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Abstract

In cross-lingual language models, representa-
tions for many different languages live in the
same space. Here, we investigate the linguistic
and non-linguistic factors affecting sentence-
level alignment in cross-lingual pretrained lan-
guage models for 101 languages and 5,050 lan-
guage pairs. Using BERT-based LaBSE and
BiLSTM-based LASER as our models, and
the Bible as our corpus, we compute a task-
based measure of cross-lingual alignment in
the form of bitext retrieval performance, as
well as four intrinsic measures of vector space
alignment and isomorphism. We then exam-
ine a range of linguistic, quasi-linguistic, and
training-related features as potential predictors
of these alignment metrics. The results of
our analyses show that word order agreement
and agreement in morphological complexity
are two of the strongest linguistic predictors of
cross-linguality. We also note in-family train-
ing data as a stronger predictor than language-
specific training data across the board. We ver-
ify some of our linguistic findings by looking
at the effect of morphological segmentation on
English-Inuktitut alignment, in addition to ex-
amining the effect of word order agreement on
isomorphism for 66 zero-shot language pairs
from a different corpus. We make the data and
code for our experiments publicly available.1

1 Introduction

Cross-lingual language models are polyglots inso-
far as they house representations for many different
languages in the same space. But to what extent
are they good polyglots? The answer depends,
in part, on how well-aligned and isomorphic the
representations are, and not all language pairs are
equally well-aligned. What determines the qual-
ity of the alignment? Are language pairs from
the same family (e.g., Spanish and French) better

1https://github.com/AlexJonesNLP/
XLAnalysis5K

Figure 1: A look at some of the strongest features
for predicting cross-linguality, according to their num-
ber of occurrences in best-feature regression searches
across all our dependent variables (see Section 6.2).

aligned than languages from two unrelated fami-
lies (e.g., Japanese and Swahili)? Are languages
which are geographically closer or share an alpha-
bet better aligned? How do factors from linguistic
typology (like word order and morphological mark-
ing) affect alignment?

Recent work has looked at the typological
and training-related factors affecting cross-lingual
alignment in monolingual embedding space (Vulić
et al., 2020; Dubossarsky et al., 2020), assessed
the cross-linguality of pretrained language models
using probing tasks and downstream performance
measures (Conneau et al., 2020; Wu and Dredze,
2019, 2020; Pires et al., 2019; Groenwold et al.,
2020), and probed Transformer models (Wolf et al.,
2020) for linguistic structure (see Rogers et al. 2020
for an overview of over 150 studies). However, a
gap in the research exists regarding the following
question: What are the linguistic, quasi-linguistic,
and training-related factors determining the cross-
linguality of sentence representations in shared
embedding space, and what are the relative weights
of these factors?

We argue, that given the importance of alignment
in multilingual model performance, gaining fun-
damental insight into what affects inter-language
alignment and isomorphism—specifically by ex-
ploring which linguistic factors matter for inter-

mailto:alexander.g.jones.23@dartmouth.edu
mailto:william@cs.ucsb.edu
mailto:mahowald@ucsb.edu
https://github.com/AlexJonesNLP/XLAnalysis5K
https://github.com/AlexJonesNLP/XLAnalysis5K
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language alignment—will make it possible to lever-
age existing information on linguistic typology to
improve alignment (and thereby task performance)
for low-resource languages.

Our contributions are as follows:

• We provide a characterization of cross-
linguality for 101 languages (29 language
families) in two massively multilingual sen-
tence embedding models with different archi-
tectures (LaBSE and LASER), attacking the
question from the vantage of vector space
analysis—using four measures of alignment
and isomorphism—and downstream task per-
formance (namely bitext retrieval).

• We present over a dozen linguistic, quasi-
linguistic, and training-related factors as po-
tential predictors of cross-linguality, and ex-
amine their relationship with the above met-
rics using diverse statistical analyses.

• We uncover novel and pronounced effects of
morphology agreement and word order agree-
ment on cross-linguality, demonstrate the im-
portance of in-family training data in ensur-
ing multilinguality, and validate our linguistic
findings with two empirical case studies on
low-resource languages.

2 Related Work

Various studies have assessed the cross-linguality
of pretrained language models. Recent efforts have
approached this question via performance on an
array of downstream NLP tasks (Conneau et al.,
2020; Wu and Dredze, 2019, 2020; Karthikeyan
et al., 2020; Pires et al., 2019; Groenwold et al.,
2020), and others have proposed methods for better
cross-lingual alignment in light of systematic cross-
lingual deficiencies (Zhang et al., 2019; Xia et al.,
2021). Our study hews closest methodologically to
Vulić et al. (2020) and Dubossarsky et al. (2020),
who investigate the determinants of cross-lingual
isomorphism using monolingual fastText em-
beddings (Bojanowski et al., 2016; Joulin et al.,
2016; Mikolov et al., 2013).

Findings from these studies have been mixed,
but some patterns emerge. Pires et al. (2019) and
Conneau et al. (2020) find that cross-lingual trans-
fer works best between typologically similar lan-
guage pairs, in particular between languages that
share word order features. Wu and Dredze (2019)

approach cross-linguality by focusing on zero-shot
cross-lingual transfer in mBERT, and show that
each mBERT layer retains language-specific in-
formation and that token overlap correlates with
cross-lingual performance. Wu and Dredze (2020)
home in on low-resource languages, finding that
they often fail to reap the benefits of massively mul-
tilingual joint training but that their performance
can be boosted by providing similar-language train-
ing data. Somewhat contrary to others’ results (in-
cluding ours), Karthikeyan et al. (2020) find that
lexical overlap factors in negligibly to cross-lingual
transfer, while the depth of the network is integrally
important. Vulić et al. (2020) and Dubossarsky et al.
(2020) look at how typological features, training-
related factors, and measures of vector space iso-
morphism predict cross-lingual performance be-
tween monolingual word embeddings. Vulić et al.
(2020) find in their experiments that cross-lingual
performance depends mostly on training data and
regimes, while Dubossarsky et al. (2020) see more
mixed results from their experiments: They show
that linguistic typology is important, but not deter-
ministic, for predicting cross-lingual performance.

Our work not only replicates these findings for
monolingual spaces in the multilingual embedding
space (e.g. on word order similarity, related train-
ing data, typological distance, subword overlap),
but extends that work through: (1) The scale (101
languages, 5,050 language pairs in the main analy-
sis); (2) The quantity and diversity of predictors
(13 linguistic, quasi-linguistic, and training-related
features); (3) The models (cross-lingual sentence
encoders with different architectures); and (4)
The analytic methods (a blend of prediction-based
and classical statistical techniques, supplemented
by performance-based case studies on extremely
low-resource languages).

3 Bible Corpus

The source of the bitexts we evaluate on is the su-
perparallel Bible corpus2 from Christodouloupou-
los and Steedman (2014), whence we gather texts
for 101 languages and bitexts for 5,050 language
pairs.3 We evaluate on the Books of Matthew and
John in the New Testament separately and average
the results, as these parts are available for all 101
languages. In doing so, we avoid the pitfalls of

2http://christos-c.com/bible/. We use this
corpus because it is massively multilingual and well-aligned.

3(101
2

)
= 5050

http://christos-c.com/bible/
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relying on a single set of bitexts for our analysis.
Each document contains 800-1000 sentences.

4 Measures of Cross-lingual Alignment
& Isomorphism

We formulate alignment metrics in two distinct
ways: over language pairs and over individual lan-
guages. The latter group is computed from the for-
mer by averaging over all pairs in which a language
appears. For example, to derive the average F1-
score for Chinese, we average over the F1-scores
for Chinese-German, Chinese-Amuzgo, etc.

Some metrics we use are measures of vector
subspace isomorphism (i.e. those examined in Du-
bossarsky et al. 2020), while others are measures
of alignment (namely those pertaining to bitext re-
trieval). Vector spaces may be isomorphic without
being well-aligned, so we quantify multilinguality
in diverse ways.

4.1 Bitext Retrieval Task

The bitext retrieval task consists of finding all sen-
tences in a paired set of documents that are trans-
lations of each other. This process can be car-
ried out between two comparable corpora, such
as Wikipedia (“bitext mining”), but we use the
5,050 bitexts collected from the Bible corpus. We
mine in two directions: for each sentence in docu-
ment X , we find a match in document Y , and vice-
versa. We then take the intersection of those two
searches, which has proven to be a useful heuristic
(Artetxe and Schwenk, 2019a; Jones and Wijaya,
2021). Note that this task can be thought of as
the sentence-level analog to the bilingual lexicon
induction (BLI) task used in Vulić et al. (2020) and
Dubossarsky et al. (2020).

Task performance Margin scoring, introduced
by Artetxe and Schwenk (2019a), has shown suc-
cess on the bitext retrieval task (Schwenk et al.,
2021; Schwenk et al., 2019; Keung et al., 2021;
Tran et al., 2020; Fan et al., 2020; Jones and Wi-
jaya, 2021). Margin score may be thought of as
“relativized” cosine similarity, in that it selects vec-
tors that “stand out” most among their neighbors in
terms of proximity, rather than ones that are simply
closest together. The method requires initially find-
ing the k-nearest neighbors of each source and tar-
get sentence, which we do efficiently with Faiss
(Johnson et al., 2017a). The sentence pair (x, y) is
then chosen to maximize the margin score between

x and y, namely

scoremargin(x, y) =

2k cos (x, y)∑
z∈NNk(x) cos (x, z) +

∑
z∈NNk(y) cos (y, z)

After retrieving sentence pairs in both directions
and keeping the intersection, we compute standard
F1-score against ground-truth alignments.

Average margin score We also introduce a
novel alignment metric in the form of the average
margin score across ground-truth sentence align-
ments. Namely, given aligned sentence embedding
matrices X and Y with N embeddings each, the
average margin score is computed as

marginavg(X ,Y) =

1

N

N∑
i=1

scoremargin(Xi,Yi) | X ,Y ∈ RN×emb_dim

This provides a continuous measure of cross-
lingual alignment that is correlated with, but not
equivalent to, the F1-score on this task.

4.2 Approximate Isomorphism
Vulić et al. (2020) and Dubossarsky et al. (2020)
introduce various ways of quantifying the degree of
isomorphism between two vector spaces, of which
we use three. Note that unlike Vulić et al. (2020)
and Dubossarsky et al. (2020), who investigate
isomorphism between monolingual spaces, we ex-
amine cross-lingual isomorphism within shared
embedding space. These metrics thus technically
quantify vector subspace isomorphism, where each
subspace comprises embeddings in a particular lan-
guage.

Gromov-Hausdorff distance The Hausdorff
distance between two metric spacesX andY , given
by

H(X ,Y) = max[sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)]

intuitively measures the worst-case distance be-
tween the nearest neighbors of X and Y (Vulić
et al., 2020). The Gromov-Hausdorff distance then
minimizes this distance over all isometric trans-
forms f and g:

GH(X ,Y) = inf
f,g
H(f(X ), g(Y))
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In practice, the Gromov-Hausdorff distance is
approximated by computing the Bottleneck dis-
tance between X and Y (Dubossarsky et al., 2020;
Chazal et al., 2009).

Singular value gap Given cross-lingual aligned
sentence embeddings stored in matrices X and Y ,
each with n singular values σ1, σ2, ..., σn sorted
in descending order, the singular value gap (Du-
bossarsky et al., 2020) between X and Y is defined
as

SVG(X ,Y) =

n∑
i=1

(log σXi − log σYi )2

Effective condition number The effective con-
dition number (Dubossarsky et al., 2020) of a ma-
trixX intuitively captures the extent to which small
perturbations in X are amplified as a result of ar-
bitrary transformations φ(X ). The lower the (ef-
fective) condition number of an embedding space,
the more robust it is to transformations (e.g. trans-
fer functions mapping one embedding space to an-
other).

Dubossarsky et al. (2020) reason that monolin-
gual embedding spaces with lower (effective) con-
dition numbers map better to other spaces. They
further show that taking the harmonic mean of the
effective condition numbers (ECOND-HM) of two
embedding spaces provides a reliable measure of
approximate isomorphism between those spaces4.
We use ECOND-HM in a similar fashion to gauge
the approximate isomorphism, or “mappability,” of
cross-lingual embedding subspaces, where a lower
ECOND-HM indicates greater isomorphism.

5 Predictors

5.1 Linguistic Features

Similarly to the alignment metrics, we define sep-
arate sets of features pertaining to language pairs
and pertaining to individual languages. We take
note of this in our descriptions below.

Phylogeny For individual languages (all lan-
guages in the New Testament corpus), we use both
language family and subfamily as categorical fea-
tures. For language pairs, we define two binary
variables: same family and same subfamily, corre-
sponding to whether two languages are in the same
family or subfamily, respectively.

4As validated by performance on downstream tasks.

We include subfamily as a feature in order to
investigate finer-grained typological and phyloge-
netic differences that may affect cross-lingual align-
ment or isomorphism.

Word order typology For individual languages,
we include basic word order as a feature, using
the canonical six-way taxonomy (i.e. permuta-
tions of {S, O, V}). For language pairs, we de-
fine binary feature same word order analogously
to the binary features above. We consult the WALS
database5 (Dryer and Haspelmath, 2013) and Glot-
tolog6 (Hammarström et al., 2020) to assign domi-
nant word orders.

Morphological typology Though it is possible
to make fine-grained distinctions in morphological
typology in theory, we simply draw a binary distinc-
tion between languages that are widely considered
polysynthetic (mostly Amerindian languages) and
all other languages. Even more so than word order,
morphological complexity is gradient (Cotterell
et al., 2019). But we argue that polysynthetic lan-
guages pose a unique challenge for NLP systems
and so perform one-vs-all binary coding such that
individual languages are associated with a polysyn-
thesis status and language pairs are associated with
the feature same polysynthesis status. We classify
17 languages in the corpus as polysynthetic.

Typological distance We also use typological
word vectors from lang2vec7 (Malaviya et al.,
2017), based on the URIEL8 typological database
(Littell et al., 2017) to compute the distance be-
tween languages on the basis of aggregated linguis-
tic features. Specifically, we compute:

1. Syntactic distance using KNN-based syntax
vectors

2. Phonological distance using KNN-based
phonology vectors

3. Inventory distance using KNN-based phono-
logical inventory vectors (distinct from phono-
logical distance)

4. Geographic distance using geographic loca-
tion vectors

All distances are computed as cosine distances.

Character- & token-level overlap The standard
Jaccard similarity coefficient quantifies the overlap

5https://wals.info
6https://glottolog.org
7https://github.com/antonisa/lang2vec
8http://www.cs.cmu.edu/~dmortens/

projects/7_project/

https://wals.info
https://glottolog.org
https://github.com/antonisa/lang2vec
http://www.cs.cmu.edu/~dmortens/projects/7_project/
http://www.cs.cmu.edu/~dmortens/projects/7_project/
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between sets A and B as:

J(A,B) =
|A
⋂
B|

|A
⋃
B|

However, this measure fails to take into account the
frequency of the items (here, characters) in each set.
What we really want is the weighted, or multiset,
version of the Jaccard coefficient. For our purposes,
it suffices to reformulate J as:

JM (X ,Y) =
|chr(XM )

⋂
chr(YM )|

|chr(XM )
⋃
chr(YM )|

∀X ,Y ∈ C

where chr(DM ) represents the multiset of charac-
ters in document D, and C is the corpus of bitexts
we’re working with. For convenience and to avoid
redundancy, we compute JM (character-level over-
lap) only on aligned texts in the Book of Matthew.
Token-level overlap is computed analogously, us-
ing the wordpiece (Wu et al., 2016) tokenization
method employed by LaBSE9. This measure is only
computed on texts in the Book of John.

5.2 Training-related Features
The aim of our analysis is to understand the ef-
fect of each of the previously described features
on cross-lingual alignment and isomorphism when
training factors are controlled for. To this end, we
control for several (pre)training data quantities for
the models tested.

First, we account for language-specific training
data for individual languages. However, we also
account for combined language-specific training
data for language pairs, i.e. the amount of data
for x plus the amount of data for y, where (x, y)
is a language pair. We then take it a step further
and record (combined) in-family training data and
(combined) in-subfamily training data, taking in-
spiration from gains made using transfer languages
for cross-lingual learning (Johnson et al., 2017b;
Littell et al., 2019; Lin et al., 2019).

By considering these broader training-related
statistics, we are able to better control for and ob-
serve the role higher-level typological information
(e.g. at the family or subfamily level) plays in train-
ing these models.

6 Analysis

6.1 Simple Correlations
Training data We first look at simple cor-
relations between the training data quantities

9https://huggingface.co/
sentence-transformers/LaBSE

and the dependent variables (measures of align-
ment/isomorphism). Results for language pairs are
given across all dependent variables for LaBSE
and LASER in Table 1. The most striking obser-
vation is that combined in-family training data is
more highly correlated10 with the dependent vari-
ables than simple combined data or combined in-
subfamily data for all dependent variables, for both
LaBSE and LASER11 (0.12 ≤ |r| ≤ 0.57)12. At
the individual language level, results are similar (i.e.
in-family data is most significant), but with weaker
correlations across the board (0.02 ≤ |r| ≤ 0.18).
Based on these preliminary results, we highlight
combined in-family training data as a moderately
strong predictor of alignment/isomorphism for a
given language pair, one that is in fact better
than language-specific data for making predictions
about massively multilingual sentence models.

(Quasi)-linguistic Features Among the predic-
tors, there were several noteworthy correlations.
Same family was moderately correlated with bet-
ter alignment/isomorphism in both LaBSE and
LASER (generally 0.2 < |r| < 0.45), while same
subfamily was somewhat less correlated. This in-
forms us as to the level at which related-language
data is useful for building massively cross-lingual
models. Same word order and same polysynthesis
status had comparable relationships with the depen-
dent variables as did same family. Token-level over-
lap was moderately but inconsistently correlated
with dependent variables (≈ 0.05 < |r| < 0.5),
while character-level overlap was somewhat more
weakly correlated. The typological distance fea-
tures were weakly but non-negligibly correlated
with dependent variables (≈ 0.1 < |r| < 0.3),
with one outlier (syntactic distance was correlated
with r = −0.44 with bitext retrieval F1-score for
LASER). The typological distance features were
moderately correlated with one another.

6.2 Feature Search and Ablation

Exhaustive Feature Selection We look at the
optimal set of language-pair-specific features for

10In terms of magnitude; the direction is determined by
whether a given metric is measuring cross-linguality positively
or negatively.

11These results hold even when the effect of combined data
on the DV is held constant. Computing the semi-partial cor-
relation (Abdi, 2007) between combined in-family sentences
and each DV with combined sentences as the y-covariate, we
see a change of r = −0.05 for LaBSE and r = +0.004 for
LASER relative to the simple correlations.

12Here, | · | is the absolute value operator.

https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
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Comb. sentences Comb. in-family Comb. in-subfamily
Metric sentences sentences

LaBSE LASER LaBSE LASER LaBSE LASER
Bitext retrieval (F1) 0.34 0.13 0.49 0.57 0.46 0.35
Avg. margin score 0.30 -0.03 0.40 0.14 0.37 0.07
SVG -0.08 -0.04 -0.12 -0.13 -0.11 -0.08
ECOND-HM -0.03 0.07 -0.38 -0.30 -0.31 -0.11
Gromov-Hausdorff dist. -0.13 -0.07 -0.20 -0.20 -0.18 -0.10

Table 1: Correlations (Pearson’s r) between training data quantities and alignment/isomorphism metrics for lan-
guage pairs.

predicting the five measures of alignment and iso-
morphism. To do so, we perform exhaustive feature
search on linear regression models with each of the
dependent variables being used separately as the
regressand. To counter overfitting, we run ten-fold
cross-validation13 and use adjusted r2 as the fit
criterion, which further penalizes for additional
predictors. Adjusted r2 is given by

r2
adj = 1− (1− r2)(n− 1)

n− k − 1

where n is the sample size (here, n = 5050) and
k is the number of predictors in the model (here,
1 ≤ k ≤ 13). In total, we fit 2|F | = 213 = 8192 re-
gression models for LaBSE and LASER separately,
where F is our feature space.

For interpretability, we aggregate results by
tallying the frequency with which each feature
appears in a best-feature list14—giving model-
specific results as well as combined results—which
are displayed in Table 2. For the combined
(LaBSE+LASER) results, same polysynthesis sta-
tus and combined in-family sentences are tied as
the most popular predictors, with 8/10 best-feature
list appearances each. Next in line for combined
results is combined sentences (6 appearances), fol-
lowed by a three-way tie between same word order,
token-level overlap, and geographic distance (3 ap-
pearances). Results are very similar for each model
separately, although same word order is tied for
second place for LASER, alongside syntactic dis-
tance and phonological distance (3 appearances).

These results show that certain (quasi)-linguistic
features (in particular, same polysynthesis status
and same word order) are not redundant predictors

13A model’s fit is simply averaged over the ten cross-
validation runs.

14Note that there are five dependent variables and two mod-
els (LaBSE and LASER), so ten total best-feature lists.

in the presence of training data quantities. Our
next analysis examines individual features in terms
of the size of their marginal contribution to the
regression model fit.

Single-step Regression To appraise the
marginal contribution of each feature to overall
regression fit, we perform a single-step ablation
experiment where we eliminate features from
a full-feature model one at a time. We fit a
regression model with all 13 features using
ten-fold cross-validation and obtain a baseline
r2
adjbsl

. We then compute

∆r2
adjf = r2

adjbsl − r
2
adjabl ,

r2
adjabl =∧ F \ {f}∀f ∈ F

The value of ∆r2
adjf

is computed for all features f
and with each dependent variable separately as the
regressand, for LaBSE and LASER separately. To
aggregate results, we look at the average rank of
each feature according to the ablation experiment,
across all five dependent variables.

The top three results for LaBSE and LASER are
given in Table 3. For LaBSE, same polysynthesis
status and combined sentences are tied as the fea-
tures with the highest predictive contributions (av-
erage rank = 2.4), followed by combined in-family
sentences. For LASER, combined in-family sen-
tences tops the list (average rank = 2.4), followed
by same polysynthesis status and same word order.
The results of this experiment are similar, but not
identical, to those of the previous experiment. They
support the same basic conclusion: training data
is important, but so are agreement in word or-
der and agreement in morphological complex-
ity, among other features. If training data were
a sufficient predictor alone, then removing the
aforementioned features from the regression model
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Count
Feature LaBSE LASER Total
Comb. sentences 4 2 6
Comb. in-family sentences 4 4 8
Comb. in-subfamily sen-
tences

1 1 2

Same word order 1 3 4
Same polysynthesis status 4 4 8
Same family 1 2 3
Same subfamily 1 1 2
Token overlap 2 2 4
Character overlap 0 0 0
Geographic distance 2 2 4
Syntactic distance 0 3 3
Phonological distance 0 3 3
Inventory distance 0 0 0

Table 2: The number of times each of the features ap-
peared in the best-feature lists across the five alignment
metrics. The top three results (including ties) in each
group are in bold.

LaBSE
1. Same polysynthesis status 2.4
2. Combined sentences 2.4
3. Combined in-family sentences 3.6

LASER
1. Combined in-family sentences 2.4
2. Same polysynthesis status 3.4
3. Same word order 3.8

Table 3: Features with the top three average rankings in
the single-step regression ablation experiment. Rank-
ings are based on a feature’s marginal predictive con-
tribution relative to other features, and were averaged
across all five alignment metrics.

would either increase the fit or do nothing, which
clearly isn’t the case.

6.3 Controlling for Training Data
While the previous experiments center around pre-
diction of the dependent variables, we bolster our
analysis with classical statistical methods that aim
to explicitly control for covariates.15 Since we’re
dealing with categorical features, we use ANCOVA
(ANalysis of COVAriance).

ANCOVA We run ANCOVAs separately for
LaBSE and LASER and for each of the five de-
pendent variables. We examine the language-
pair-specific features, and look at same word or-
der and same polysynthesis status separately as
our “between” variables, and combined sentences,
combined in-family sentences, and combined in-

15We consult Dror et al. (2018); Achen (2005) for guide-
lines on statistical tests (in NLP).

subfamily sentences as our three covariates. Over-
all, same word order had a statistically significant
(p << 0.05) effect for 8/10 ANCOVAs, though
effect sizes (η2

p) were generally small16(Cohen,
1988). Same polysynthesis status had a statisti-
cally significant effect for 10/10 ANCOVAs, with
effect sizes being definitively small except for
F1-score and ECOND-HM/average margin score
(η2
p ≈ 0.1-0.16 for LaBSE, η2

p ≈ 0.05 for LASER).
These results suggest that although same word or-
der and same polysynthesis status are some of the
more important features, the determinants of cross-
linguality in shared embedding space are multi-
factorial and most features have a relatively small
effect when considered individually.

7 Zero-shot Cases

The linguistic diversity of the New Testament Bible
corpus, combined with the imperfect overlap be-
tween the languages in the corpus and those on
which LaBSE and LASER were trained, implies
a large number of zero-shot cases for our analysis.
We can break these cases into two sub-cases. First,
there are languages in the Bible corpus without
language-specific training data (35 languages for
LaBSE, 45 languages for LASER)17. But it follows
that there are language pairs XX-YY for which no
training data is present for either XX or YY (595
pairs for LaBSE, 990 pairs for LASER), which we
dub the “double zero-shot” case.

Simple Zero-shot Case For the simple zero-shot
case, we use ANOVA (ANalysis Of VAriance)
to investigate differences between group means
within categorical variables. ANOVAs revealed
large effects (η2

p ≈ 0.36) of basic word order on
F1-score and ECOND-HM for LaBSE, with border-
line p-values (p ≈ 0.07), perhaps due to the small
sample size (35 languages). The breakdown across
word orders for zero-shot languages is given in Fig-
ure 2. A pairwise Tukey post-hoc test (Salkind,
2017) revealed a borderline-significant difference
between SVO and VSO languages, surprisingly in
favor of VSO. There were no statistically signifi-
cant effects of polysynthesis for LaBSE or LASER.
Interestingly, this suggests that agreement in mor-
phological complexity may be important for cross-

16The rules of thumb we use are: η2p = 0.01 (small); 0.06
(medium); 0.14 (large).

17For both LaBSE and LASER, these languages in fact lack
in-family training data as well, making the effect of resource
scarcity even more pronounced.
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linguality, but morphological complexity itself is
not an important factor. More work is needed to
validate this conclusion.

ANOVAs also showed large (η2
p ≈ 1) effect sizes

for family and subfamily membership, though most
results were not statistically significant (again, per-
haps due to sample size). This suggests that phy-
logenetic membership still shapes cross-linguality
even when training data is perfectly controlled for,
which is an interesting finding.

Figure 2: “Meta-average” performance of zero-shot
languages with different word orders on F1-score and
negative ECOND-HM (LaBSE).

Double Zero-shot Case Interestingly, the
language-pair-specific feature which stood out
most in the double zero-shot case was inventory
distance, an anomaly in our analyses. Inventory
distance was correlated with r ≈ 0.2-0.4 for
4/5 dependent variables for LaBSE and with
r ≈ 0.13-0.14 for 2/5 dependent variables for
LASER.

However, as inventory distance quantifies phono-
logical distance between languages, it could be
confounded with surface-level information. To test
this hypothesis, we regress it with character-level
overlap and token-level overlap separately. For
LaBSE, effects of inventory distance remain signif-
icant (p < 0.05) for all dependent variables when

regressing with token-level overlap, and 4/5 vari-
ables when regressing with character-level overlap.
We wish to verify the importance of this feature in
future studies.

8 Case Study 1: Morphological
Segmentation of Inuktitut

Based on the above results, we conclude that
whether a language has the same polysynthesis sta-
tus as another language will affect their success
on a cross-lingual task. However, our observa-
tions pertain to correlation, not causality. To test
this observation further, we run an experiment in
which we introduce a causal intervention. If indeed
polysynthesis status matters, then we hypothesize
that making a language “less polysynthetic” will
improve alignment with a more analytic language
like English.

To test this hypothesis, we examine the effect
of morphological segmentation of Inuktitut on the
bitext retrieval task. Inuktitut is a polysynthetic, in-
digenous language and is completely zero-shot for
both our models, in that not even in-family data is
provided during pretraining. The intuition behind
our experiment is that by morphologically segment-
ing a polysynthetic language, the “polysynthesis
status” of the segmented Inuktitut is made closer
to that of a more analytic language. If our previous
findings are correct, we expect Inuktitut to align
better with English post-segmentation.

We use the first 10,000 sentences from the
Nunavut Hansard Inuktitut-English parallel corpus
(Joanis et al., 2020) as our bitext. For the Inuktitut
half of the corpus, we use both the “raw” version
and a version that has been pre-segmented with the
Uqailaut morphological analyzer18.

We then perform bitext retrieval as described in
section 4.1 on both bitexts: English aligned with
non-segmented Inuktitut and English aligned with
segmented Inuktitut. Results in terms of F1-score
are displayed in Figure 3. For LaBSE, we see a
+28.7 (≈ 5×) F1-score increase using segmented
Inuktitut; for LASER, we see a +0.04 (1.5×) in-
crease. These empirical results support our earlier
statistical findings on the feature same polysynthe-
sis status.

18http://www.inuktitutcomputing.ca/
Uqailaut/

http://www.inuktitutcomputing.ca/Uqailaut/
http://www.inuktitutcomputing.ca/Uqailaut/
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Figure 3: F1-scores on the bitext retrieval task for
English-Inuktitut, using raw and morphologically seg-
mented Inuktitut, for LaBSE (top) and LASER (bot-
tom).

9 Case Study 2: Word Order &
Isomorphism

To test the validity of our findings on the same word
order feature, we examine whether embeddings in
languages with similar word orders are more iso-
morphic to each other than those with substantially
different word orders, sampling from a different
corpus than the one we use in our main analysis.
To this end, we select twelve zero-shot19 languages
from the Universal Declaration of Human Rights
(UDHR) parallel corpus (Vatanen et al., 2010). Six
of these are canonically verb-initial: K’iche’, Mam,
Chinanteco, Tzotzil, Mixteco, and Garifuna. The
other six are subject-initial: Chickasaw, Quechua,
Achuar-Shiwiar, Bambara, Dagaare, and Guarani.
We hypothesize that similar-word-order language
pairs will be more isomorphic, on average, than
pairs of languages with disparate word orders.

We compute SVG and ECOND-HM across all(
12
2

)
= 66 language pairs for LaBSE and LASER

separately and group the results based on whether
the language pairs have similar word order or dif-
ferent word order. The averages of these groups
are given in Table 4. Similar-word-order pairs are

19All languages have no training data for LaBSE or LASER,
and most have no in-family data either.

SVG ECOND-HM
LaBSE LASER LaBSE LASER

Similar 5.63 3.67 18.08 18.13
Different 6.34 4.37 18.13 18.20

Table 4: Average values of SVG and ECOND-HM
across 66 double zero-shot language pairs in the UDHR
subset with similar or different word orders (based on
whether a language is verb-initial or subject-initial).
Note that LaBSE and LASER results are not compa-
rable in absolute terms.

more isomorphic than their different-word-order
counterparts across all metrics and both models.

10 Conclusions

We find evidence that linguistic and quasi-linguistic
factors continue to play a role in determining the
cross-linguality of a model even after training data
is accounted for, and validate our findings with
two case studies on extremely low-resource lan-
guages. Our analysis points to, among other things,
the importance of word order agreement (similarly
to Pires et al. 2019) and morphology agreement
on building aligned and isomorphic cross-lingual
subspaces. We also rigorously demonstrate the
importance of in-family training data in building
massively multilingual models, and show moder-
ate effects of other typological measures on cross-
linguality. In the future, we are confident that these
insights can be used to improve the cross-linguality
of shared embedding spaces, particularly for low-
resource languages.
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12 Ethical Considerations

When drawing inferences about multilingual lan-
guage models, it is crucial to take into account lan-
guages that are low-resource, Indigenous, and en-
dangered. Previous works have looked at the chal-
lenges facing these sorts of under-resourced and
under-studied languages (e.g. Mager et al. 2018;
Joshi et al. 2020) and proposed broad solutions and
guidelines (e.g. Kann et al. 2019; Bender 2019).

The Bible corpus (Christodouloupoulos and
Steedman, 2014) that we use in our analysis in-
cludes 35 languages that are zero-shot for LaBSE
and 45 that are zero-shot for LASER, all of which
could be classified as low-resource or extremely
low-resource. This means that, for our case stud-
ies, we can test our conclusions on extremely
low-resource languages (including Indigenous lan-
guages) that are typically underrepresented in NLP.

While the Bible corpus enables us to extend our
work to low-resource languages, we also acknowl-
edge that the corpus owes its existence largely to
a settler colonial tradition, in which missionaries
translated the Bible into Indigenous languages—
often without crediting the Indigenous peoples
who contributed their knowledge. We acknowl-
edge these Indigenous peoples’ contributions to
this work.

Studies such as Strubell et al. (2019) and
Schwartz et al. (2019) have identified, analyzed,
and proposed solutions for the energy consumption,
cost, and environmental impact of NLP models,
in particular the burdens associated with training
and performing inference with large pretrained lan-
guage models. Though we perform inference with
two such models on a considerable amount of in-
put, we note that these are one-time computations,
made using a single NVIDIA V100 GPU, and that
we plan to release our collected data publicly for
reuse in future empirical analyses.
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A Appendix

A.1 Issues With Using The Bible as a Corpus

We take note of several issues with using the Bible
to perform cross-lingual analyses, but defend our
decision to use it over other available corpora. The
primary concern is with the language itself of the
Bible and its translations: Much of it is archaic and
would sound unnatural to modern speakers, and cer-
tain translations may suffer from sub-optimal (pos-
sibly non-native) translation quality. Furthermore,
the relative performance of LaBSE and LASER on
these texts was somewhat unrepresentative: LaBSE
vastly outperformed LASER, despite the fact that
they are closer in performance on more modern,
idiomatic texts (e.g. the Tatoeba dataset20 from
Artetxe and Schwenk (2019b)).

However, the Bible corpus from
Christodouloupoulos and Steedman (2014)
lends itself to our analysis in the following ways:

• Reliable sentence-level (technically verse-
level) alignments

• Clean, easy-to-parse text
• Large-scale multilinguality and linguistic di-

versity
We also consider using JW300 (Agić and Vulić,
2019), the Tatoeba Challenge test data21 Tiede-
mann (2020), and the Johns Hopkins University
Bible corpus (McCarthy et al., 2020). However:

• JW300 is difficult to download in its entirety
and sentence-align into a superparallel cor-

20https://github.com/facebookresearch/
LASER/tree/master/data/tatoeba/v1

21https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/data

pus in practice, and alignments may not be as
clean as in the Bible corpus

• The Tatoeba Challenge bitexts are not multi-
parallel, so are useless for our main analysis

• The Johns Hopkins Bible corpus, while im-
pressive in size with 1600+ languages, is
overkill for the intended scale of our analy-
sis (and, in practice, the quality of a corpus of
this size is difficult to ascertain)

For these reasons, we viewed using the corpus from
Christodouloupoulos and Steedman (2014) as a
“necessary evil” of sorts to achieve the scale of
analysis we were hoping for.

A.2 Choice of Embedding Models

We opt to use LaBSE (Feng et al., 2020) and
LASER (Artetxe and Schwenk, 2019b) as our em-
bedding models primarily because they are state-of-
the-art sentence encoders that perform well on the
bitext mining task (Reimers and Gurevych, 2020).
Using two models with different underlying archi-
tectures (Transformer for LaBSE vs BiLSTM for
LASER) makes our analysis more robust and gen-
eralizable, because any trend observed w.r.t. both
models cannot be due to a peculiarity of one model
or the other (e.g. training data domain, neural ar-
chitecture, tokenization technique, etc.).

However, while both models have generally high
performance on this task, LaBSE is, on average,
superior to LASER (see Reimers and Gurevych
(2020), but also our full results22 from this pa-
per). On the lowest-resource languages and lan-
guage pairs, we see an induced floor effect for
LASER, where the variance among data points is
low and statistical effects are hard to detect. For the
same reason, we do not include results from mean-
pooled subword embeddings—such as mBERT or
XLM-RoBERTa—due to their relatively weak per-
formance on the bitext mining task (Reimers and
Gurevych, 2020).

Floor effects do not pose nearly as much of a
problem for LaBSE. Thus, by including LaBSE
as one of our models, we are able to detect fine-
grained differences among low-resource languages
and language pairs that we might miss with LASER.
For higher-resource cases, our conclusions are
made all the more robust for having inferences
from two high-performing models.

22https://github.com/AlexJonesNLP/
XLAnalysis5K/tree/main/Bible%
20experimental%20vars
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A.3 Principal Component Analysis
We also perform principal component analysis
(PCA) to determine how many independent com-
ponents exist in our feature space, and how the
loadings of those components break down.

A.3.1 Principal Component Regression
We run principal component regression (PCR) to
determine the optimal number of components in
our feature space for predicting the dependent vari-
ables. To this end, we first perform PCA on the
full set of 13 features (separately for LaBSE and
LASER, as the training features are different for
each). We then perform PCR (with linear regres-
sion) using the first 1 to 13 components in separate
runs, with each of the dependent variables being
modeled separately as the regressand. As we did
before, we measure regression fit using adjusted r2

and average the results from ten-fold cross valida-
tion on each run.

We find that for LaBSE, the optimal number of
components for predicting the dependent variables
averaged 7.2, or roughly half the size of the feature
space. For LASER, the average number of optimal
components was 6.0.

A.3.2 Component Loadings
We also look at how the loadings of the principal
components for LaBSE and LASER features break
down; the results for the first five components are
given in Table 5. For both LaBSE and LASER, the
first three components map almost entirely onto
training features, while later components are a mix-
ture of the remaining features. However, same
word order and same polysynthesis status are next
after training-related features in terms of weight:
they are the top two features in components 4 and
5 for both systems.

A.4 Semi-partial Correlations for
Typological Distance

For the typological distance features, we use the
semi-partial correlation (Abdi, 2007)

r1(2.3) =
r12 − r13r23√

1− r2
23

where r1(2.3) is the correlation between f1 and f2

such that f3 is held constant for f2 (in our case,
training data features are held constant for the de-
pendent variables). This informs us how the typo-
logical distance features correlate with the depen-
dent variables when training data features are mod-

eled as covariates. We compute semi-partial cor-
relations between each typological distance mea-
sure and each dependent variable for LaBSE and
LASER separately.

The typological distance features had notewor-
thy (r > 0.1) correlations for anywhere from 0/10
(phonological distance) to 5/10 (geographic dis-
tance) analyses. However, the r values gener-
ally fell into the range 0.1 < |r| < 0.25. We
conclude that lang2vec distances correlate with
cross-linguality weakly but non-negligibly when
training data is held constant, somewhat contrary to
the stronger relationships observed in Dubossarsky
et al. (2020) with monolingual embedding spaces.

A.5 Visualization from Case Study 2
We visualize approximate isomorphism between
select similar-word-order language pairs from sec-
tion 9 with t-SNE (van der Maaten and Hinton,
2008), with default settings in scikit-learn.
Results are displayed in Figure 4.

A.6 ECOND-HM Computation
The condition number of a matrix X with n singu-
lar values σ1, σ2, ..., σn, sorted in descending order,
is defined as:

κ(X ) =
σ1

σn

Furthermore, the effective rank of X is defined as:

rank∗ = beH(Σ)c

where b·c is the floor function and H(Σ) is the en-
tropy of the normalized singular value distribution
of X , namely H(Σ) = −

∑n
i=1 σ̄i log σ̄i, where

σ̄i = σi∑n
j=1 σj

. Putting the two together, we define
the effective condition number of X as:

κeff =
σ1

σrank∗(X )

Finally, we define the effective condition number
harmonic mean (Dubossarsky et al., 2020) as:

ECOND_HM(X ,Y) =
2 · κeff (X ) · κeff (Y)

κeff (X ) + κeff (Y)

Using the effective rank instead of the standard
rank to determine the (effective) condition number
is a heuristic method motivated by finding the least
singular value that characterizes X in a significant
way, as informed by the entropy associated with
the singular value distribution of X .
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Figure 4: The first two t-SNE dimensions of sentence embeddings in the Universal Declaration of Human Rights,
in four zero-shot languages (Chickasaw, Quechua, K’iche, and Mam). Languages with similar word order have
been plotted together to demonstrate isomorphism of the resulting vector subspaces (LaBSE plots are top, LASER
plots are bottom).

Feature Loadings
PC1 PC2 PC3 PC4 PC5

Combined sentences 2.50e-2, 5.28e-2 -2.30e-1, 2.53e-1 9.73e-1, 9.66e-1 -8.59e-11, -7.83e-10 1.12e-11, -5.93e-10
Combined in-family sentences 9.78e-1, 9.60e-1 2.07e-1, -2.81e-1 2.38e-2, 2.13e-2 -2.11e-11, -8.33-10 2.83e-12, -5.56e-12
Combined in-subfamily sentences 2.07e-1, 2.77e-1 -9.51e-1, 9.26e-1 -2.30e-1, -2.58e-1 -5.92e-12, 4.33e-10 1.15e-11, 4.40e-10
Same word order 1.10e-11, 3.42e-10 -5.38e-12, -4.97e-10 7.59e-11, 1.15e-9 7.60e-1, 7.13e-1 6.17e-1, 6.73e-1
Same polysynthesis status 1.57e-11, 4.30e-10 -2.21e-11, -8.02e-11 6.69e-11, 1.11e-10 6.02e-1, 6.54e-1 -7.81e-1, -7.33e-1
Same family 2.44e-11, 6.97e-10 -1.19e-12, -1.28e-10 -2.56e-11, -4.76e-11 1.67e-1, 1.84e-1 -6.07e-4, -1.11e-2
Same subfamily 3.64e-12, 1.10e-10 -1.48e-11, 1.19e-10 -1.81e-11, -7.06e-11 7.38e-2, 7.71e-2 1.45e-2, 1.65e-2
Token overlap 6.68e-12, 2.07e-10 -1.42e-11, 2.67e-11 -1.20e-11, 6.42e-12 6.23e-2, 6.48e-2 -1.87e-2, -1.77e-2
Character overlap 2.53e-12, 1.72e-10 -2.34e-11, 3.68e-10 -1.02e-10, -8.57e-11 4.93e-2, 2.39e-2 2.71e-2, 3.63e-2
Geographic distance -4.28e-12, -1.29e-10 6.74e-13, 4.58e-11 -7.91e-13, -5.54e-11 -6.41e-2, -6.77e-2 6.45e-2, 6.20e-2
Syntactic distance -7.48e-12, -2.36e-10 6.14e-12, 1.02e-10 1.53e-11, -2.23e-11 -9.85e-2, -9.33e-2 -6.25e-2, -6.48e-2
Phonological distance -5.80e-12, -1.70e-10 -3.28e-12, 1.49e-10 2.87e-11, -9.04e-12 -5.81e-2, -5.71e-2 2.20e-2, 2.19e-2
Inventory distance -8.39e-13, -2.12e-11 -3.53e-12, 1.05e-10 1.64e-11, -3.90e-11 -4.75e-2, -4.51e-2 1.49e-2 1.23e-2

Table 5: Loadings from the first five principal components for the language-pair-related features. The top three
loadings by magnitude in each component are colored red for LaBSE and green for LASER. Note that although
LaBSE and LASER are trained using different neural architectures, the most significant features in each of the first
five components are almost identical.


