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Abstract

Multi-label document classification (MLDC)
problems can be challenging, especially for
long documents with a large label set and a
long-tail distribution over labels. In this paper,
we present an effective convolutional attention
network for the MLDC problem with a focus
on medical code prediction from clinical doc-
uments. Our innovations are three-fold: (1)
we utilize a deep convolution-based encoder
with the squeeze-and-excitation networks and
residual networks to aggregate the informa-
tion across the document and learn meaning-
ful document representations that cover dif-
ferent ranges of texts; (2) we explore multi-
layer and sum-pooling attention to extract the
most informative features from these multi-
scale representations; (3) we combine binary
cross entropy loss and focal loss to improve
performance for rare labels. We focus our
evaluation study on MIMIC-III, a widely used
dataset in the medical domain. Our models
outperform prior work on medical coding and
achieve new state-of-the-art results on multiple
metrics. We also demonstrate the language in-
dependent nature of our approach by applying
it to two non-English datasets. Our model out-
performs prior best model and a multilingual
Transformer model by a substantial margin.

1 Introduction

In multi-label document classification (MLDC), we
have a set of labeled data {X,Y},X ∈ RN×D and
Y ∈ RN×L, where N is the number of documents,
D is the feature dimension size of each document
and L is the total number of labels. The ith row
of Y is a multi-hot vector representing the set of
labels associated with the ith document. The task
is to learn a mapping betweenX and Y so that the
labels of each document are predicted correctly.

MLDC has a great number of practical appli-
cations, one of which is automatic medical cod-
ing, where a patient encounter containing multi-
ple records are assigned with appropriate medical

codes. A large number of medical encounters need
to be coded for billing purposes everyday. Profes-
sional clinical coders often use rule-based or simple
ML-based systems to assign billing codes, but the
large code space (viz. the ICD-10 code system
with over 90,000 codes) and long documents are
challenging for ML models. In addition, coding re-
quires extracting useful information from specific
locations across the entire encounter to support
the assigned codes. Consequently, effective mod-
els with the capability of handling these challenges
will have an immense impact in the medical domain
by helping to reduce coding cost, improve coding
accuracy and increase customer satisfaction.

Deep learning methods have been demonstrated
to produce the state-of-the-art outcomes on bench-
mark MLDC and medical coding tasks (You et al.,
2019a; Mullenbach et al., 2018; Chang et al., 2020),
but demands remain for more effective and accurate
solutions. In this paper, we propose EffectiveCAN,
an effective convolution attention network for
MLDC. Our models try to strike a careful balance
of simplicity and effective over-parameterization
such that we can effectively model long documents
and capture nuanced aspects of the whole docu-
ment texts. Such a model is particularly useful
for addressing the challenges of automatic medical
coding. We evaluate our models on the widely used
MIMIC-III dataset (Johnson et al., 2016), and attain
state-of-the-art results across multiple commonly
used metrics. We also demonstrate the language-
independent nature of our approach by coding on
two non-English datasets. Our model outperforms
prior best model and a multilingual transformer
model by a substantial margin.

2 Related Works

Previous deep learning methods for MLDC in-
volve various neural network architectures to learn
the semantic embeddings of the document texts.
For example, XML-CNN proposed by Liu et al.



5942

(2017) employs a 1-dimension convolutional net-
work along with dynamic pooling to learn the text
representation. RNN-based sequence-to-sequence
models, such as SGM (Yang et al., 2018) and
SU4MLC (Lin et al., 2018) use an encoder to en-
code the information of the input text and a decoder
to generate the predicted labels. AttentionXML
proposed by You et al. (2019a) leverages the BiL-
STM and label-aware attention to capture the most
relevant texts for each label. As a follow-up, MAG-
NET (Pal et al., 2020) incorporates graph neural
network to capture the attentive dependency struc-
ture among the labels. More recently, transform-
ers such as the X-transformer (Chang et al., 2020)
have also been introduced. X-transformer tackles
MLDC in three steps: label clustering, transformer
classification and label ranking.

There is a surge in neural network models em-
ployed for automatic medical coding in the past sev-
eral years. In particular, recent works have utilized
attention mechanism to improve automatic coding
performance. Shi et al. (2017) applied LSTMs to
produce represtations of the discharge summary
and used attention to predict the top 50 codes. Mul-
lenbach et al. (2018) proposed CAML that applies
separate attention for each label, which generates
better label-specific representations for label pre-
diction. They also used the label descriptions to
regularize the model (called DL-CAML) in an at-
tempt to improve the prediction of rare labels. To
improve the classification performance, Xie et al.
(2019) used the multi-scale convolutional attention
while Li and Yu (2020) employed multi-filter con-
volution to learn text patterns of different lengths.
Furthermore, to incorporate the inner relationship
of the labels, HyperCore (Cao et al., 2020) inte-
grated a hyperbolic representation learning method
and a graph convolutional network, and Lu et al.
(2020) utilized multi-graph knowledge aggregation.
Vu et al. (2020) proposed to combine Bi-LSTM
and an extension of structured self-attention mech-
anism for ICD code prediction.

3 EffectiveCAN Model

In this section, we introduce our EffectiveCAN
model (Figure 1), which is composed of four major
components: an input layer that transforms the raw
document texts into pretrained word embeddings,
a deep convolution-based encoder that combines
the information of adjacent words and learns mean-
ingful representations of the document texts, an

Figure 1: The architecture of EffectiveCAN.

attention component that selects the most impor-
tant text features and generates label-specific repre-
sentations for each label, and an output layer that
produces the final predictions.

The model structure is primarily designed for
generating better predictions on multi-label clas-
sification tasks from three aspects: (1) generat-
ing meaningful representations for input texts; (2)
selecting informative features from text represen-
tations for label prediction; (3) preventing over-
confidence on frequent labels. Firstly, in order to
obtain high-quality representations of the document
texts, we incorporate the squeeze-and-excitation
(SE) network and the residual network into the
convolution-based encoder. The encoder consists
of multiple encoding blocks to enlarge the recep-
tive field and capture text patterns with different
lengths. Secondly, instead of only using the last
encoder layer output for attention, we extract all
encoding layer outputs and apply the attention to
select the most informative features for each la-
bel. Finally, to cope with the long-tail distribution
of the labels, we use a combination of the binary
cross entropy loss and focal loss to make the model
perform well on both frequent and rare labels.

3.1 Input Layer

Our model takes a word sequence as the input and
each word is transferred to a word embedding of
size de. Assuming the document hasNw number of
words, the input will be a word embedding matrix
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Figure 2: The structure of a Res-SE block containing a
SE module and a residual module.

Xe = [x1, . . . , xNw ] ∈ RNw×de .

3.2 Convolutional Encoder

To transform the document into informative rep-
resentations, the input word embeddings Xe first
go through a convolution-based encoder that con-
sists of multiple residual squeeze-and-excitation
convolutional blocks (Res-SE blocks). Each Res-
SE block, as shown in Figure 2, is composed of
two parallel modules that are referred to as the SE
module and the residual module.

In recent years, transformer-based models with
self-attention modules have shown to be effective
in text classification tasks (Devlin et al., 2018; Liu
et al., 2019). However, for our applications we use
a convolutional encoder instead of a self-attention
one for two reasons: (1) ICD code predictions are
often associated with a span of texts in the input.
Convolutional operations can effectively aggregate
the information of text spans and output meaning-
ful representations for downstream predictions; (2)
Clinical documents are usually long (i.e. MIMIC-
III document have an average of 1500 words). A
convolutional encoder is more time and space ef-
ficient than a self-attention encoder for modeling
long documents.

3.2.1 SE Module
The SE module contains a squeeze-and-excitation
network (Hu et al., 2018) followed by layer normal-
ization (Ba et al., 2016). The SE network can adap-
tively adjust the weighting of each feature map and
refine the convolutional features. Here we use the
SE network to enhance the learning of document
representations for the down-stream prediction task.
The structure of the SE network in our model is
shown in Figure 3. In this network, we first apply a
standard 1-dimensional convolutional layer on the

input to aggregate the information of adjacent word
embeddings. Suppose the convolutional filter ap-
plied on the input matrix X is Wc ∈ Rk×de×dconv ,
where k is the filter size, de is the in-channel size
(the size of input embedding) and dconv is the out-
channel size (the size of output embedding). The
1-dimensional convolution is computed as

ci =Wc ∗ xi:i−k+1 + bc (1)

where * is the convolution operator and bc the bias.
The output convolutional features can be repre-
sented as C = [c1, . . . , cNw ] with C ∈ RNw×dconv .

The SE network then uses a two-stage process,
‘squeeze’ and ‘excitation’, to compute the channel-
dependent coefficients to enhance the convolutional
features. In the ‘squeeze’ stage, each channel
is compressed into a single numeric value via
global average pooling: zc = GAP (C). Here
zc ∈ Rdconv can be treated as a channel descriptor
that aggregates the global spatial information of
C. In the ‘excitation’ stage, the channel descrip-
tor goes through a dimensionality-reduction-layer
with reduction ratio r followed by a dimensionality-
increasing-layer back to the channel dimension of
C. The reduction ratio r is a tunable parameter and
we use r = 20 in our model. The excitation step
can be written as

sc = sigmoid(Wfc2·relu(Wfc1·zc+bfc1)+bfc2)
(2)

where Wfc1 ∈ R
dconv

r
×dconv , bfc1 ∈ R

dconv
r ,

Wfc2 ∈ Rdconv× dconv
r and bfc2 ∈ Rdconv are the

weights and biases of the fully-connected linear
layers. Next, we rescale the convolutional feature
C with sc by: X̃ = scale(C, sc), where scale de-
notes the channel-wise multiplication between C
and sc.

Eventually, X̃ is normalized and used as the out-
put of the SE module. In particular, we employ the
layer normalization (Ba et al., 2016) that’s widely
used for stabilizing the hidden layer distribution
and smoothing the gradients in NLP tasks (Devlin
et al., 2018; Hou et al., 2019).

3.2.2 Residual Module
In addition to the SE module, we also simultane-
ously transform input X and add it to the SE mod-
ule output as in the residual network (He et al.,
2016), which reduces the gradient vanishing issue
in the deep encoder structure. In order to avoid
dimension mismatch, we transform the input X
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Figure 3: The architecture of the SE network.

into X ′ by using a filter-size-1 convolutional layer.
Then we add X ′ with the SE module output X̃ .

Finally, we apply the gelu activation function to
generate the output of the Res-SE block:

H = gelu(X̃ +X ′) (3)

3.3 Attention
We use the label-wise attention (Mullenbach et al.,
2018) to generate label specific representations
from H . Since our convolutional encoder contains
multiple Res-SE blocks that generate multi-scale
representations of the document texts, we perform
multi-layer attention, which attends to outputs of
all Res-SE blocks. In this way, each label is al-
lowed to select the most relevant features from a
rich feature space extracted by the encoder. Assum-
ing U ∈ RNl×dl represents the label embedding
matrix, where Nl is the number of labels and dl the
embedding size of each label. To attend to the ith

Res-SE layer output H i ∈ RNw×diconv , U is first
mapped to U ′ ∈ RNl×diconv via a filter-size-1 con-
volutional layer to avoid dimension mismatch. The
attention weights are then computed by

Ai = softmax(U ′ ·H iT ) (4)

Here, each of the jth column of Ai ∈ RNl×Nw is a
weight vector measuring how informative the text
representations in H are for the jth label. Next, we
generate the label specific representations: V i =
Ai ·H i, where the jth column in V i ∈ RNl×diconv

is the label specific representation for the jth label,
generated from the ith Res-SE layer output.

We repeat the attention process for all Res-SE
layer outputs, then concatenate the label specific
representations:

V = concat(V 1, . . . , V NRes−SE ) (5)

where NRes−SE is the number of Res-SE blocks.
The resulted V ∈ RNl×

∑
i d

i
conv will be used for

the final prediction.
When the application domain has a large label

space but insufficient data points, a multi-layer at-
tention model can be difficult to train, especially
for deep networks. Therefore we also experiment
with sum-pooling attention where we first trans-
form each convolutional layer to have the same
dimention as the last layer, then sum all the layers
and apply attention to the summed output. The
resulting V ′ ∈ RNl×dlast−layer

conv is used for the final
prediction.

3.4 Output Layer
After obtaining the label specific representations,
we compute the probability for each label by using
a fully connected layer followed by a sum-pooling
operation and a sigmoid transformation:

p = sigmoid(pooling(Wfc · V T + bfc)) (6)

where Wfc ∈ R
∑

i d
i
conv×Nl and bfc ∈ RNl . Here,

the jth value in p is the predicted probability for the
jth label to be present given the document texts.

3.5 Loss Function
Binary cross entropy loss is widely used as the
loss function for training MLDC models. Suppose
y is the ground truth label and p is the predicted
probability, then the binary cross entropy loss is
LBCE(pt) = − log pt.

To tackle the long-tail distribution of the labels,
we also apply the focal loss (Lin et al., 2017), which
adds a weight term to the ordinary binary cross
entropy loss to dynamically down-weights the loss
assigned to well-classified labels. The focal loss is

LFL(pt) = −(1− pt)γ log pt (7)

Here γ is a tunable parameter to adjust the strength
of down-weighting. The weight term (1−pt)γ sup-
presses the loss from well-classified labels (where
pt is high) and bias the model towards labels that
get wrong predictions.

In practice, using the focal loss from the begin-
ning of training isn’t ideal, because it tends to cor-
rect the misclassified rare labels while sacrificing
the performance on the frequent labels. Instead,
we first train our model with the ordinary binary
cross entropy loss to allow the model to learn gen-
eral features and perform well on frequency labels.
Once the model performance saturates, we switch
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Dataset Ntrain Nval Ntest Nw Nl Nl

MIMIC-III-full 47,724 1,632 3,372 1,485 8,922 15.9
MIMIC-III-50 8,067 1,574 1,730 1,530 50 5.7
Dutch 2,511 313 313 4,958 144 5
French 22,540 2,836 2,827 1,660 940 11

Table 1: Data statistics. Ntrain: number of train-
ing instances, Nval: number of validation instances,
Ntest: number of test instances, Nw: average number
of words per instance,Nl: number of labels in total,Nl:
average number of labels per instance.

to use the focal loss and further fine-tune the model
to improve the predictions on rare labels.

4 Experiments

4.1 Datasets

We evaluated our model on the widely used medi-
cal benchmark dataset MIMIC-III, as well as two
medical datasets in Dutch and French respectively.
The statistics of the datasets are listed in Table 1.

4.1.1 MIMIC-III
The Medical Information Mart for Intensive Care
III (MIMIC-III) is an open-access dataset com-
prised of hospital records associated with over 4000
patients. We focus on using the discharge sum-
maries to predict their tagged International Classifi-
cation of Diseases 9 (ICD-9) codes. We formulate
this task as a MLDC problem following prior work
(Shi et al., 2017; Mullenbach et al., 2018). In total,
there are 52,722 discharge summaries and 8,922
unique ICD-9 codes. We follow the experiment
settings of Mullenbach et al. (2018). We focus on
the experiment that predicts the full 8,922 ICD-9
codes (denoted as MIMIC-III-full) but also present
the results on the top-50 ICD-9 codes (denoted
as MIMIC-III-50). The data statistics of the two
experiments are listed in Table 1.

4.1.2 Dutch and French Datasets
Many European hospitals are aware of the advan-
tages of automatic coding solutions that improve
the accuracy and efficiency of medical coding. To
evaluate how well our model adapts to coding
on non-English medical documents, we use two
real-world datasets, one in Dutch and the other in
French. These datasets contain human assigned
ICD-10 codes for each encounter. In these datasets,
the Discharge Summary is not differentiated from
other documents so we concatenate all documents
in the encounter. Nonetheless, the French data
has similar encounter length to MIMIC-III, but the

Dutch data are much longer with an average of 30
documents or close to 5,000 tokens per encounter.

The ICD-10 code system is widely used in Euro-
pean countries, but no benchmark dataset is avail-
able for comparing coding methods – likely due
to existing patient data protection regulations in
the EU. For U.S. English data, the restrictions
are somewhat less, which is how MIMIC-III was
able to be produced – though still at immense de-
identification cost. Although the de-identification
and release of the French/Dutch data was not pos-
sible, we believe our experiments and findings still
benefit the research community because they (1)
demonstrate that our model can generalize to other
languages and (2) are the first medical coding re-
sults reported for French or Dutch.

4.2 Preprocessing and Hyperparameters
We follow the preprocessing schema of (Mullen-
bach et al., 2018) except that we keep numerical
values from one to ten as they are relevant for cod-
ing. We utilize the word2vec CBOW method to
pretrain the word embeddings of size de = 100
and 200 on the preprocessed texts for MIMIC-III
and the non-English sets respectively. All MIMIC
documents are truncated to a maximum sequence
length wmax=3,500, whereas both 2,500 and 3,500
sequence length were used for the non-English sets.

We found optimal hyperparameter settings us-
ing the Ray Tune library (Liaw et al., 2018). We
optimized values for out-channel size dconv and
filter size k of the convolutional layer in each SE
module, dropout probability q after the input em-
bedding layer, as well as the power term γ in the
focal loss function. To reduce the search space, we
set d1conv = d2conv, d3conv = d4conv and k1 = k2,
k3 = k4. Table 2 summarizes their optimal val-
ues for different experiments. We use four Res-SE
blocks across all experiments, and adopt the Adam
optimizer with an initial learning rate of 0.00015.

4.3 Evaluation Metrics
The goal of computer assisted coding is to have as
little human intervention as possible. This means
that a model trained for coding should aim to pre-
dict the correct codes from the full set rather than
the top N codes, or give a ranked list of possible
codes. The performance of a model on the top 50
codes is often reported in research papers. How-
ever, in real-world settings, top-50 metrics are in-
sufficient for making an accurate assessment of au-
tomatic coding because expensive human resources
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diconv ki q γ
Range 100-240 5-25 0.1-0.3 0.5-2

MIMIC-III-full 200,200,
240,240

13,13,
9,9 0.3 1

MIMIC-III-50 180,180,
200,200

11,11,
9,9 0.3 0.5

Dutch and
French

180,180,
200,200

11,11,
9,9 0.3 0.5

Table 2: The parameter values used in different tasks.
diconv , ki: the out-channel size and the kernel size of
the SE convolutional layer in the ith Res-SE block, q:
the dropout probability after the input embedding layer,
γ: the power term in the focal loss.

are still needed for the large number of remaining
codes. In MIMIC-III, top 50 codes cover only a
third of the codes per encounter, and in reality a
small number of top codes can usually be handled
by rule-based systems with great accuracy.

Ranking based metrics like P@K, R@K, RP@K
(Chalkidis et al., 2020), where K is often the av-
erage number of labels per document, are rarely
used in coding because there is high variability in
the number of codes per encounter. In MIMIC-III,
the number of codes per encounter varies from one
to 79, and 43% of the encounters have more than
the average 15 codes. Asking a human coder to
always review K codes for every encounter would
cause a huge productivity drop because she will
still have to review K codes when there is only one
code. On the other hand, reducing the number of
gold codes to K (Chalkidis et al., 2019) will result
in inaccurate measures (especially for Recall) for
a large percentage of encounters with more than K
codes and artificially inflate system performance.

Although macro metrics are useful for assessing
performance on rare codes, they are less impor-
tant in determining overall coding performance.
For these reasons, micro precision, recall and F1
over all codes best reflect improvements in cod-
ing productivity because they directly measure the
accuracy and coverage of the code assignment by
models. However, prior work did not report preci-
sion and recall on the MIMIC data. For comparison
purposes, we report F1 and other previously used
metrics on both MIMIC-III and the non-English
datasets, but the emphasis should be on Micro F1.

5 Results

To evaluate the effectiveness of our methods, we
compare our model with the existing state-of-the-
art. The results shown below are generated from

the average of five runs with different random seeds
for parameter initialization. We also investigate the
interpretability of the model.

5.1 Results on MIMIC-III
Table 3 shows the results on the MIMIC-III dataset
using the full ICD-9 codes. Our model achieved the
strongest results across multiple metrics compared
to the other systems. In particular, our model im-
proves the state-of-the-art Micro F1 score as well as
ranking based precision scores. Table 3 also shows
that the systems achieved very similar results on
Micro AUC for all codes even when they differ
significantly in other metrics. This suggests that
Micro AUC is not sensitive enough to distinguish
different systems and is therefore not a good metric
for comparing coding models.

Table 4 shows the results for the top-50-code pre-
diction. Our model produced competitive results
with other top models.

An interesting observation is that multi-layer at-
tention yields better results on MIMIC-III-50 but
sum-pooling attention performs better on MIMIC-
III-full. One possible explanation is that when there
are sufficient training data for the labels, multi-
layer attention with more parameters is able to
learn better representations for each label. Whereas
when the data is insufficient given the label size,
aggregating information over labels yields better
results.

5.2 Results on Dutch and French
On the Dutch and French datasets, we establish
two baselines. The first is MultiResCNN (Li and
Yu, 2020), which is the best performing model
on MIMIC-III that is publicly available. The sec-
ond is XLM-RoBERTa (Conneau et al., 2019), a
multi-lingual transformer model.1 XLM-RoBERTa
and related models achieve excellent performance
on well-known benchmarks such as GLUE (Wang
et al., 2018), however they are not well established
on the task of long-document, multi-label classifi-
cation. Table 5 presents our results.

Of the models we considered, only Effective-
CAN can be trained on the full label set (i.e. 144
codes for Dutch, 940 codes for French): XLM-
RoBERTa and MultiResCNN run out of 16GB
GPU memory. As such, we resort to comparison
with the baselines on only the top-50 codes. XLM-
RoBERTa yields poor results for both Dutch and

1We use the implementation available from HuggingFace
(Wolf et al., 2020).
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Model AUC F1 P@k
Macro Micro Macro Micro 8 15

CAML (Mullenbach et al., 2018) 0.895 0.986 0.088 0.539 0.709 0.561
DR-CAML (Mullenbach et al., 2018) 0.897 0.985 0.086 0.529 0.690 0.548
MSATT-KG (Xie et al., 2019) 0.910 0.992 0.090 0.553 0.728 0.581
MultiResCNN (Li and Yu, 2020) 0.910 0.986 0.085 0.552 0.734 0.584
HyperCore (Cao et al., 2020) 0.930 0.989 0.090 0.551 0.722 0.579
LAAT (Vu et al., 2020) 0.919 0.988 0.099 0.575 0.738 0.591
JointLAAT (Vu et al., 2020) 0.921 0.988 0.107 0.575 0.735 0.590
EffectiveCAN (Multi-layer attention) 0.921 0.989 0.105 0.581 0.755 0.604
EffectiveCAN (Sum-pooling attention) 0.915 0.988 0.106 0.589 0.758 0.606

Table 3: Results on MIMIC-III-full (i.e. all codes)

Model AUC F1 P@k
Macro Micro Macro Micro 5

C-LSTM-Att (Shi et al., 2017) - 0.900 - 0.532 -
CAML (Mullenbach et al., 2018) 0.875 0.909 0.532 0.614 0.609
DR-CAML (Mullenbach et al., 2018) 0.884 0.916 0.576 0.633 0.618
MSATT-KG (Xie et al., 2019) 0.914 0.936 0.638 0.684 0.644
MultiResCNN (Li and Yu, 2020) 0.899 0.928 0.606 0.670 0.641
HyperCore (Cao et al., 2020) 0.895 0.929 0.609 0.663 0.632
LAAT (Vu et al., 2020) 0.925 0.946 0.666 0.715 0.675
JointLAAT (Vu et al., 2020) 0.925 0.946 0.661 0.716 0.671
EffectiveCAN (Multi-layer attention) 0.920 0.945 0.668 0.717 0.664
EffectiveCAN (Sum-pooling attention) 0.915 0.938 0.644 0.702 0.656

Table 4: Results on MIMIC-III-50 (i.e. top-50 codes only)

French. Recall is particularly low, likely caused by
the model only seeing the first 512 subwords of a
long encounter with thousands of tokens.

Our model with multi-layer attention substan-
tially outperforms the other two systems. It strikes
a good balance between precision and recall, and is
able to handle the full code sets without difficulties.
Unlike the observation of Li and Yu (2020) where
the maximum length didn’t make an obvious differ-
ence to the performance on MIMIC-III, we found
that training on longer sequences on Dutch and
French gives an extra boost to all metrics. This is
especially true for the Dutch which contains longer
encounter texts. The results show that Effective-
CAN can be easily retrained for non-English docu-
ments to very good effect.

5.3 Analysis of Focal Loss
In this section, we describe our experiments on the
MIMIC-III-full dataset for a better understanding
of the focal loss.

To investigate how the moment of loss func-
tion switch impacts model performance, we trained
models with focal loss activated at different training
epoch and the results are given in Table 6. It shows
that switching the loss function at a later stage
yields more pronounced improvement in Macro F1.
We obtained the best results by training with BCE
loss first and saving the best model as measured by

the micro-F1 on the dev set. Then we continued
training using the focal loss until it converged.

To better understand which tail labels the fo-
cal loss helps improve, we analyzed model per-
formance based on label frequency in the test set.
Table 7 shows that the focal loss improves the pre-
diction of both frequent and rare labels, but the
improvement is more pronounced for the less fre-
quent labels.

5.4 Discussion
In this section we analyze the differences between
the models. Compared to CAML, MultiResCNN
yields better results by enhancing the encoder us-
ing the multi-filter residual convolutional network,
and HyperCore improves the macro-metrics by in-
corporating the correlations within the labels. Al-
though both MSATT-KG and EffectiveCAN use
multi-layer attention, we differ in the ways of ag-
gregating the attention results. Our model uses all
the attended values for the final label prediction
whereas MSATT-KG performs extra max-pooling
operations before the prediction. The max-pooling
operations, in our opinion, are unnecessary and risk
losing information. Our model produces notably
better results than MSATT-KG on the full code set.

JointLAAT differs from EffectiveCAN in the
encoder layer where it uses the BiLSTM to cap-
ture contextual information, whereas we choose to
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Model Dutch French
# Labels Precision Recall F1 # Labels Precision Recall F1

XLM-RoBERTa 50 0.725 0.289 0.413 50 0.606 0.426 0.500
MultiResCNN 50 0.458 0.639 0.534 50 0.631 0.607 0.619
EffectiveCAN 50 0.822 0.760 0.790 50 0.692 0.620 0.654
EffectiveCAN (3,500) 50 0.873 0.777 0.822 50 0.705 0.636 0.669
EffectiveCAN (3,500) 144 0.844 0.732 0.784 940 0.583 0.493 0.534

Table 5: Results on Dutch and French

Training
Epoch

F1
Macro Micro

0 0.084 0.578
4 0.094 0.581
8 0.099 0.587
11 0.106 0.588

Table 6: Moment of the loss function swith

Label
Frequency

F1 w/o Focal Loss F1 w Focal Loss
Macro Micro Macro Micro

0-10 0.139 0.301 0.155 0.322
11-50 0.407 0.490 0.426 0.514
51-100 0.521 0.568 0.528 0.578
101-200 0.578 0.626 0.606 0.646
over 200 0.698 0.751 0.699 0.753

Table 7: Effect of focal loss by label frequency in the
test set

use the convolution-based model for computational
and memory efficiency. To deal with rare labels,
prior works often add a separate component such
as a graph neural network or a hierarchical joint
learning module, which inevitably increases the
complexity and size of the model. Instead, we em-
ploy the focal loss, which can be easily modified
from the binary cross entropy loss, to improve the
rare-label prediction without sacrificing the overall
performance. By refining the entire model structure
including the convolutional encoder, attention cov-
erage and training objective, we build a model that
is simple and easy to scale, yet very effective for
the medical coding problem. The model achieved
the best micro F1 results on the MIMIC-III dataset,
even when compared with more complex models.
It is capable of not only generating accurate top
codes but also covering a large number of codes
including rare codes, which is important for real
world applications in the medical domain.

Recent results (You et al., 2019b; Chalkidis et al.,
2020) show that RNN-based and BERT-based mod-
els performed well on the topic categorization tasks
of EUR-LEX, AMAZON, WIKIPEDIA and RCV1.
However, it’s also clear that the best models on
these tasks are typically not the same as the best

performing models on MIMIC-III, which is fun-
damentally not a topic categorization task. Rather
medical coding requires fine-grained analysis of
very narrow aspects of the document in order to
identify appropriate codes. For an additional point
of comparison, we evaluated EffectiveCAN on two
topic categorization tasks (EUR-Lex and Wiki10-
31K) and found it outperforms several strong base-
lines and is only lower than X-Transformer (Chang
et al., 2020), a large pre-trained transformer model,
by a small margin on most metrics. Detailed results
are reported in Appendix A.

5.5 Model Interpretability

It is a requirement of medical coding that an au-
tomatic coding system is able to extract text evi-
dence to support the generated billing codes. With
the attention mechanism, we can extract the text
snippets that support the predicted codes. More
specifically, by conducting the multi-layer attention
on the four Res-SE layer outputs, we obtain four
attention weight matrices Ai∈{1,2,3,4} with each
Ai ∈ RNl×Nw . For the jth label, the associated at-
tention weights are the jth column of each matrix,
that is Ai·j ∈ RNw . Next, to get the most influential
text span for the jth label, we first get the text posi-
tion k∗ which is the argmax of all attention weights:

k∗ = argmax
k
{A1

kj , A
2
kj , A

3
kj , A

4
kj} (8)

We then select the most informative n-gram fea-
tures surrounding the text position k∗.

Table 8 gives some examples of the extracted
text snippets for the predicted ICD-9 codes in the
MIMIC-III-full experiments. Our model is able to
extract the n-gram features that are similar to the
code descriptions, e.g., the extracted snippet "Sys-
tolic congestive heart failure" for 428.20. More im-
portantly, our model is capable of selecting phrases
with different syntactic forms but similar semantics
as the code descriptions, e.g., the extracted snippet
"percutaneous tracheostomy tube placement" for
934.1. It indicates that the model can learn inter-
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ICD-9 code & Description Document texts

934.1: “Foreign body in main bronchus” . . . During his ICU stay he underwent percutaneous tracheostomy
tube placement as well as . . .

428.20: “Systolic heart failure, unspecified” . . . Primary Diagnosis:1. Anterior ST elevation myocardial infarction.
2. Systolic congestive heart failure. 3. Atrial fibrillation. . .

784.2: “Swelling, mass, or lump in head and neck” . . . dexamethasone once daily, to reduce brain swelling after the
bleeding and keppra twice daily. . .

585.9: “Chronic kidney disease, unspecified” . . . Patient likely had acute on chronic renal with chronic renal
dysfunction secondary to. . .

Table 8: Examples of model interpretability. The extracted n-gram features are highlighted in bold face.

Model F1
Macro Micro

EffectiveCAN w Multi-layer attention 0.105 0.581
w/o residual module 0.097 0.573
w/o SE module 0.101 0.576
only attend to the first Res-SE layer 0.093 0.572
only attend to the last Res-SE layer 0.086 0.567
w/o focal loss 0.095 0.577

Table 9: Ablation study of the multi-layer attention
model

Model F1
Macro Micro

EffectiveCAN w Sum-pooling attention 0.106 0.589
w/o residual module 0.102 0.580
w/o SE module 0.076 0.506
w/o focal loss 0.101 0.575

Table 10: Ablation study of the sum-pooling attention
model

pretable representations from the input and capture
the informative evidence for each code.

6 Ablation Study

We conducted ablation studies to verify the effec-
tiveness of each module in our model. We compare
the results on MIMIC-III-full between the ordi-
nary model and the one with a component removed.
The results for the macro- and micro-F1 scores are
listed in Table 9.

For the multi-layer attention model, removing
the residual module causes a notable reduction in
both the macro- and micro-F1 scores, indicating
the importance of the residual module in the deep
convolutional encoder of our model. Meanwhile,
the model without the SE module also reports a
lower macro-F1 and micro-F1, which implies that
the SE module enables the model to produce better
representations for the predictions.

Only attending to the first or last Res-SE layer
output leads to worse results. It confirms our argu-
ment that the multi-layer attention can capture in-
formation from the input at different levels, which

further facilitates better predictions. It is also pos-
sible to completely remove the attention module,
but since (Mullenbach et al., 2018) has shown that
label-wise attention improves F1, this experiment
wasn’t deemed informative.

Compared to the original model, the one without
using the focal loss produces a slightly lower result
in the micro-F1 but a large reduction in the macro-
F1. This verifies the effectiveness of the focal loss
in tackling the long-tail distribution of the labels.

For the sum-pooling attention model, removing
the SE module results in the largest performance
drop. We have yet to find an explanation for this
difference in the two attention models.

7 Conclusions

In this paper, we proposed an effective convolu-
tional attention network for MLDC, and showed
its effectiveness for medical coding on long docu-
ments. Our model features a deep and more refined
convolutional encoder, consisting of multiple Res-
SE blocks, to capture the multi-scale patterns of
the document texts. Furthermore, we use the multi-
layer attention to adaptively select the most relevant
features for each label. We employ the focal loss
to improve the rare-label prediction without sacri-
ficing the overall performance. Our model obtains
the state-of-the-art results across several metrics
on MIMIC-III, and compares favorably with other
systems on two non-English datasets.
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A Appendix

A.1 Additional Experiments

We also evaluated our model on two large-scale
benchmark datasets: EUR-Lex and Wiki10-31K,
to show the effectiveness of our model across do-
mains. We use wmax = 2000, 3000 for EUR-Lex
and Wiki10-31K respectively, and the hyperparam-
eters of the models are given in Table 11.

A.1.1 Datasets
EUR-Lex consists of a collection of documents
of European Union laws. It contains 19,314 doc-
uments in total with 3,956 categories regarding
different aspects of European law. We follow the
setting of You et al. (2019a) to split the train and
test sets, obtaining 15,449 and 3,865 training and
testing documents. From the training set, we then
take 1,545 documents out for validation, resulting
in 13,904 training documents.

Wiki10-31K is a collection of social tags for
Wikipedia pages. It’s composed of 20,762 docu-
ments and 30,938 associated tags. We also use
the setting of You et al. (2019a) to get 14,146 and
6,616 training and testing documents. We then use
1415 documents for validation, resulting in 12,731
training documents.

A.1.2 Results
The results on the EUR-Lex dataset are listed in
Table 13. The results from our model are higher
than some strong baselines including AnnexML
(Tagami, 2017), DiSMEC (Babbar and Schölkopf,
2017), Parabel (Prabhu et al., 2018), and Atten-
tionXML (You et al., 2019a), and is only lower
than X-transformer (Chang et al., 2020) by a tiny
gap, e.g. 0.08% lower on precision@1. We also
observe that traditional ML models, such as An-
nexML, DiSMEC and Parabel, generally produce
worse results than deep learning model such as At-
tentionXML. By employing large-scale pretrained
transformer-based models, X-tranformer reports
the start-of-the-art results.

Table 13 also shows that our model produces
very competitive results on the Wiki10-30K dataset.
Our model outperforms most baselines except for
X-transformer. The losing margins are quite small,
0.66% on precision@1, 0.08% on precision@3,
and 0.43% on precision@5.

Compared to the large-scale transformer-based
models, our model is more effective in terms
of balancing the model performance and model

diconv ki q γ
Range 100-240 5-25 0.1-0.3 0.5-2

EUR-Lex 180,180,
200,200

15,15,
7,7 0.1 1

Wiki10-31K 160,160,
220,220

17,17,
5,5 0.3 1

Table 11: The parameter values used in different tasks.
diconv , ki: the out-channel size and the kernel size of
the SE convolutional layer in the ith Res-SE block, q:
the dropout probability after the input embedding layer,
γ: the power term in the focal loss.

Model # parameters Model size
AttentionXML, EUR-Lex - 0.20GB
AttentionXML, Wiki10-31K - 0.62GB
BERT-large 340M -
RoBERTa-large 355M -
XLNet-large 340M -
EffectiveCAN, EUR-Lex 10M 0.12GB
EffectiveCAN, Wiki10-31K 38M 0.46GB

Table 12: Model size comparison between Effective-
CAN, AttentionXML and the transformer-based mod-
els (BERT-large, RoBERTa-large, XLNET-large) used
in X-transformer

size. Table 12 lists the comparison of the model
size between our model, AttenionXML, and the
transformer-based models used in X-transformer.
We can see that our model is much smaller than
BERT-large, XLNet-large and Roberta-large used
in X-transformer. Note that there are other compo-
nents in X-transformer that we don’t take into ac-
count. With a significantly smaller model size, our
model achieved less than 1% drop on EUR-Lex and
Wiki10-31K datasets compared to X-transformer.
In addition, our model can handle much longer se-
quences than transformer models (maximum 512
tokens). This is especially important when the in-
formation for predicting labels is spread over the
long document.
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Model EUR-Lex Wiki10-31K
P@1 P@3 P@5 P@1 P@3 P@5

AnnexML (Tagami, 2017) 79.66 64.94 53.52 86.46 74.28 64.20
DiSMEC (Babbar and Schölkopf, 2017) 83.21 70.39 58.73 84.13 74.72 65.94
Parabel (Prabhu et al., 2018) 82.12 68.91 57.89 84.19 72.46 63.37
AttentionXML (You et al., 2019a) 87.12 73.99 61.92 87.47 78.48 69.37
X-Transformer (Chang et al., 2020) 87.22 75.12 62.90 88.51 78.71 69.62
Our EffectiveCAN 87.14 74.28 61.95 87.85 78.63 69.29

Table 13: Results on EUR-Lex and Wiki10-31K (values in percentage)


