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Abstract

Quantitatively measuring the impact-related
aspects of scientific, engineering, and tech-
nological (SET) innovations is a fundamen-
tal problem with broad applications. Tradi-
tional citation-based measures for assessing
the impact of innovations and related entities
do not take into account the content of the
publications. This limits their ability to pro-
vide rigorous quality-related metrics because
they cannot account for the reasons that led
to a citation. We present approaches to esti-
mate content-aware bibliometrics to quantita-
tively measure the scholarly impact of a pub-
lication. Our approaches assess the impact
of a cited publication by the extent to which
the cited publication informs the citing publi-
cation. We introduce a new metric, called Con-
tent Informed Index (CII), that uses the content
of the paper as a source of distant-supervision,
to quantify how much the cited-node informs
the citing-node. We evaluate the weights esti-
mated by our approach on three manually an-
notated datasets, where the annotations quan-
tify the extent of information in the citation.
Particularly, we evaluate how well the ranking
imposed by our approach associates with the
ranking imposed by the manual annotations.
CII achieves up to 103% improvement in per-
formance as compared to the second-best per-
forming approach.

1 Introduction

Scientific, engineering, and technological (SET)
innovations have been the drivers behind many of
the significant positive advances in our modern
economy, society, and life. To measure various
impact-related aspects of these innovations various
quantitative metrics have been developed and de-
ployed. These metrics play an important role as
they are used to influence how resources are allo-
cated, assess the performance of personnel, identify
intellectual property (IP)-related takeover targets,

value a company’s intangible assets, and identify
strategic and/or emerging competitors.

Citation networks of peered-reviewed scholarly
publications (e.g., journal/conference articles and
patents) have widely been used and studied in order
to derive such metrics for the various entities in-
volved (e.g., articles, researchers, institutions, com-
panies, journals, conferences, countries, etc. (Agui-
nis et al., 2012)). However, most of these tradi-
tional metrics, such as citation counts and h-index,
treat all citations and publications equally and do
not take into account the content of the publications
and the context in which a prior scholarly work was
cited. Another related line of work, such as PageR-
ank (Page et al., 1999) and HITS (Kleinberg, 1999)
considers the node centrality (as a proxy for influ-
ence) but still operate in a content-agnostic manner.

Content-agnostic metrics fail to precisely size
up the scholarly impact of an article as they do not
differentiate between the possible reasons that a
scholarly work is being cited. In addition, they can
be easily manipulated by the presence of malicious
entities, such as publication venues indulging in
self-citations, which leads to high impact factor, or
a group of scholars citing each others’ work. For
example, Journal Citation Reports (JCR)1 routinely
suppresses many journals that indulge in citation
stacking, a practice where the reviewers and journal
editors pressure authors to cite papers that either
they wrote or that are published in their journal.
Thus, there is a need to establish content-aware
metrics to accurately measure various innovation-
related aspects such as their significance, novelty,
impact, and market value. Such metrics are essen-
tial for ensuring that SET-driven innovations will
play an ever more significant role in the future.

A straightforward solution to develop content-
aware metrics is to manually annotate the citations,

1http://help.incites.clarivate.
com/incitesLiveJCR/JCRGroup/
titleSuppressions.html

http://help.incites.clarivate.com/incitesLiveJCR/JCRGroup/titleSuppressions.html
http://help.incites.clarivate.com/incitesLiveJCR/JCRGroup/titleSuppressions.html
http://help.incites.clarivate.com/incitesLiveJCR/JCRGroup/titleSuppressions.html
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where the annotations describe the reasons for the
citations. These annotations can then be used to
train a machine-learning system that takes the con-
tent of the publications as input and predicts the
reasons for the citation. Along this direction, there
has been considerable effort to identify important
citations (Valenzuela et al., 2015; Jurgens et al.,
2018; Cohan et al., 2019). However, generating
labeled data for such supervised approaches is dif-
ficult and time-consuming, especially when the
meaning of the labels is user-defined.

In this work, we present approaches to estimate
content-aware bibliometrics to quantitatively mea-
sure the scholarly impact of a publication. Our
approaches are distant supervised, that require no
manual annotation. The proposed approaches lever-
age the readily available content of the papers as a
source of distant supervision. Our approaches as-
sess the impact of a cited publication by the extent
to which it informs the citing publication. They au-
tomatically estimate the weights of the edges in the
citation network, such that higher-weighted edges
correspond to higher-impact citations. We use these
weights to introduce a new metric, called Content
Informed Index (CII). We evaluate CII on three
manually annotated datasets, where the annotations
tell us the citation importance, thus, quantify the
extent of information in the citation. Particularly,
we evaluate how well the ranking imposed by CII
associates with the ranking imposed by the manual
annotations. The proposed approach achieves up to
103% improvement in performance as compared to
the second-best performing approach.

2 Related Work

The research areas relevant to the work present
in this paper belong to citation indexing, citation
recommendation, link prediction approaches, and
distant-supervised credit attribution approaches,
and citation-intent classification approaches. We
briefly discuss these below:

2.1 Citation indexing

A citation index indexes the links between pub-
lications that authors make when they cite other
publications. Citation indexes aim to improve the
dissemination and retrieval of scientific literature.
CiteSeer (Giles et al., 1998; Li et al., 2006) is the
first automated citation indexing system that works
by downloading publications from the Web and
converting them to text. It then parses the papers

to extract the citations and the context in which
the citations are made in the body of the paper,
storing this information in a database. Other ex-
amples of popular citation indices include Google
Scholar2, Web of Science3 by Clarivate Analyt-
ics, Scopus4 by Elsevier and Semantic Scholar5.
Some examples of subject-specific citation indices
include INSPIRE-HEP6 which covers high energy
physics, PubMed7, which covers life sciences and
biomedical topics and Astrophysics Data System8

which covers astronomy and physics.

2.2 Citation recommendation

Citation recommendation describes the task of rec-
ommending citations for a given text. It is an
essential task, as all claims written by the au-
thors need to be backed up to ensure reliabil-
ity and truthfulness. The approaches developed
for citation recommendation can be grouped into
4 groups as follows(Färber and Jatowt, 2020):
hand-crafted feature-based, topic-modeling-based,
machine-translation-based, and neural-network-
based approaches. Hand-crafted feature-based ap-
proaches are based on features are manually en-
gineered by the developers. For example, text
similarity between the citation context and the
candidate papers can be used as one of the text-
based features. Examples of hand-crafted feature-
based approaches include (Färber and Jatowt, 2020;
He et al., 2011; LIU et al., 2016; Livne et al.,
2014; Rokach et al., 1978). Topic modeling based
approaches represent the candidate papers’ text
and the citation contexts using abstract topics and
thereby exploiting the latent semantic structure
of texts. Examples of topic modeling-based ap-
proaches include (He et al., 2010; Kataria et al.,
2010). The machine-translation-based approaches
apply the idea of translating the citation context
into the cited document to find the candidate papers
worth citing. Examples in this category include (He
et al., 2012; Huang et al., 2012). Finally, the pop-
ular examples of neural-network-based models in-
clude (Ebesu and Fang, 2017; Han et al., 2018;
Huang et al., 2015; Kobayashi et al., 2018; Tang
et al., 2014; Yin and Li, 2017).

2https://scholar.google.com/
3http://www.webofknowledge.com/
4https://www.scopus.com/
5https://www.semanticscholar.org/
6https://inspirehep.net/
7https://pubmed.ncbi.nlm.nih.gov/
8http://ads.harvard.edu/

https://scholar.google.com/
http://www.webofknowledge.com/
https://www.scopus.com/
https://www.semanticscholar.org/
https://inspirehep.net/
https://pubmed.ncbi.nlm.nih.gov/
http://ads.harvard.edu/
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2.3 Link-prediction

Link-prediction is the problem of predicting the
existence of a link (connection) between two nodes
in a network. A good link-prediction model pre-
dicts the likelihood of a link between two nodes,
thus, link-prediction can be a useful tool to find
likely citations in a citation network. The citation
recommendation task described previously can be
thought of as a special case of link-prediction. Fol-
lowing the taxonomy described in (Martínez et al.,
2016), link-prediction approaches can be broadly
categorized into three categories: similarity-based
approaches, probabilistic and statistical approaches,
and algorithmic approaches. The similarity-based
approaches assume that nodes tend to form links
with other similar nodes and that two nodes are
similar if they are connected to similar nodes or are
near in the network according to a given similar-
ity function. Examples of popular similarity func-
tions include number of common neighbors (Liben-
Nowell and Kleinberg, 2007), Adamic-Adar in-
dex (Adamic and Adar, 2003), etc. The proba-
bilistic and statistical approaches assume that the
network has a known structure. These approaches
estimate the model parameters of the network struc-
ture using statistical methods and use these param-
eters to calculate the likelihood of the presence of
a link between two nodes. Examples of probabilis-
tic and statistical approaches include (Guimerà
and Sales-Pardo, 2009; Huang, 2010; Wang et al.,
2007). Algorithmic approaches directly use the
link-prediction as supervision to build the model.
For example, link-prediction task can be formu-
lated as a binary classification task where the pos-
itive instances are the pair of nodes that are con-
nected in the network, and negative instances are
the unconnected nodes. Examples include (Menon
and Elkan, 2011; Bliss et al., 2014). Unsupervised
or self-supervised node embedding (such as Deep-
Walk (Perozzi et al., 2014), node2vec (Grover and
Leskovec, 2016)), followed by training a binary
classifier and Graph Neural network approaches
such as GraphSage (Hamilton et al., 2017) belong
to this category.

2.4 Distant-supervised credit-attribution

Various distant-supervised approaches have been
developed for credit-attribution on text documents.
A document may be associated with multiple la-
bels but all the labels do not apply with equal
specificity to the individual parts of the docu-

ments. Credit attribution problem refers to iden-
tifying the specificity of labels to different parts
of the document. Various probabilistic and neural-
network-based approaches have been developed
for this problem, such as Labeled Latent Dirich-
let Allocation (LLDA) (Ramage et al., 2009), Par-
tially Labeled Dirichlet Allocation (PLDA) (Ra-
mage et al., 2011), Multi-Label Topic Model
(MLTM) (Soleimani and Miller, 2017), Segmenta-
tion with Refinement (SEG-REFINE) (Manchanda
and Karypis, 2018), and Credit Attribution with At-
tention (CAWA) (Manchanda and Karypis, 2020).

Another line of work uses distant-supervised
credit-attribution for query-understanding in prod-
uct search. Examples include, (i) using the refor-
mulation logs as a source of distant-supervision to
estimate a weight for each term in the query that
indicates the importance of the term towards ex-
pressing the query’s product intent (Manchanda
et al., 2019a,b); and (ii) annotating individual
terms in a query with the corresponding intended
product characteristics, using the characteristics
of the engaged products as a source of distant-
supervision (Manchanda et al., 2020).

2.5 Citation-intent classification

In general, these approaches treat citation-intent
classification as a text classification problem and
require the availability of training data with ground
truth annotations. Representative examples include
rule-based approaches (Pham and Hoffmann, 2003;
Garzone and Mercer, 2000) as well as machine-
learning driven approaches (Valenzuela et al., 2015;
Jurgens et al., 2018; Cohan et al., 2019). Generat-
ing labeled data for these supervised approaches is
difficult and time-consuming, especially when the
meaning of the labels is user-defined. In contrast,
our approaches require no manual annotation.

3 Content-Informed Index (CII)

To address the disadvantages of content-agnostic
bibliometrics, we present approaches that use
machine-learning to estimate content-aware bib-
liometrics to measure the scholarly impact of a
publication. Our approaches are distant supervised,
requiring no manual annotation. They automati-
cally estimate the weights of the edges in the cita-
tion network, such that edges with higher weights
correspond to higher-impact citations. We use these
weights to come up with a new metric, called Con-
tent Informed Index (CII). Next, we discuss the
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assumptions behind CII and provide deeper details.

3.1 Assumptions and problem definition

In the absence of labels that define the impact, we
assume that the extent to which a cited paper in-
forms (contributes or is used by) the citing paper
is an indication of the citation’s impact. We as-
sume that each paper Pi can be represented as a
set of concepts Ci, a subset of which are the his-
torical concepts that were already known prior to
Pi. These historical set of concepts of the paper Pi

are borrowed from the papers that Pi cites, and are
denoted by Hi.

The contribution of a cited paper Pj towards
the citing paper Pi is the set of concepts that Pi

borrows from Pj , i.e., the set of concepts Cj ∩Hi.
The task at hand is to quantitatively approximate
the extent to which Cj contributes towards Hi, and
hence contributes towards Ci. Next, we describe
the framework that we employed to achieve this.

3.2 Representing the set of concepts
associated with a paper

Figuring out the explicit-human-interpretable con-
cepts associated with a paper is not trivial, and can
be interpreted differently by different audiences.
However, in our case, we are interested in getting
a representation of the semantic meaning associ-
ated with the concepts, rather than the concepts
themselves. One of the simple approaches to get
the representation of the semantic meaning asso-
ciated with the concepts is to use the pre-trained
representation (embedding) of the text associated
with the concepts themselves. Being trained on
language-modeling tasks, such pre-trained repre-
sentations easily capture semantic meanings of
words/sequence of words. For simplicity, we use
the representations pre-trained on scientific doc-
uments provided by ScispaCy (Neumann et al.,
2019). In addition, we only use the representa-
tion of the abstract to get the representation of the
concepts of a paper. The representation of Ci is
denoted by r(Ci).

Note that we can use more sophisticated rep-
resentation techniques for this part, but limit our-
selves to abstract representations provided by Scis-
paCy9 for simplicity (further discussed in Sec-
tion 7). Other potential improvements include:

9The evaluation dataset contains papers from many scien-
tific domains but ScispaCy is specific to biomedical/clinical
texts, and performed better than the word2vec embeddings
pre-trained on general web crawled text.

(i) using better pre-trained representations such as
BERT (Devlin et al., 2019), ELMo (Peters et al.,
2018), etc., and (ii) representation for a more rep-
resentative summary of the paper than the abstract.
Further, CII is not suitable for the class of papers
for which our assumptions do not hold. A particu-
lar case is of the review papers, which tend to have
a lot of content, and a limited-word abstract may
not be a representative summary of the complete
paper. Thus, the CII estimates that depend on these
papers would not be reliable.

3.3 Representing the set of historical
concepts Hi

As the set of historical concepts Hi is a union of the
borrowed concepts from the cited papers (Cj), we
simply represent the set of historical concepts as a
weighted linear combination of the representation
of the concepts of the cited papers, i.e.,

r(Hi) =
∑

Pi cites Pj

w̃jir(Cj)

subject to
∑

Pi cites Pj

w̃2
ji = 1

w̃ji ≥ 0;∀(i, j).

(1)

We have the constrained norm condition
(

∑
Pi cites Pj

w̃2
ji = 1) to make the representation of

r(Hi) agnostic to the number of cited-papers (a pa-
per can cite multiple papers to reference the same
borrowed concepts)10. We model the weights w̃ji

as a function of the concepts of the cited paper, and
the concepts in the citation context. The approach
to estimating these weights is described next.

3.4 Supervision task

Since CII does not depend upon the availability of
explicit manual annotations, we need to address
the challenge of finding an alternative task, with
similar underlying principles as the task at hand.
Recall that, CII assumes the extent to which a cited
paper informs (or explains) the citing paper is an
indication of the citation’s impact. In this direc-
tion, we propose to minimize the explanation loss,
where the explanation tries to explain the concepts
Ci of the paper Pi using the historical concepts Hi

i.e., the concepts of the cited papers (Cj). Thus,
we formulate our problem as a distant-supervised

10In addition to using the L2-norm as constraint, we also
experimented with L1-norm, but the setup with L1-norm con-
straint lead to sparse w̃ji and lower performance as compared
to the setup with L2-norm constraint.
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Paper 2 Paper 3 Paper 4

---[Paper 4]-
---[Paper 3]-
---[Paper 2]-

Paper 1 
(Citing paper)

Unit Normalization

Representation of the historical concepts

Minimize the explanation loss

Figure 1: Overview of Content-Informed Index. Paper
P1 cites papers P2, P3 and P4. The weights w21, w31,
and w41 quantifies the extent to which P2, P3 and P4 in-
forms P1, respectively. The function f is implemented
as a Multilayer Perceptron.

problem, and the content of the papers acts as a
source of distant-supervision. Combining it with
the discussion in Sections 3.2 and 3.3, we formally
describe our formulation as follows: We model
the weights w̃ji in Equation 1 as the normalized
similarity measure between the concepts of the
cited paper, and the concepts in the citation context.
Thus, to estimate w̃ji, we first estimate unnormal-
ized w̃ji, denoted by wji, and then normalize wji

so as to have unit norm. The unnormalized weight
wji is precisely the extent to which Cj contributes
towards Hi (and hence Ci), i.e., the weight that
we wish to estimate in this paper. Specifically, the
above discussion leads to the following mathemati-
cal formulation:

minimize
f

∑
i

||r(Ci)−
∑

Pi cites Pj

w̃jir(Cj)||2

subject to w̃ji =
wji√ ∑

Pi cites Pj

w2
ji

;∀(i, j),

wji = f(r(Cj), r(Cji)); ∀(i, j),
wji ≥ 0; ∀(i, j).

(2)

We estimate wji as a multilayer perceptron, that
takes as input the representations of the concepts
in the cited paper and the concepts in the citation
context. Similar to r(Cj), we use the ScispaCy
vector representation for the citation context as
the representation of the context and denote it by
r(Cji). To take care non-negativity constraint for
the wji, the function f(·) can be implemented as
a multilayer perceptron, with a single output node,
and a non-negative mapping at the output node.
Note that, if the set of weights wji minimize Equa-
tion (2), then so will any scalar multiplication of
the weights wji. This can potentially lead to the

estimated weights being incomparable across dif-
ferent citing papers. Empirically, we found that
having an additional max-bound constraint on the
estimated weights (wji ≤ b) helps to avoid this
pitfall11, as it essentially limits the projection space
of the weights wji. We do not need to explicitly
set the max-bound b, but it is implicitly set by the
L2 regularization of the weights of the function
f . The L2 regularization parameter is treated as
a hyperparameter. Figure 1 shows an overview of
Content-Informed Index (CII).

4 Experimental methodology

4.1 Evaluation methodology and metrics

We need to evaluate how well the weights estimated
by our proposed approach quantifies the extent to
which a cited paper informs the citing paper. To
this end, we leverage various manually annotated
datasets (explained later in Section 4.3), where the
annotations quantify the extent of information in
the citation. The task inherently becomes an or-
dinal association, and we need to evaluate how
well the ranking imposed by our proposed method
associates with the ranking imposed by the man-
ual annotations. As a measure of rank correlation,
we use the non-parametric Somers’ Delta (Somers,
1962) (denoted by ∆). Values of ∆ range from
−1(100% negative association, or perfect inver-
sion) to +1(100% positive association, or perfect
agreement).

4.2 Baselines

We choose representative baselines from diverse
categories as discussed below:

4.2.1 Link-prediction approaches
The citation weights that we estimate in this pa-
per can also be looked at from the link-prediction
perspective, i.e., assigning a score to every citation
(link) in the citation graph, that encodes the likeli-
hood of the existence of a link. We compare against
two link-prediction methods, one based on the clas-
sic network embedding approach, and the other
belonging to Graph Neural Network approaches.

• DeepWalk (Perozzi et al., 2014) is a popular
method to learn node embeddings. Once we

11In theory, the pitfall still remains, but we believe that the
input representations lie in smooth space, so the output of
the multilayer perceptron is also smooth enough. This factor,
along with the max-bound avoids drastic differences between
the estimated weights across different citing papers
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have node embeddings as the output of Deep-
Walk, we train a binary classifier, with the posi-
tive instances as the pairs of nodes which are con-
nected in the network, and negative instances are
the unconnected nodes (generated using negative
sampling). We provide results using two differ-
ent classifiers: Logistic Regression (denoted by
DeepWalk+LR) and Multilayer Perceptron (de-
noted by DeepWalk+MLP). Note that Deepwalk
is a transductive model, and does not use the con-
tent of the papers to estimate the model.

• GraphSage (Hamilton et al., 2017) is a Graph
Convolutional Network (GCN) based framework
for inductive representation learning on graphs.
GraphSage uses the link-prediction loss for train-
ing, so does not use a second step (as in Deep-
Walk) to train the classifier. Note that, GraphSage
is an inductive model, so considers the content of
the papers in addition to the network topology.

4.2.2 Text-similarity based baselines
We can think of the function f as a similarity mea-
sure between the cited paper and the citation con-
text. Thus, we consider the following similarity
measures as our baselines: We use the same pre-
trained representations as we used as an input to
CII, and cosine similarity as the similarity measure,
which is a popular similarity measure for text data.

• Similarity-Abstract-Context: Similarity between
the cited abstract and the citation context.

• Similarity-Context-Abstract: Similarity between
the citing abstract and the citation context.

• Similarity-Abstract-Abstract: Similarity between
the cited abstract and citing abstract.

To calculate each of the above similarity measures,
we use the same pre-trained representations as we
used as an input to CII, and cosine similarity as the
similarity measure. The baselines belonging to this
category can also be thought of as similarity-based
link prediction approaches.

4.2.3 Reference Frequency based baselines
We also consider another simple baseline, referred
to as Reference Frequency, where we assume that
the more frequently the cited paper is referenced in
the citing paper, the higher the chances of the cited
paper informing the citing paper. This assumption
has also been used as a feature in prior supervised

approaches (Valenzuela et al., 2015). The abso-
lute frequency of referencing a cited-paper may
provide a good signal regarding the information
borrowed from the cited paper when comparing
with other papers being cited by the same citing
paper. However, as the citation behavior differs
between papers, the absolute frequency may not
be comparable across different citing papers. Thus,
we also provide results after doing normalization
of the absolute frequency of the citation references
for each citing paper. We provide results for mean,
max, and min normalization. Specifically, given
a citation and the corresponding citing paper, the
information weight for a citation is calculated by
dividing the number of references of that citation,
by the mean, max, and min of references of all the
citations in that citing paper, respectively.

4.3 Datasets

The Semantic Scholar Open Research Corpus
(S2ORC): The S2ORC (Lo et al., 2020) dataset
is a citation graph of 81.1 million academic publi-
cations and 380.5 million citation edges. We only
consider the publications for which full-text is avail-
able and abstract contains at least 50 words. This
leaves us with a total of 5, 653, 297 papers, and
30, 533, 111 edges (citations).
ACL-2015: The ACL-2015 (Valenzuela et al.,
2015) dataset contains 465 citations gathered from
the ACL anthology12, represented as tuples of
(cited paper, citing paper), with ordinal labels rang-
ing from 0 to 3, in increasing order of importance.
The citations were annotated by one expert, fol-
lowed by annotation by another expert on a subset
of the dataset, to verify the inter-annotator agree-
ment. We only use the citations for which we have
the inter-annotator agreement, and the citations are
present in the S2ORC dataset we described be-
fore. The selected dataset contains 300 citations
among 316 unique publications. The total number
of unique citing publications are 283 and the total
number of unique cited publications are 38.
ACL-ARC: The ACL-ARC (Jurgens et al., 2018)
is a dataset of citation intents based on a sample
of papers from the ACL Anthology Reference Cor-
pus (Bird et al., 2008) and includes 1,941 citation
instances from 186 papers and is annotated by do-
main experts. The dataset provides ACL IDs for
the papers in the ACL corpus, but does not pro-
vide an identifier to the papers outside the ACL

12https://www.aclweb.org/anthology/
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Table 1: Results on the Somers’ ∆ metric.

Model ACL-2015 ACL-ARC SciCite

Content-Informed Index (CII) 0.428± 0.013 0.308± 0.010 0.296± 0.006

Reference Frequency (Absolute) 0.325± 0.000 0.308± 0.000 0.144± 0.000
Reference Frequency (Mean-normalized) 0.351± 0.000 0.300± 0.000 0.120± 0.000
Reference Frequency (Min-normalized) 0.321± 0.000 0.298± 0.000 0.145± 0.000
Reference Frequency (Max-normalized) 0.270± 0.000 0.172± 0.000 0.035± 0.000

Similarity-Abstract-Abstract −0.041± 0.000 0.091± 0.000 −0.003± 0.000
Similarity-Abstract-Context −0.147± 0.000 0.090± 0.000 −0.125± 0.000
Similarity-Context-Abstract 0.013± 0.000 −0.062± 0.000 −0.202± 0.000

Deepwalk+Logistic-Regression −0.071± 0.016 0.190± 0.006 −0.037± 0.018
Deepwalk+Multilayer-Perceptron −0.026± 0.011 0.205± 0.024 −0.047± 0.015
GraphSage 0.023± 0.045 0.132± 0.024 0.049± 0.019

1 Boldfaced entries correspond to the overall best-performing method.
2 The ACL-ARC dataset is used as a validation dataset for parameter selection.
3 The reported results are the mean±standard-deviation corresponding to five different runs with different seeds.
4 The Reference-frequency and text-similarity based baselines are deterministic, thus the std-deviation of their results is zero.

corpus, making it difficult to map many citations to
the S2ORC corpus. However, it provided the titles
of those papers, and we used these titles to map
these papers to the papers in the S2ORC dataset,
if matching titles were found. The annotations
in ACL-ARC are provided at individual citation-
context level, leading to multiple annotations for
some of the (cited paper, citing paper) pair. In such
cases, we chose the highest-informing annotation
for such (cited paper, citing paper) pairs. The se-
lected dataset contains 460 citations among 547
unique publications. The total number of unique
citing publications are 145 and the total number of
unique cited publications are 413.
SciCite: SciCite (Cohan et al., 2019) is a dataset of
citation intents based on a sample of papers from
the Semantic Scholar corpus13, consisting of papers
in general computer science and medicine domains.
Citation intent was labeled using crowdsourcing.
The annotators were asked to identify the intent of a
citation, and were directed to select among three ci-
tation intent options: Method, Result/Comparison
and Background. This resulted in a total 9, 159
crowdsourced instances. We use the citations that
are present in the S2ORC dataset we described be-
fore. Similar to ACL-ARC, the annotations are
provided at individual citation-context level, lead-
ing to multiple annotations for some of the (cited
paper, citing paper) pair. For such cases, we chose
the highest-informing annotation for the (cited pa-
per, citing paper) pairs. The selected dataset con-
tains 352 citations among 704 unique publications.
There is no repeated citing or cited publication in

13https://www.semanticscholar.org/

this dataset, thus, the total number of unique citing
as well as unique cited publications are 352 each.

4.4 Parameter selection

We treat one of the evaluation datasets (ACL-ARC)
as the validation set and chose the hyperparameters
of our approaches and baselines concerning best
performance on this dataset. For DeepWalk, we
use the implementation provided here14, with the
default parameters, except the dimensionality of the
estimated representations, which is set to 200 (for
the sake of fairness, as the used 200 dimensional
text representations for CII). For the models that
require learning, i.e., the logistic regression part of
Deepwalk, MLP part of Deepwalk, GraphSage, and
CII, we used the ADAM (Kingma and Ba, 2015)
optimizer, with an initial learning rate of 0.0001,
and further use step learning rate scheduler, by
exponentially decaying the learning rate by a factor
of 0.2 every epoch. We use L2 regularization of
0.0001. The function f in CII was implemented as
a multilayer perceptron, with three hidden layers,
with 256, 64, and 8 neurons, respectively. We use
the same network architecture for the MLP that we
train on top of DeepWalk representations. We train
the logistic regression and MLP parts of Deepwalk,
GraphSage, and CII for a maximum of 50 epochs,
and do early-stopping if the validation performance
does not improve for 5 epochs. For GraphSage, we
use the implementation provided by DGL15. We
used a mini-batch size of 1024 for training.

14https://github.com/xgfs/deepwalk-c
15https://github.com/dmlc/dgl/blob/

master/examples/pytorch/graphsage

https://github.com/xgfs/deepwalk-c
https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage
https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage
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5 Results and discussion

5.1 Quantitative analysis
Table 1 shows the performance of the various ap-
proaches on the Somers’ Delta (∆) for each of the
three evaluation datasets. For ACL-2015 and Sci-
Cite, CII outperforms the competing approaches;
while for the ACL-ARC dataset, CII performs on
par with the best performing approach. The im-
provement of CII over the second-best performing
approach is 22% and 103%, on the ACL-2015 and
SciCite datasets, respectively.

Interestingly, the simplest baseline, Reference-
frequency, and its normalized forms are the second-
best performing approaches. While Reference-
frequency performs at par with the CII on the ACL-
ARC dataset, it does not perform as well on the
other two datasets. This can be attributed to the
fact that the number of unique citing papers in the
ACL-ARC dataset is relatively small. Thus, many
citations in ACL-ARC are shared by the same cit-
ing paper, which is not the case with the other two
datasets. Thus, as mentioned in Section 4.2, the ab-
solute frequency of referencing a cited-paper may
provide a good signal regarding the information
borrowed from the cited paper, when comparing
with other papers being cited by the same citing
paper. Further, even the normalized forms of the
Reference-frequency lead to only a marginal in-
crease in performance for the ACL-2015 and Sci-
Cite datasets. Thus, the simple normalizations
(such as mean, max, and min normalization used in
this paper), are not sufficient to address the differ-
ence in citation behavior between different papers.

Furthermore, we observe that simple similarity-
based approaches, such as cosine-similarity be-
tween pairs of various entities (each combination of
citing abstract, citing abstract, and citation-context)
perform close to random scoring (∆ value of close
to zero). This validates that the simple similarity
measures, like cosine similarity, are not sufficient
to manifest the information that a cited-paper lends
to the citing-paper; thus, showing the necessity of
more expressive approaches, like CII.

In addition, the other learning-based link-
prediction-based approaches perform considerably
worse than the simple baseline reference-frequency.
While on ACL-2015 and SciCite datasets, they per-
form close to random scoring, the performance
on ACL-ARC dataset is better than the random
baseline. For the link-prediction approaches to per-
form well, the basic assumption is that the majority

of the edges (links) in the training set are indeed
the informing citations. If such assumption holds,
the link-prediction approaches can pick the ma-
jority signal (informing citations) and ignore the
noise (non-informing citations) owing to the low-
dimensional projections of the nodes (or edges).
However, such assumption does not hold in the ci-
tation graphs, with only a fraction of citation being
the informing citations. For example, it has been
estimated that authors read only 20% of the works
they cite (Simkin and Roychowdhury, 2002).

5.2 Qualitative analysis

To understand the patterns that the proposed ap-
proach CII learns, we look into the data instances
with the highest and lowest predicted weights. As
the function f takes as input both the abstract of the
cited paper and the citation context, the learned pat-
terns can be a complex function of the cited paper
abstract and the citation context. Thus, for simplic-
ity, we limit the discussion here to understand the
linguistic patterns in the citation context, and their
association with the predicted weights.

We repeat the same exercise for the citation-
contexts with the lowest predicted weights. Fig-
ures 2 and 3 shows the wordclouds for the highest
weighted citations and lowest weighted citations,
respectively. These figures show clear discrimi-
natory patterns between the highest-weighted and
lowest-weighted citations, that relate well with the
information carried by a citation. For example, the
words such as ‘used’ and ‘using’ are very frequent
in the citation contexts of the highest weighted ci-
tations. This is expected, as such verbs provide a
strong signal that the cited work was indeed em-
ployed by the citing paper. Another interesting
pattern in the highest weighted citations is the pres-
ence of words like ‘fig’, ‘figure’, and ‘table’. Such
words are usually present when the authors describe
important concepts, such as methods and results.
As such, citations in these important sections in-
dicate that the cited work is used/extended in the
citing paper, which signals importance.

On the other hand, the wordcloud for the least
weighted citations (Figure 3) is dominated by
weasel words such as ‘may’, ‘many’, ‘however’,
etc. The words such as ‘many’ commonly occur in
the related work section of the paper, where the pa-
per presents some examples of other related works
to emphasize the problem that the citing paper is
solving. The words like ‘may’, ‘however’, ‘but’ etc
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Table 2: Examples of lowest and highest CII-weighted citations.

Citing-paper title Relavant citation-context Score

AAV-mediated gene
therapy for retinal
disorders: from
mouse to man

The number of regenerating axons per nerve was then calculated at each distance using a
previously developed formula (Lim et al., 2016; Bei et al., 2016), with the total number of
axons equal to πr2.

8.32e−1

Most experimental therapies that stimulate RGC axon regeneration involve interventions
at the time of injury or, in the case of many gene therapies, prior to injury (Buch et al.,
2008). While such studies are valuable for identifying therapeutic targets and elucidating
mechanisms of RGC axon regeneration, they are not readily translatable to human patients.

3.46e−5

Hippocampal
Memory Traces are
Differentially
Modulated by
Experience, Time, and
Adult Neurogenesis

Exploration in response to a novel open field (OF) was measured as previously described
(Richardson-Jones et al., 2010).

8.33e−1

Many models have stressed the importance of the hippocampus (HPC) subregions in
distinguishing similar patterns (pattern separation) and in completing partial patterns
(pattern completion) (Bakker et al., 2008; Leutgeb et al., 2007; Marr, 1971; McHugh et
al., 2007; O’Reilly and McClelland, 1994; Treves and Rolls, 1992)..

1.55e−5

Figure 2: Word-cloud for the words that appear in the
citation context of the citations with the highest predict
importance weights.

Figure 3: Word-cloud for the words that appear in the
citation context of the citations with the least predict
importance weights.

are commonly used to describe some limitations of
the cited work. Such citations are expected to be
incidental and carry less information.

We also look at some examples of individual ci-
tation contexts and the predicted weights for them.
Table 2 shows two citing papers, with an exam-
ple of a high weighted citation and an example
of a low weighted citation for each of those pa-
pers. For these examples, we see that the high
predicted weight corresponds to cited work indeed
being employed by the citing paper. For example,
the high weight citations for the papers titled ‘AAV-
mediated gene therapy for retinal disorders: from

mouse to man’ and ‘Hippocampal Memory Traces
are Differentially Modulated by Experience, Time,
and Adult Neurogenesis’ in Table 2 correspond to
formulas employed by these papers, that were de-
veloped in the cited papers. Similarly, the lowest
weighted citations correspond to cited papers that
are not informative. For example, for the paper
titled ‘AAV-mediated gene therapy for retinal dis-
orders: from mouse to man’, the lower-weighted
citation describes the limitation of the cited pa-
per. Similarly, for the paper titled ‘Hippocampal
Memory Traces are Differentially Modulated by
Experience, Time, and Adult Neurogenesis’, the
lower-weighted citation corresponds to background
work, which is not an informing citation.

6 Discussion and Conclusions

In this paper, we presented approaches to estimate
content-aware bibliometrics to accurately quanti-
tatively measure the scholarly impact of a publi-
cation. Our distant-supervised approaches use the
content of the publications to weight the edges of
a citation network, where the weights quantify the
extent to which the cited-publication informs the
citing-publication. Experiments on the three manu-
ally annotated datasets show the advantage of using
the proposed method on the competing approaches.
The code is available on GitHub16.

Our work makes a step towards developing
content-aware bibliometrics, and envision that the
proposed method will serve as a motivation to de-
velop other rigorous quality-related metrics.

16https://github.com/gurdaspuriya/
Evaluating-Scholarly-Impact/

https://github.com/gurdaspuriya/Evaluating-Scholarly-Impact/
https://github.com/gurdaspuriya/Evaluating-Scholarly-Impact/
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7 Broader impact and ethics discussion

Quantitative metrics to measure the impact-related
aspects of scientific, engineering, and technolog-
ical (SET) innovations play an important role
in the modern society. These metrics are used
to influence how resources are allocated, assess
the performance of personnel, identify intellec-
tual property (IP)-related takeover targets, value
a company’s intangible assets (IP is such an asset),
and identify strategic and/or emerging competitors.
Thus, metrics that accurately and quantitatively the
innovation-related aspects, are essential for ensur-
ing that SET-driven innovations will play an ever
more significant role in the future. This paper is a
step in this direction.

While our discussion and evaluation focused on
identifying informing citations, our approach is not
restricted to this domain, and can be used to derive
impact metrics for the various involved entities.
For example, the content-aware weights estimated
by the CII convert the original unweighted cita-
tion network to a weighted one. Consequently, this
weighted network can be used to derive impact
metrics for the various involved entities, like the
publications, authors etc. For example, to find the
impact of a publication, the sum of weights out-
going from its corresponding node can be used to
quantify the impact of the publication, instead of
using vanilla citation count. Further, the impact
can be propagated through generations of citations
(similar to CiteRank (Walker et al., 2005)), by sim-
ply doing a weighted pagerank on this weighted
graph.

However, as there are benefits, there are also
risks and concerns. Like other bibliometrics, CII is
also prone to be manipulated by the bad actors. For
example, the citation contexts can be constructed
in a way (using particular keywords as shown in
Figures 2 and 3) so as to fool CII. A way of mitigat-
ing these risks is to use more advanced information
extraction approaches for the accurate assessment
of the citation context. In this direction, we can
leverage the extensive literature on concept and
context extraction in NLP: from the highly specific
(’does this cited paper really discuss the entity our
approach found in the citing sentence?’) to much
more general (’is this mention positive or nega-
tive?’) and much in between. Having said that, it
is also important for an impact metric needs to be
simple to be widely adopted, and added complexity
can lead to issues of trust and acceptance by the

user community. Thus, we encourage the research
community and policy makers to come together to
understand and evaluate the specific impacts and
risks of using more expressive and relatively com-
plex metrics. We envision that this paper will serve
as a motivation to continue the discussion in the
aforementioned directions.
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