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Abstract

We propose pre-finetuning, an additional large-
scale learning stage between language model
pre-training and fine-tuning. Pre-finetuning
is massively multi-task learning (around 50
datasets, over 4.8 million total labeled ex-
amples), and is designed to encourage learn-
ing of representations that generalize better
to many different tasks. We show that pre-
finetuning consistently improves performance
for pretrained discriminators (e.g. RoBERTa)
and generation models (e.g. BART) on a wide
range of tasks (sentence prediction, common-
sense reasoning, MRC, etc.), while also sig-
nificantly improving sample efficiency during
fine-tuning. We also show that large-scale
multi-tasking is crucial; pre-finetuning can
hurt performance when few tasks are used up
until a critical point (usually above 15) after
which performance improves linearly in the
number of tasks.

1 Introduction

The recent success of language model pre-training
(Devlin et al., 2018; Liu et al., 2019b; Lewis et al.,
2019; Raffel et al., 2019; Radford et al., 2019)
is remarkable, at least in part, due to the exclu-
sive use of self supervision, without any manu-
ally labeled data. For many tasks, however, we
already have training examples for related prob-
lems, which we should be able to leverage. Recent
work has shown gains from fine-tuning schemes
that are multi-task (Raffel et al., 2019; Khashabi
et al., 2020) and multi-stage (Liu et al., 2019a),
but it can be difficult to know which intermediate
tasks will best transfer (Raffel et al., 2019). In this
paper, we show that multi-task supervised tuning,
if done at a sufficiently large scale with many dif-
ferent tasks, can be an effective second stage of
task-agnostic pre-training, removing the need to
pre-select the best intermediate tasks.

More specifically, in addition to the standard
pre-training/fine-tuning methodology of learning

language tasks, we introduce a new intermediate
stage, pre-finetuning. Pre-finetuning involves a
massive multi-task learning step (4.8 million total
training examples) performed on around 50 classi-
fication, summarization, question answering, and
common sense reasoning tasks. We believe we are
the first to investigate multi-task learning at this
scale in terms of both number and types of tasks.
We show, in particular, that standard multi-tasking
schemes can be unstable and often fail to learn high
quality representations. However, we introduce a
new training scheme which uses loss scaling and
task-heterogeneous batches so that gradient steps
are more evenly balanced across multiple differ-
ent competing tasks, greatly improving training
stability and overall performance. We call our pre-
finetuned models MUPPET; Massive Multi-task
RePresentation with PrE-fineTuning.

Through extensive experiments, we show that in-
corporating pre-finetuning to RoBERTa (Liu et al.,
2019b) and BART (Lewis et al., 2019) models
yields consistent improvements, including new
state-of-the-art performance for RTE (Bentivogli
et al., 2009) and HellaSWAG (Zellers et al., 2019),
without having to specify specific intermediate
transfer tasks. These gains are particularly strong
in the low resource regime, where there is relatively
little labeled data for fine-tuning. We also study
why pre-finetuning outperforms previous multi-
tasking schemes. We first compare different op-
timization techniques to stabilize training, and find
it important to use task-heterogeneous batches with
task-rebalancing loss scaling. We also show that
scale is crucial for effective multi-task learning.
We empirically see a critical point in terms of the
number of tasks (usually over 15); having fewer
tasks degrades representations, while having more
seems to improve performance linearly as far as we
were able to scale.

To summarize, our contributions include:

• We show that we can further improve pre-
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trained representations with an additional
stage we call pre-finetuning, which utilizes
massively multi-task learning. We show stan-
dard pre-trained representations, when further
refined with pre-finetuning consistently im-
prove performance on downstream tasks.

• We introduce a new multi-task training
scheme for effective learning at scale, which
uses loss scaling and task-heterogeneous
batches.

• We explore the effects of scale on multi-task
learning and show the existence of critical
points in multi-task training, beyond which
increasing the number of tasks improves gen-
eralizable representations.

• We conduct a study surrounding the data effi-
ciency of standard pre-trained representations
and their respective pre-finetuned counter-
parts. We show that the pre-finetuned models
consistently require less data for fine-tuning.

2 Related Work

Multi-task learning has been an increasingly ac-
tive topic in recent literature. Recent advances
such as MT-DNN show that by leveraging multi-
task learning, we can further improve performance
on several language benchmarks on top of tradi-
tional pre-training (Liu et al., 2019a). However,
T5 (Raffel et al., 2019) shows that incorporating
multi-task learning ontop of larger models does
not improve upon the standardized pre-training /
finetuning. Thus the effect of multi-task learning
across different pre-training methods is not fully
understood.

Recently Khashabi et al. (2020) showed how
doing MTL training on a range of QA tasks can im-
prove the performance of T5 by taking advantage
of cross dataset transfer. Unlike our approach, they
convert all the data to a seq2seq format, operate
on a smaller MTL scale, have a different batch-
ing strategy, and focus solely on improving QA
tasks. Our work shows how even seemingly very
different datasets, for example, summarization and
extractive QA, can help each other by improving
the model’s representations.

Our work aims to explore multi-task learning
at a much larger scale; by incorporating a larger
number of tasks, we show that we can consistently
improve several language benchmarks from several

Task Type # Datasets # Train # Eval

Classification 26 2.9M 188K
Summarization 4 524K 30K
MRC 6 1.05M 123M
CommonSense 10 360K 49K

Total 46 4.8M 390K

Table 1: Break down of MTL pre-finetuning datasets.
The table shows the number of datasets we used per
task type and the number of samples in training and
evaluation sets.

domains. Contrary to T5, we show that incorporat-
ing a secondary stage of multi-task learning does
lead to better representations. In §5 we demon-
strate the effectiveness of multi-task learning to be
coming from the large scale of our MTL setup.

3 Pre-Finetuning Through Massive
Multitask Learning

Previous work has reported mixed results from ex-
periments on multi-task learning (Liu et al., 2019a;
Raffel et al., 2019). In general, it can be challeng-
ing to balance the losses from different tasks; up-
sampling can lead to overfitting low resource tasks,
and downsampling can lead to improper learning
of specific tasks. This difficulty is particularly pro-
nounced when operating at the scale of experiments
we show in Section 5.1, where there are more di-
verse tasks than previously considered. This sec-
tion presents our pre-finetuning approach that leads
to more stable and accurate multi-task training by
introducing new optimization, loss scaling, and
task sampling schemes to balance each minibatch’s
updates better.

3.1 Tasks and Losses

Diverse Tasks To learn general language repre-
sentations, we include a variety of tasks across
many domains. We select language tasks across
four different domains: classification, common-
sense reasoning, machine reading comprehension,
and summarization. In Table 1, we show the break
down of each of the task types along with the
number of samples used from each during pre-
finetuning. In total our multi-task set up learns
over 4.8 supervised samples across 4 families of
tasks.

A full list of all of the datasets we leverage for
pre-finetuning is described in appendix §A.1.
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Task Type Loss Function

Classification Cross Entropy (CE)
Summarization Label Smoothed CE (Szegedy et al., 2015)
MRC Span Prediction (Seo et al., 2016)
Commonsense Sentence Ranking Loss (Liu et al., 2019b)

Table 2: Description of loss functions for each task
type. Note for summarization the label smoothed cross
entropy loss is averaged across tokens.

Standard Losses To train on several datasets,
our model contains task-specific heads, each opti-
mizing for a task-specific loss. The loss functions
are summarized in table 2. Each loss is scaled with
loss scaling described in §3.3. After loss scaling,
the gradients from each task are averaged before
doing the model update step.

3.2 Optimization

We show two strategies to learn multi-task repre-
sentations at scale: Accumulating Gradients Across
Tasks (Heterogeneous Batches) and Leveraging Bet-
ter Finetuning.

Accumulating Gradients Across Tasks Our
model is trying to optimize not a single objec-
tive but several potentially competing objectives
to create a unified representation across several
tasks during model training. During gradient de-
scent, moving along the gradient of a single task
may not be the optimal direction for the model to
move to learn a single unified representation across
tasks. To overcome this, we ensure each batch our
model optimizes consists of several tasks. Each
worker samples a random batch from our set of
tasks and computes a gradient, accumulated for
the final update. Empirically we use 64 GPUs for
pre-finetuning, resulting in each batch consisting of
gradients across 64 sampled tasks. In §5.2 we show
how such a strategy allows for our model to arrive
at a better representation for end task finetuning.

Better Finetuning Instead of starting from
scratch, we initialize our model with representa-
tions learned from self-supervised pre-training in
pre-finetuning. This can inherit the knowledge cap-
tured in the pre-trained representations and speed
up training. Mosbach et al. (2020) show that stan-
dard fine-tuning of pre-trained models can be un-
stable, which may be aggravated in our case as
we are training on a diverse set of tasks simultane-
ously. Therefore, we employ the R3F/R4F meth-
ods (Aghajanyan et al., 2020) to combat this issue.

In particular, R3F/R4F consists of an additional
loss term, ensuring that small perturbations to the
input space result in similar representations, which
can be used to learn more robust representations
during pre-finetuning.

In early experimentation, we found that R3F was
pivotal in getting MUPPET to work for BART. All
other fine-tuning and pre-finetuning was done using
standard SGD.

3.3 Loss Scaling
Loss scaling methods introduce a multiplicative
reweighting of individual losses per data-point. Var-
ious loss scaling techniques have been proposed,
from dynamic scaling by inverse training loss to
simple scaling by the number of data-points in re-
spective datasets (Chen et al., 2018).

As pre-finetuning optimizes several different
types of tasks and datasets, each having its own
output spaces, loss scaling becomes essential to
ensure stable training. We attempted various forms
of loss-scaling throughout initial experimentation,
but the most effective was the novel method we
describe below.

Let us denote Li(xi, yi; θ) as the loss for data-
point i for a model parameterized by θ. Remember
that the loss depends on the type of task (common-
sense loss is different from binary classification).
Furthermore let n : N → N be a function which for
each data-point returns the number of predictions
L operates over. For example, for binary classifi-
cation, n would return two, while for generation,
n would return the size of the vocabulary (since
we average across loss per token generated). We
scale data-point loss so that, if the class distribution
were uniformly distributed along with our models
predictions, all of our losses would have equivalent
values.

Lscaled
i (xi, yi; θ) =

Li(xi, yi; θ)

log n(i)
(1)

We found that this static scaling worked incredi-
bly well, outperforming other loss scaling methods
in early experimentation.

3.4 Sampling
Another approach to balancing various tasks in a
multi-task set up is to up-sample smaller datasets
and down-sample larger ones to achieve more uni-
formity between dataset sizes.

Existing results for dataset sampling methods in
multi-task learning are conflicting, but recent work
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has shown that it does not work well for multi-
task learning of pre-trained representations. For
example, T5 showed that all various forms of sam-
pling did not improve overusing the natural size of
datasets (Raffel et al., 2019).

We also found that sampling datasets were con-
sistently detrimental for multi-task learning over
pre-trained representations during initial experi-
mentation. Specifically, we saw unmanageable
over-fitting and stability issues. Therefore we
opt for maintaining the natural distribution of the
datasets throughout all of our experiments.

3.5 Experimental Setup

We selected RoBERTa (Liu et al., 2019b) and
BART (Lewis et al., 2019) as our initial pre-trained
models to further pre-finetune. For each task type
we use a different prediction scheme. Every Sen-
tence Prediction dataset gets a separate classifica-
tion head, for Commonsense and MRC we utilize
a separate unified head for each task. For Summa-
rization, we do not add any parameters and use the
BART decoder and output layer as is. Experimen-
tally we saw using a different head per individual
Commonsense and MRC datasets lead to severe
overfitting.

For both models, we do the pre-finetuning pro-
cedure for both the Base and Large models. We
trained each model configuration with 64 GPUs
until convergence. Dependent on configuration,
this ranged from a day to 4 days. We include the
hyper-parameters used per pre-finetuning run in the
Appendix in Section §A.2.

4 Empirical Results

We first show that pre-finetuning improves the rep-
resentations of pre-training models. To do so, we
fine-tune our pre-finetuned models on a large set of
tasks.

For each of the individual downstream tasks,
we use a fixed hyper-parameter search to optimize
over simple hyperparameters such as learning rate,
Adam ε (Kingma and Ba, 2014) and dropout (Sri-
vastava et al., 2014). We present our results in two
tables. Table 3 shows our results on the GLUE
benchmark (Wang et al., 2018) as well as two
MRC tasks; SQuAD (Rajpurkar et al., 2016a) and
ReCoRD (Zhang et al., 2018). Table 4 reports re-
sults on other Sentence Prediction tasks as well as
Commonsense tasks. We also include results from
MT-DNN (Liu et al., 2019a), ELECTRA (Clark

et al., 2020),1 and RoBERTa (Liu et al., 2019b)
models. For Summarization tasks we show that
our pre-finetuned BART model outperforms all
other summarization baselines. Both of these ta-
bles report over data-sets available during the pre-
finetuning stage.

Given that our pre-finetuned models now have
an understanding of the task at hand through the
use of classification heads, we have a choice during
finetuning on whether or not to use these heads. In
general we found re-using heads to be beneficial
for MRC, Commonsense and Sentence Prediction
tasks with small dataset size.

Across the board, pre-trained representations
that were further refined with pre-finetuning outper-
formed standard pre-trained representations. We
see more modest gains on larger datasets, most
likely because we do not need to refine representa-
tions beforehand if the fine-tuning dataset is large.
On smaller datasets, we see substantial gains. For
example, the pre-finetuned RoBERTa-BASE model
on RTE improves by close to 9 points, rivaling the
RoBERTa-Large accuracy, while the pre-finetuned
RoBERTa-Large model gets new state-of-the-art on
RTE rivaling models an order of magnitude larger
than it.

We do not improve just over sentence prediction
tasks but on every set of tasks that we measured.
For example, we reach a new state of the art on the
HellaSwag dataset previously achieved by utilizing
a new fine-tuning approach. Our methods do not
increase parameter count or any complexity mea-
sures but are quite successful at refining features
and preparing them for downstream fine-tuning.

4.1 Finetuning Outside of Pre-Finetuning
Domain

We also report the performance on tasks not in-
cluded in the pre-finetuning data. To do so, we
finetune our models on a set of tasks including
(1) ANLI (Nie et al., 2019) and Hyperpartisan
(Kiesel et al., 2019) for classification, (2) Arxiv (He
et al., 2019), PubMed (Cohan et al., 2018), (Sharma
et al., 2019) for summarization, and (3) Chunking,
Constituency Parsing and Part-Of-Speech tagging
for structured prediction from the Penn Treebank
dataset (Marcus et al., 1993). We present these
results in Table 5 and Table 6.

1For ELECTRA results we leverage the results pre-
sented in the ELECTRA github https://github.com/
google-research/electra#expected-results

https://github.com/google-research/electra#expected-results
https://github.com/google-research/electra#expected-results
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GLUE MRC

MNLI QQP RTE QNLI MRPC SST-2 SQuAD

RoBERTa-B 87.6 91.9 78.7 92.8 90.2 94.8 82.6
+ MUPPET 88.1 91.9 87.8 93.3 91.7 96.7 86.6

RoBERTa-L 90.2 92.2 88.1 94.7 90.9 96.4 88.7
+ MUPPET 90.8 92.2 92.8 94.9 91.4 97.4 89.4

BART 89.9 92.5 87.0 94.9 90.4 96.6
+ MUPPET 89.9 92.7 92.4 94.6 92.2 96.9

ELECTRA-B 88.8 91.5 82.7 93.2 89.5 95 80.5
ELECTRA-L 90.9 92.4 88.0 95.0 90.8 96.9 88.1
MT-DNN 87.1 91.9/89.2 83.4 92.9 91.0/87.5 94.3 -

Table 3: We present results for the GLUE benchmark task and a MRC dataset. Bolded numbers show the MUPPET
vs. base model, underline marks the best number. If not explicitly stated, the results are showing the accuracy of
the evaluation set. For the MRC tasks, we report both exact match (EM) and F1 as is standard in the literature. For
SQuAD, we reused the task head from pre-finetuning.

SP Commonsense Summarization

BoolQ CQA HellaSwag OpenQA CNN/DailyMail Gigaword Reddit TIFU

RoBERTa-B 82.0 66.2 65.1 63.8 - - -
+ MUPPET 83.8 69.4 69.0 64.6 - - -

RoBERTa-L 86.4 78.1 83.4 73.6 - - -
+ MUPPET 87.5 79.2 86.4 74.4 - - -

BART 86.2 78.1 84.1 71.4 44.16/21.28/40.90 39.29/20.09/35.65 24.19/8.12/21.31
+ MUPPET 86.9 74.8 75.9 70.8 44.45/21.25/41.4 40.40/20.54/36.21 30.30/11.25/24.92

T5-L 86.2 75.6 83.9 70.4 42.50/20.68/39.75 - -
T5-11B 86.8 78.9 85.8 75.4 43.52/21.55/40.69 - -
PEGASUS - - - - 44.17/21.47/41.11 39.12/19.86/36.24 26.63/9.01/21.60
ERNIE-GEN - - - - 44.02/21.17/41.26 39.25/ 20.25/36.53 -
ProphetNet - - - - 44.20/21.17/41.30 39.51/20.42/36.69 -

Table 4: We present results for the non-GLUE Sentence Prediction tasks as well as a set of standard Commonsense
tasks. Bolded numbers signify MUPPET vs. base model, while an underline signifies the best number. If not
explicitly stated, the results are showing the accuracy of the evaluation set. For commonsense tasks, we re-use the
task head from pre-finetuning.

We see that the MUPPET variants of our models
out-perform the baselines consistently across task
type and dataset. As a special case we do an in
depth analysis of the MUPPET variant of RoBERTa
on the notoriously tough ANLI dataset and see the
same pattern. Pre-finetuned models consistently
outperform their base counterparts.

5 Understanding Multi-Task at Scale

5.1 Importance of Scale

The first axis we would like to explore is the scale
on which multi-task learning is done. Previous
work, such as T5 and MT-DNN, focused on the
MTL scale of around a dozen datasets. To the best
of our knowledge, our paper has the largest MTL
set up to date. Accordingly, we are interested in

empirically exploring the effects of scaling up the
number of datasets to the representations learned
during MTL.

We pre-finetune a collection of RoBERTa-Base
models with varying numbers of datasets. We
train seven models, six uniformly chosen between
10 and 40, ensuring that at each point, the se-
lected datasets are a superset of the datasets from
prior points. The last model is fully trained on all
datasets. Concretely given two models trained with
a different number of datasets a, b : a > b, model
a will contain all datasets used to train model b and
more.

For each version of the model, we fine-tune five
datasets and plot the results in Figure 1. Specifi-
cally we finetune STS-B (Cer et al., 2017), BoolQ
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SP Structured Prediction (Penn) Summarization

Hyperpartisan Chunking Parsing POS Arxiv PubMed BigPatent

RoBERTa-B 84.2 93.4 95.1 93.7 - - -
+ MUPPET 85.8 95.5 94.5 93.2 - - -

RoBERTa-L 90.4 95.1 94.5 93.4 - - -
+ MUPPET 92.5 96.9 95.7 97.9 - - -

BART 85.1 92.1 91.1 91.8 41.20/9.20/32.45 39.87/16.43/35.56 48.54/29.35/39.42
+ MUPPET 87.2 96.1 94.5 97.2 43.90/14.50/40.10 45.13/19.80/39.90 52.34/33.50/42.80

Pegasus - - - - 43.85/16.83/39.17 44.53/19.30/40.70 52.25/33.04/41.80

Table 5: We present results on a large set of different tasks across datasets that are not available to the model during
the pre-finetuning stage. Bolded numbers signify MUPPET vs. base model, while an underline signifies the best
number. For Chunking/Parsing, we use F1, while for Part-Of-Speech tagging, we use accuracy.

Model Training Data A1 A2 A3 ANLI

RoBERTa S,M 47.6 25.4 22.1 31.1
+F 54.0 24.2 22.4 32.8
+F+A1?2 68.7 19.3 22.0 35.8
+F+A1+A2?3 71.2 44.3 20.4 43.7
S,M,F,ANLI 73.8 48.9 44.4 53.7

RoBERTa-MUPPET S,M 49.9 28.2 24.2 33.3
+F 55.2 26.8 24.6 33.9
+F+A1?2 70.9 22.5 25.1 36.7
+F+A1+A2?3 74.3 48.2 22.8 45.9
S,M,F,ANLI 76.9 52.3 44.2 56.9

InfoBERT (Wang et al., 2021) S,M,F,ANLI 76.4 51.6 48.6 58.3
ALUM (Liu et al., 2020) S,M,F,ANLI 73.3 53.4 48.2 57.7
XL-NET (Yang et al., 2019) S,M,F,ANLI 67.6 50.7 48.3 55.1

Table 6: We show the performance of the RoBERTa model and the pre-finetuned RoBERTa-MUPPET model on
the ANLI benchmark. Bolded numbers signify MUPPET vs base model, underline signifies best number. ‘S’ refers
to SNLI, ‘M’ to MNLI dev (-m=matched, -mm=mismatched), and ‘F’ to FEVER; ‘A1–A3’ refer to the rounds
respectively and ‘ANLI’ refers to A1+A2+A3.

(Clark et al., 2019), RACE (Lai et al., 2017),
SQuAD (Lai et al., 2017), and MNLI (Williams
et al., 2018a). We include these five datasets in
the first MTL run (10 datasets) to remove any bias
from adding them in a later stage.

We see a couple of interesting patterns. First,
for individual tasks such as RTE (Bentivogli et al.,
2009), increasing the pre-finetuning scale mono-
tonically improves performance. This is aligned
with other papers that have seen benefits from first
training on MNLI (Williams et al., 2018a) and
then fine-tuning on RTE (Liu et al., 2019b). For
other datasets, we see that doing MTL in the < 15
datasets regime is detrimental for end-task fine-
tuning. This is also aligned with other empirical
observations, i.e., T5 reported that doing MTL did
not improve over only fine-tuning. Nevertheless,
it seems that as we increase the number of tasks
past some critical point, our pre-trained representa-
tions become more generalizable. Furthermore, al-

though dependent on the dataset, this critical point
is roughly between 10 and 25 tasks.

This suggests that previously observed MTL lim-
itations were not fundamental and can instead be
attributed to the lack of sufficient scale.

5.2 Importance of Heterogenous Batches

Another critical factor to getting MTL to learn gen-
eralizable representations is the method through
which MTL is implemented, specifically the se-
lection of batches. To better quantify this trend,
we experimented with three balancing schemes:
dataset homogenous, batch homogenous and batch
heterogenous.

We refer to dataset homogenous as selecting
batches from datasets sequentially. So we first
train on dataset A, then train on dataset B, etc.
On the other hand, batch homogenous refers to
selecting batches containing only data from the
same task; therefore, all gradients are from the
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Figure 1: We plot the RoBERTa evaluation accuracy of five datasets: RTE, BoolQ, RACE, SQuAD, and MNLI,
across various scales of multi-task learning measured in the number of datasets. We notice that performance
initially degrades until a critical point is reached regarding the number of the datasets used by the MTL framework
for all but one dataset. Post this critical point; our representations improve over the original RoBERTa model.

same dataset. This is implemented by selecting all
datasets, batching on a dataset level, and selecting
those same batches randomly during training. Fi-
nally, batch heterogeneous refers to a single update
containing a batch from multiple different datasets
spanning different tasks. We implemented this by
first creating homogenous sub-batches, calculating
loss per sub-batch per GPU, and then aggregating
across GPUs manifesting in a gradient update that
contains various datasets and, therefore, tasks.

To dissect the importance of heterogeneous
batches, we train a RoBERTa-Base model on 35
randomly selected tasks using the three data selec-
tion methodologies outlined above. We then fine-
tune these three models on the same five data-sets
mentioned in the previous section.

We present our results in Figure 2. We see the
importance of properly defining a batching strat-
egy for effective multi-task learning. Our findings
are also consistent with (Aghajanyan et al., 2020)
which saw that sequential training of data-sets de-
grades generalizable representations.

5.3 Low Resource Experiments

We noticed in Section §4 that data-sets with smaller
data-set sizes tended to improve more from MTL
training. To strengthen this hypothesis, we look
at two factors: the scale of pre-finetuning and the
scale of fine-tuning (size of fine-tuning data-set).

We select three data-sets that were not used in
pre-finetuning in Section §5.1. We also select nine
partitions per fine-tuning data-set, which is sam-
pled uniformly between 10% of the data-set and
100% of the data-set. Selecting the low-resource
splits was done through random sampling.

We then fine-tune every low-resource split with

every pre-finetuning checkpoint from Section §5.1.
We plot the heatmaps generated from these runs in
Figure 3.

Multiple patterns emerge. First, we see a clear
visualization of the critical point mentioned when
doing pre-finetuning. As we increase the scale of
MTL, better representations are available for down-
stream finetuning. Furthermore, we see that pre-
finetuned models at a larger scale are much more
data-efficient than standard pre-trained models.

Specifically looking at the 34/40 pre-finetuning
scale on Figure 3 we see that we reach higher
evaluation accuracies much sooner than the base
RoBERTa model (row 0).

6 Conclusion

In this work, we propose pre-finetuning, a stage
after pre-training to further refine representations
before end-task finetuning. We show that we can ef-
fectively learn more robust representations through
multi-task learning (MTL) at scale. Our MTL mod-
els outperform their vanilla pre-trained counter-
parts across several tasks. Our analysis shows that
properly scaling MTL with heterogeneous batches
and loss scaling is critical to leveraging better repre-
sentations. We also show a critical point regarding
the number of tasks when doing multi-task learning,
where fewer tasks degrade representations com-
pared to the pre-trained model, but more tasks than
this point improve representations.

We discussed a practical setting in which do-
ing this massive multi-task learning is stable and
effective through simple loss scaling and hetero-
geneous batches. With our method, we improve
upon prior state of the art methods for RTE (Ben-
tivogli et al., 2009) and HellaSWAG (Zellers et al.,
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Figure 2: We plot the evaluation accuracy of RoBERTa across five datasets: RTE, BoolQ, RACE, SQuAD, and
MNLI, using our three batching strategies for multi-task: Dataset Homogeneous, Batch Homogeneous, Batch
Heterogeneous. The use of heterogenous batches outperforms other batching strategies by a significant margin and
highlights the importance of implementing MTL with the correct batching strategy.
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Figure 3: We fine-tune every low-resource split with every pre-finetuning checkpoint from Section §5.1 for two
datasets not available in any of the pre-finetuning MTL datasets; QNLI (Rajpurkar et al., 2016b) and CoLA
(Warstadt et al., 2018). The pre-finetuning scale is reported in terms of the number of datasets.

2019), as well as improve upon vanilla pre-trained
representations for MNLI (Williams et al., 2018a),
SQuAD (Rajpurkar et al., 2016a), BoolQ (Clark
et al., 2019), and Common Sense QA (Talmor et al.,
2018). We also our MTL model performance with
low resource experiments. We show that on held-
out datasets, leveraging representations from our
pre-finetuned models with 34-40 tasks, we reach
higher evaluation accuracies with much less data
than the RoBERTa model.
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A Appendices

A.1 Datasets Used
1. CoLA (Warstadt et al., 2018)

2. SST-2 (Socher et al., 2013)

3. MRPC (Dolan and Brockett, 2005)

4. QQP (Iyer et al., 2017)

5. MNLI (Williams et al., 2018a)

6. QNLI (Rajpurkar et al., 2016b)

7. RTE (Bentivogli et al., 2009)

8. WNLI (Levesque et al., 2012)

9. SuperGLUE (Wang et al., 2019)

10. Bool Q (Clark et al., 2019)

11. MultiRC (Khashabi et al., 2018)

12. WIC (Pilehvar and Camacho-Collados, 2019)

13. WSC (Levesque et al., 2011)

14. CB (De Marneffe et al., 2019)

15. COPA (Roemmele et al., 2011)

16. AG News (Zhang et al., 2015b)

17. IMDB (Maas et al., 2011)

18. MultiNLI (Williams et al., 2018b)

19. SNLI (Bowman et al., 2015)

20. HANS (McCoy et al., 2019)

21. Rotten Tomatoes (Pang and Lee, 2005)

22. Yelp Polarity (Zhang et al., 2015a)

23. Eraser Multi RC (DeYoung et al.)

24. Wiki QA (Yi et al., 2015)

25. Trec (Li and Roth, 2002; Hovy et al., 2001)

26. SciTail (Khot et al., 2018)

27. CNN Daily Mail (Hermann et al., 2015)

28. Billsum (Eidelman, 2019)

29. XSUM (Narayan et al., 2018)

30. Aeslc (Zhang and Tetreault, 2019)

31. Multinews (Fabbri et al., 2019)

32. Math QA (Amini et al., 2019)

33. Openbook QA (Mihaylov et al., 2018)

34. SWAG (Zellers et al., 2018)

35. HellaSWAG (Zellers et al., 2019)

36. RACE (Lai et al., 2017)

37. CommonSense QA (Talmor et al., 2018)

38. Cosmos QA (Huang et al., 2019)

39. AI2 ARC - Easy (Clark et al., 2018)

40. AI2 ARC - Challenge (Clark et al., 2018)

41. SCIQ (Welbl et al., 2017)

42. SQUAD (Rajpurkar et al., 2016a)

43. NQ (Kwiatkowski et al., 2019)

44. DROP (Dua et al., 2019)

45. RECORD (Zhang et al., 2018)

46. Hotpot (Yang et al., 2018)

47. TriviaQA (Joshi et al., 2017)

A.2 Hyperparameters

Hyper parameter Value

Optimizer Adam
Adam-betas (0.9, 0.999)
Adam-eps 1e-8
LR 6e-05
LR Scheduler polynomial decay
Dropout 0.1
Weight Decay 0.01
Warmup Updates 5000
Total Updates 200000
Max Tokens 1024

Table 7: Hyperparameters for pre-finetuning BART
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Hyper parameter Value

Optimizer Adam
Adam-betas (0.9, 0.999)
Adam-eps 1e-8
LR 3e-05
LR Scheduler polynomial decay
Dropout 0.1
Weight Decay 0.01
Warmup Updates 5000
Total Updates 200000
Max Tokens 4400

Table 8: Hyperparameters for pre-finetuning RoBERTa-
B and RoBERTa-L


