a graph, in which edges rep-
resent a semantic shift to different word meanings.
Two typical patterns are distinguished in the graph
structure: radiation – the “star” structure, where
the primary meaning is connected to other conno-
tations independently; concatenation, or chaining
shift – the “chain” structure when the connotations
are integrated one-by-one. Note that the typical at-
tention patterns (Clark et al., 2019) have the same
“radiation” and “concatenation” structure. In pre-
trained LMs, the evolution goes through the layers
of the model, changing the representation of each
token, ending up with highly contextualized token
representations, and the aggregated representation
of the whole sentence (in the form of the [CLS]-
token).

We consider persistent features as the numer-
ical characteristic of the semantic evolution pro-
cesses in the attention heads. Topological features
deal with clusters of mutual influence of the to-
kens in the sentence and the local structures like
chains and cycles. The barcode features charac-
terize the severity and robustness of the semantic
changes. The features with long persistence (large
distance between “birth” and “death”) correspond
to the stable processes which dominate the others,
while short segments in the barcode define pro-
cesses highly influenced by noise. Pattern features
provide a straightforward measure of the presence
of typical processes over the whole sentence. The
so-called “vertical” pattern corresponds to the “ra-
diation” around the single token when the meaning
of the sentence or a part of the sentence is aggre-
gated from all words equally. “Diagonal” pattern
represents consequent “concatenation” structure,
going through all the sentence and thus reflecting
the dependence of each token’s meaning on its left
context.

4.1 Topological Features

First, we fix a set of thresholds T = {ti}ki=1, 0 <
t1 < ... < tk < 1. Consider an attention head
h and corresponding weights W attn = (wattn

i,j ).
Given a text sample s, for each threshold level
t ∈ T we define the weighted directed graph Γh

s (t)
with edges {j → i | wattn

ij ≥ t} and its undirected

variant Γh
s (t) by setting an undirected edge vivj for

each pair of vertices vi and vj which are connected
by an edge in at least one direction in the graph
Γh
s (t).
We consider the following features of the graphs:
• the first two Betti numbers of the undirected

graph Γh
s (t). The feature calculation proce-

dure is described in Appendix A;
• the number of edges (e), the number of

strongly connected components (s) and the
amount of simple directed cycles (c) in the
directed graph Γh

s (t).
To get the whole set of topological features for

the given text sample s and the attention head h,
we concatenate the features for all the thresholds,
starting from T .

4.2 Features Derived from Barcodes

For each text sample we calculate barcodes of the
first two persistent homology groups (denoted as
H0 and H1) on each attention head of the BERT
model (see Appendix B for further details). We
compute the following characteristics of these bar-
codes:

• The sum of lengths of bars;
• The mean of lengths of bars;
• The variance of lengths of bars;
• The number of bars with time of birth/death

greater/lower than threshold;
• The time of birth/death of the longest bar (ex-

cluding infinite);
• The overall number of bars;
• The entropy of the barcode.

4.3 Features Based on Distance to Patterns

The shape of attention graphs in distinct attention
heads can be divided into several patterns (Clark
et al., 2019). We hypothesize that appearance of
such patterns in a particular head or “intensity” of
the pattern (i.e., the threshold t on which the pattern
appears) may carry essential linguistic information.
Thus, we formalize these attention patterns and
calculate the distances to them as follows.

Let A = (aij) be an incidence matrix of the



Text Source Train Validation Test |Vocab| Length

H M H M H M H M H M

WebText
GPT-2 Small;
pure sampling

20K 20K 2.5K 2.5K 2.5K 2.5K 220K 532K 593 ± 177 515 ± 322

Amazon
Review

GPT-2 XL
pure sampling

5K 5K 1K 1K 4K 4K 47K 49K 179 ± 170 177 ± 171

RealNews
GROVER

top-p sampling
5K 5K 1K 1K 4K 4K 98K 75K 721 ± 636 519 ± 203

Table 1: Statistics for the datasets used in the experiments on the artificial text detection task. H=Human;
M=Machine.

graph Γ with n vertices, where aij = 1 for all edges
(ij) ∈ E and 0 for all other i, j. Let Γ = (V,E)
and Γ′ = (V,E′) be two graphs with the same
set of vertices, and let A, A′ be their incidence
matrices. As a distance d between such graphs we
use Frobenius norm of the difference ||A−A′||F =√∑

i,j(aij − a′ij)2, normalized by the norms of
the matrices of compared graphs:

d(Γ,Γ′) =
||A−A′||F√
||A||2F + ||A′||2F

=

√√√√∑i,j (aij − a′ij)
2∑

i,j(a
2
ij + a′ij

2)
.

Such distance takes values between 0 and 1. For
the unweighted graphs we have:

d(Γ,Γ′) =

√
|E4E′|
|E|+ |E′|

,

where E4E′ = (E\E′)
⋃

(E′\E) is the symmet-
ric difference of sets E and E′.

We consider distances from the given graph Γ to
attention patterns Γi as the graph features di(Γ) =
d(Γ,Γi), and the patterns posed by (Clark et al.,
2019):

• Attention to the previous token. Γfeature :
E = (i+ 1, i), i = 1, n− 1.

• Attention to the next token. Γfeature : E =
(i, i+ 1), i = 1, n− 1.

• Attention to [CLS]-token. [CLS]-token corre-
sponds to the vertex 1 of the set V = [1, n] as
it denotes the beginning of the text. Γfeature :
E = (i, 1), i = 1, n.

• Attention to [SEP]-token. Suppose i1, . . . , ik
are the indices of [SEP]-tokens. Then
Γfeature : E = (i, it), i = 1, n, t = 1, k.

• Attention to punctuation marks. Let i1, . . . , ik
be the indices of the tokens which correspond
to commas and periods. Γfeature : E =
(i, it), i = 1, n, t = 1, k. Note that this pat-
tern can be potentially divided into Attention
to commas and Attention to periods.

5 Experiments

5.1 Artificial Text Detection

Data We prepare three datasets from different
domains to conduct the experiments on the task
of artificial text detection. Table 1 outlines statis-
tics for the datasets. Each split is balanced by the
number of samples2 per each target class.

WebText & GPT-2 comprises a subset of natural
and generated texts from the datasets proposed by
Radford et al. (2018). (i) WebText contains filtered
and de-duplicated natural texts from Reddit; (ii)
GPT-2 Output Dataset3 includes texts generated
by various versions of the GPT-2 model fine-tuned
on WebText. We use texts generated by GPT-2
Small (117M) with pure sampling.

Amazon Reviews & GPT-2 consists of a subset of
Amazon product reviews (Amazon, 2019) and texts
generated by GPT-2 XL (1542M) with pure sam-
pling, fine-tuned on this dataset (Solaiman et al.,
2019).

RealNews & GROVER (Zellers et al., 2020) in-
cludes a subset of the news articles from RealNews
(that are not present in the GROVER training data)
and news articles generated by GROVER with top-
p sampling.

2Each sample is truncated to 128 BertTokenizer tokens
(bert-base-uncased).

3https://github.com/openai/
gpt-2-output-dataset

https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset


Model WebText &
GPT-2 Small

Amazon Reviews &
GPT-2 XL

RealNews &
GROVER

TF-IDF, N-grams 68.1 54.2 56.9
BERT [CLS trained] 77.4 54.4 53.8
BERT [Fully trained] 88.7 60.1 62.9
BERT [SLOR] 78.8 59.3 53.0

Topological features 86.9 59.6 63.0
Barcode features 84.2 60.3 61.5
Distance to patterns 85.4 61.0 62.3

All features 87.7 61.1 63.6

Table 2: The results of the artificial text detection experiments. The performance is measured by the accuracy
score (%).

Baselines We use bert-base-uncased4

model from the HuggingFace library (Wolf et al.,
2020) for the BERT-based baselines described be-
low. (i) BERT [CLS trained] is a linear layer
trained over [CLS]-pooled text representations.
Note that the weights of the BERT model re-
main frozen. (ii) BERT [Fully trained] is a
fully fine-tuned BERT model. We also train Lo-
gistic Regression classifier from scikit-learn li-
brary (Pedregosa et al., 2011) over (iii) TF-IDF,
N-grams with the N-gram range ∈ [1, 2] and
(iv) BERT [SLOR] (Pauls and Klein, 2012), an
pseudo-perplexity-based acceptability measure in-
ferred with the BERT model under the implemen-
tation by Lau et al. (2020)5.

Models We train Logistic Regression classifier
over the persistent graph features derived from the
attention matrices from the BERT model: (i) Topo-
logical features (Section 4.1), (ii) Barcode fea-
tures (Section 4.2) and (iii) Distance to patterns
(Section 4.3). (iv) All features is the concatena-
tion of the features mentioned above. The training
details for the baselines and models are outlined in
Appendix C.

Results Table 2 outlines the results of the artifi-
cial text detection experiments on the three datasets.
Note the diversity of the experiment setting where
the methods are tested with respect to the TGM,
TGM’s size, the decoding method, domain, and
stylistic properties (texts from the Amazon Re-
views & GPT-2 are shorter as compared to those of
WebText & GPT-2 and RealNews & GROVER).
The overall tendency is that the proposed TDA-

4https://huggingface.co/
bert-base-uncased

5https://github.com/jhlau/
acceptability-prediction-in-context

based classifiers outperform the count-based (TF-
IDF, N-grams) and two BERT-based baselines
(BERT [CLS trained], BERT [SLOR]) up to
10%. The concatenation of the features achieves
the performance on par with the fully trained BERT
model on all datasets.

5.2 Robustness towards Unseen Models
This setting tests the robustness of the artificial
text detection methods towards unseen TGMs on
the WebText & GPT-2 dataset. The baselines and
models are trained on texts from the GPT-2 small
model and further used to detect texts generated
by unseen GPT-style models with pure sampling:
GPT-2 Medium (345M), GPT-2 Large (762M) and
GPT-2 XL (1542M). Note that such a setting is the
most challenging as it requires the transfer from
the smallest model to that of the higher number of
parameters (Jawahar et al., 2020).

Results Figure 2 demonstrates the results on the
robustness experimental setup. The simple lin-
ear classifier trained over the Topological features
demonstrates the minor performance drop on the
task of detecting artificial texts by the larger GPT-
style models as opposed to the considered meth-
ods. However, the TDA-based classifier performs
slightly worse than BERT [Fully trained] on the
test subset by GPT-2 Small.

5.3 Attention Head-wise Probing
Data SentEval (Conneau et al., 2018) is a com-
mon probing suite for exploring how various lin-
guistic properties are encoded in the model rep-
resentations. The probing tasks are organized by
the type of the property: surface, syntactic and
semantic. We use the undersampled tasks6 to ana-

6Each probing task is split into 25K/5K/5K
train/validation/test sets. The sets are balanced by the

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/jhlau/acceptability-prediction-in-context
https://github.com/jhlau/acceptability-prediction-in-context


Figure 2: The results of the robustness experiments. X-
axis=GPT-2 model size. Y-axis=Accuracy score.

lyze what properties are stored in the topological
features.

Method Attention head-wise probing (Jo and
Myaeng, 2020) allows investigating the patterns of
how attention heads from each layer of the model
contribute most to a probing task. Logistic Re-
gression is trained over the intermediate outputs of
the model hi,j , where i and j denote the indices of
the layer and the attention head. We use the pub-
licly available code7 to train the classifier over two
groups of the input features: (i) the intermediate
outputs hi,j produced by the frozen BERT model
and (ii) the topological features derived from hi,j
as outlined in Sections 4.1, 4.2. The performance
is evaluated by the accuracy score, and the heat
maps of the probing scores are constructed to intro-
spect how a certain linguistic property is distributed
across different layers and attention heads. Refer
to Jo and Myaeng (2020) for more details.

Results The results demonstrate that the topo-
logical features tend to be sensitive to the surface
and syntactic properties as opposed to the seman-
tic ones. Figure 3 shows heat maps of the atten-
tion head-wise evaluation on LENGTH (Figure 3a,
surface property) and DEPTH (Figure 3b, syntac-
tic property) tasks8. While the sentence length
is distributed across the majority of the frozen at-
tention heads, specifically at the lower-to-middle
layers [1− 8], the topological features capture the
property at layer [1] and by fewer heads at lay-
ers [2, 4 − 5, 9 − 11]. The depth of the syntax

number of instances per each target class.
7https://github.com/heartcored98/

transformer_anatomy
8LENGTH is a 6-way classification task and DEPTH com-

prises 7 classes denoting the depth of a syntax tree.

tree is encoded in the frozen heads at the lower-to-
middle layers [1− 5], whereas the barcode features
predominantly localize the property at the middle-
to-higher layers [5− 9].

The overall pattern for the surface and syntac-
tic tasks is that the persistent graph features can
lose some information on the linguistic properties
during the derivation of the features from the at-
tention matrices. The localization of the properties
after the derivation gets changed, and the head-wise
probe performance may significantly decrease. No-
tably, the majority of the semantic tasks receive
rapid decreases in the probe performance on the
persistent graph features as compared to the frozen
heads. The reason is that the features operate purely
on the surface and structural information of the at-
tention graph, leaving semantics unattended.

6 Discussion

Structural Differences between Natural and
Generated texts The TDA-based classifiers rely
on the structural differences in the topology of the
attention maps to distinguish between natural and
generated texts. Figure 4 shows that the distribu-
tions of the sum of bars in H0 differ for natural
and generated texts. For the former, it is shifted to
the left. We provide more examples of the distri-
bution shift for different heads and layers in Fig-
ure 5, Appendix B. The weights for natural texts are
concentrated more on the edges of the maximum
spanning tree (MST), so that the model focuses
on the sentence structure, or on the “skeleton” of
the MST. The weights for the artificially generated
texts are distributed more evenly among all edges.
As the TDA-based classifiers appear to be robust
towards unseen TGMs, we may conclude that such
structural properties are inherent to the models of
different sizes, so that shifts in the distribution of
the sum of bars in H0 hold for texts generated by
different TGMs. This feature appears to be the key
one as utilizing it alone for the prediction provides
us with the 82% accuracy score on the WebText &
GPT-2 dataset.

Semantics is Limited The TDA-based methods
do not take the semantic word similarity into ac-
count, as they only capture inter-word relations de-
rived from the attention graphs. The probing analy-
sis supports the fact that the features do not encode
the semantic properties, carrying only surface and
structural information. However, this information
appears to be sufficient for the considered task.

https://github.com/heartcored98/transformer_anatomy
https://github.com/heartcored98/transformer_anatomy


(a) LENGTH (b) DEPTH

Figure 3: Heat maps of attention head-wise probing on LENGTH (Left) and DEPTH (Right) tasks. Atten-
tions=Frozen attention weights. X-axis=Head index number. Y-axis=Layer index number. The brighter the color,
the higher the accuracy score for the attention head.

Figure 4: The distribution shift of the sum of the bars
in H0 between the natural and generated texts on the
WebText & GPT-2 dataset (Layer: 9; Head: 7). TGM:
GPT-2 Small with pure sampling.

Time Complexity The attention matrices are
computed each time when an input sample is fed to
BERT. It follows that the computational complexity
of our methods can not be lower than the one for
BERT’s complexity itself, which makes asymp-
totically O(n2d + nd2) per one attention head
(Vaswani et al., 2017), where n is the sequence
length, and d is the words embedding dimension.
On the other hand, the calculation of the topologi-
cal features by thresholds (given that the number of
thresholds is constant), aside of the number of sim-
ple cycles, features of 0-dimensional barcodes, and
features based on the distance to patterns are lin-
ear by the number of edges of the attention graphs.
This means that for at least these features we do not
go beyond the asymptotic complexity of the BERT
model inference, even for sparse attention variants.

The number of simple cycles and the features
of 1-dimensional barcodes are more computation-
ally expensive. Note that omitting these features
provides a significant speed up with minor perfor-
mance drops.

7 Conclusion

This paper introduces a novel method for the task
of artificial text detection based on TDA. We pro-
pose three types of interpretable topological fea-
tures that can be derived from the attention maps
of any transformer-based LM. The experiments
demonstrate that simple linear classifiers trained
on these features can outperform count- and neural-
based baselines, and perform on par with a fully
fine-tuned BERT model on three common datasets
across various domains. The experimental setup
also highlights the applicability of the features to-
wards the TGM architecture, TGM’s size and the
decoding method. Notably, the TDA-based classi-
fiers tend to be more robust towards unseen GPT-
style TGMs as opposed to the considered baseline
detectors. The probing analysis shows that the
features capture surface and structural properties,
lacking the semantic information. A fruitful direc-
tion for future work is to combine the topological
features with those that encode the semantics of the
input texts, and test the methods on a more diverse
set of the TGM architectures, decoding methods
and transformer LMs to infer the attention graphs
from. We are publicly releasing the code, hoping to
stimulate the research on the TDA-based investiga-
tion of the inner workings of the transformer-based
models and the applicability of TDA methods to
other NLP tasks.
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Appendices

A Topological Features Calculation

Algorithm 1 Topological Features Calculation

Require: Text sample s
Require: Set of chosen attention heads HM of

model M
Require: Thresholds array T
Require: Topological feature f of unweighted

graph

Ensure: Features array Features

procedure FEATURES_CALC(s,HM , T )
2: for all h ∈ HM , t ∈ T do

Calculate attention graph Γh
s =

(V,E,W att
h,s ) on sample s on head h

4: Eh
s (t)← {e ∈ E(Γh

s ) : W att
h,s (e) ≥ t}

Γh
s (t)← (V,Eh

s (t))

6: Eh
s (t)←

{
{i, j} : (i, j) ∈ Eh

s (t)
}

Γh
s (t)← (V,Eh

s (t))

8: Calculate f(Γh
s (t))

end for
10: Features←

[
f(Γh

s (t))
]h∈HM

t∈T
return Features

12: end procedure

B Persistent Homology and Betti
Numbers

Recall that a simplicial complex K is a collection
of subsets of a finite set called simplices such that
each subset of any element of K also is an element
of K; such subsets of a simplex are called faces. In
particular, an undirected graph is a simplicial com-
plex where the simplices correspond to the edges
and vertices of the graph. The set of all formal
Z-linear combinations of the p-dimensional sim-
plices (that is, (p+ 1)-element finite sets from the
collection) of K is denoted Cp(K). These linear
combinations c =

∑
j γjσj are called p-chains,

where the γj ∈ Z and the σj are p-simplices in K.
The boundary, ∂(σj), is the formal sum of the

(p− 1)-dimensional faces of σj and the boundary
of the chain is obtained by extending ∂ linearly,

∂(c) =
∑
j

γj∂(σj)

for c as above.

The p-chains that have boundary 0 are called
p-cycles, they form a subgroup Zp(K) of Cp(K).
The p-chains that are the boundary of (p + 1)-
chains are called p-boundaries and form a subgroup
Bp(K) of Cp(K). The quotient group Hp(K) =
Cp(K)/Bp(K) is called the p-th homology of K.
Their ranks βp = rk(Hp(K)) of these abelian
groups are called Betti numbers. The homology
and the Betti numbers are classical topological in-
variants of K.

In particular, a graph G = (E, V ) contains 0-
dimensional and 1-dimensional faces. It follows
that its topological form is essentially described
by the numbers β0 and β1, which are the only
nonzero Betti numbers. Here β0 is the number
of connected components of G, and β1 is the num-
ber of independent cycles of the graph (which is
equal to |E| − |V |+ β0).

A subcomplex of K is a subset of simplices that
is closed under the face relation. A filtration of K
is a nested sequence of subcomplexes that starts
with the empty complex and ends with the complete
complex,

∅ ⊂ Kt1 ⊂ Kt2 ⊂ · · · ⊂ Ktm = K.

In particular, to any weighted undirected graph
G = (V,E) one can associate naturally the filtra-
tion

∅ ⊂ Gt1 ⊂ · · · ⊂ Gtm = G, (2)

where {ti} is the set of all weights of the edges,
Gti = (V,Eti) and Eti consists of all edges of E
with weight less or equal to ti.

In our calculations, the increasing filtration is
obtained by reversing the attention matrix weights:
w 7→ 1− w.

The p-th persistent homology of K is the pair
of sets of vector spaces {Hp(Kti)|0 ≤ i ≤ l} and
maps {fi,j : Hp(Kti)→ Hp(Ktj )|1 ≤ i < j ≤ l},
where the maps are induced by the inclusion maps
Kti → Ktj .

Each persistent homology class α in this se-
quence is “born” at some Kti and “dies” at some
Ktj or never dies (Barannikov, 2021, 1994). One
can visualize this as an interval [ti, tj ] or [ti,+∞[.
The collection of all such intervals is called the bar-
code of the filtration. It is the most useful invariant
of the filtration. Note that the information about the
persistent homology classes is generally essential
to calculate the barcode, whereas the information
about the Betti numbers only is insufficient.



Figure 5: The distribution shift of the sum of the bars in H0 between the natural and generated texts for different
layers and attention heads on the WebText & GPT-2 dataset. Top=(Layer: 7; Head: 5), (Layer: 8; Head: 10);
Middle=(Layer: 9; Head: 11), (Layer: 9; Head: 7); Bottom=(Layer: 0; Head: 3), (Layer: 5; Head: 6). TGM:
GPT-2 Small with pure sampling.

In the case of the filtration associated to a
weighted graph (2), the H0−th barcode (respec-
tively, H1−th) consists of the intervals of the form
[0, di] (resp., [si,∞[) only. Given a number l, the
number of intervals of length at most l for H0 (re-
spectively, the number of intervals with the left
endpoint at most l) is therefore equal to the the
Betti number β0(Kl) (resp., β1(Kl)). We see that
in this case, we can recover the barcode from the
collection of all Betti numbers βi(Ktj ) where the
thresholds set {tj} is the set of all weights of the
edges in the graph. On the other hand, a calculation
of theH0−barcode gives all Betti numbers βi(Ktj )
simultaneously for all thresholds.

In TDA, the following filtered simplicial com-
plex is also commonly associated with a graph.
The n-dimensional simplices of the clique com-
plex (or Whitney complex) X = X(G) of a graph
G = (E, V ) are the (n + 1)-cliques of G, that is,
complete subgraphs with n+ 1 vertices. For exam-
ple, its 0-simplices are the vertices, the 1-simplices
are the edges, and the 2-simplices are the trian-
gles. The clique complex has a richer topological
structure than the graph itself since it may have
nonzero Betti numbers βn(X) for n ≥ 2. Note
that the H0−barcode of the filtered clique complex
coincides with the H0−barcode of (2). Several
software packages are aimed at calculating the per-



sistent homology of graph clique complex. For
this purpose, we have used Ripser++ (Bauer, 2021;
Zhang and Xiao, 2020).

The entropy of the barcode is a measure of the
entropy of the points in a persistence diagram. Pre-
cisely, if we have a barcode as a list of pairs of
“birth”, “death”: D = {(bi, di)}i∈I , then the en-
tropy is defined as:

E(D) = −
∑
i∈I

pi log(pi)

where pi = di−bi
LD

, and LD =
∑
i∈I

(di − bi).

Each bar in H0−barcode has the form [0, di]
where 1 − di is the attention weight of the edge
which “kills” the connected component correspond-
ing to this bar. The sum of lengths of bars in the
H0−barcode coincides with 128 −M where M
is the sum of edge weights of the attention graph
maximal spanning tree. Examples of the shift of
distributions of the sum of bars’ lengths between
natural and generated texts are shown in the top
and middle rows in Figure 5.

C Training Details

Topological Features and TF-IDF Similar to
(Solaiman et al., 2019), the training of the lin-
ear classifiers is run with the regularization pa-
rameter L2 ∈ [1e−5, 5e−5, . . . , 0.1, 0.5, 1] and
the maximum number of iterations maxiter ∈
[1, 2, 3, 5, 10, 100] tuned on the validation set. The
topological features are concatenated for each
attention head for each encoder layer, and fur-
ther concatenated. The total number of fea-
tures for each method is equal to 12 × 12 ×
number of features per method.

BERT-based classifiers are trained with the lin-
ear scheduler with the initial learning rate lr ∈
[1e−5, 5e−5, 1e−4, . . . , 1e−1, 1] and epochs num-
ber e ∈ [2, 3, 5, 10, 15, 20]. BERT [CLS trained]
is trained for 20 epochs, and BERT [Fully
trained] is trained for 2-5 epochs depending on
the dataset. We use early stopping controlled by
the accuracy on the validation set for each text de-
tection dataset.


