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Abstract
The paradigm of pre-training followed by fine-
tuning has become a standard procedure for
NLP tasks, with a known problem of domain
shift between the pre-training and downstream
corpus. Previous works have tried to mitigate
this problem with additional pre-training, ei-
ther on the downstream corpus itself when it
is large enough, or on a manually curated un-
labeled corpus of a similar domain. In this pa-
per, we address the problem for the case when
the downstream corpus is too small for addi-
tional pre-training. We propose TADPOLE,
a task adapted pre-training framework based
on data selection techniques adapted from Do-
main Adaptation. We formulate the data se-
lection as an anomaly detection problem that
unlike existing methods works well when the
downstream corpus is limited in size. It results
in a scalable and efficient unsupervised tech-
nique that eliminates the need for any man-
ual data curation. We evaluate our frame-
work on eight tasks across four different do-
mains: Biomedical, Computer Science, News,
and Movie reviews, and compare its perfor-
mance against competitive baseline techniques
from the area of Domain Adaptation. Our
framework outperforms all the baseline meth-
ods. On small datasets with less than 5K train-
ing examples, we get a gain of 1.82% in per-
formance with additional pre-training for only
5% steps. It also compliments some of the
other techniques such as data augmentation
known for boosting performance when down-
stream corpus is small; highest performance is
achieved when data augmentation is combined
with task adapted pre-training.

1 Introduction

Pre-trained language models such as ELMo (Peters
et al., 2018), GPT (Radford et al., 2018), BERT
(Devlin et al., 2018), Transformer-xl (Dai et al.,
2019) and XLNet (Yang et al., 2019) have become
a key component in solving virtually all natural
language tasks. These models are pre-trained on

large amount of cross-domain data ranging from
Wikipedia to Book corpus to news articles to learn
powerful representations. A generic approach for
using these models consists of two steps: (a) Pre-
training: train the model on an extremely large
general domain corpus, e.g. with masked language
model loss; (b) Finetuning: finetune the model on
labeled task dataset for the downstream task.

Even though the approach of pre-training fol-
lowed by fine-tuning has been very successful, it
suffers from domain shift when applied to tasks con-
taining text from a domain that is not sufficiently
represented in the pre-training corpus. An immedi-
ate way of solving the problem is to pre-train the
model on task domain data instead of the general
domain data. For a handful of very popular task do-
mains, the research community invested time and
resources to collect a large domain-specific data
corpus and pre-train a language model on it. The
models include BioBERT pre-trained on biomed-
ical text (Lee et al., 2020), ClinicalBERT pre-
trained on clinical notes (Huang et al., 2019), SciB-
ERT pre-trained on semantic scholar corpus (Belt-
agy et al., 2019), and FinBERT pre-trained on
financial documents (Araci, 2019). These mod-
els achieve significant gain in performance over a
model trained on general domain data, when the
downstream task belongs to the respective domains.

These papers demonstrate how useful it can be
to shift the domain of the pre-trained model. How-
ever, the approach is expensive and time consuming
as it requires collecting gigabytes of domain data
for each new task. The long-tail of domains re-
mains left behind without a realistic solution. To
mitigate this, in absence of the huge task domain
data, a different known approach is to collect a
medium (MBs, not GBs) amount of unlabeled task
data, and adapt the pre-trained (on general data)
model by e.g. extending the pre-training procedure
on the unlabeled data (Howard and Ruder, 2018;
Gururangan et al., 2020). Such task adapted pre-
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training approach achieves relatively smaller gain
but is less expensive. Although this approach is
cheaper in terms of manual labor when compared
to domain adapted BERT, it still requires an effort
to collect unlabeled data. It requires much more
data than what is needed for only fine-tuning. This
is often impossible to achieve, for example when
data is highly sensitive. In this paper we propose
a solution to this challenging problem, providing
domain adaptation to the pre-trained model without
the need for any manual effort of data collection.

The high level idea is quite intuitive. Given a
generic pre-training data containing text from mul-
tiple domains, we filter the available general do-
main to contain only pieces that are similar to the
downstream task corpus. By continuing the pre-
training process on this adapted corpus we achieve
a better tuned pre-trained model. Figure 1 illus-
trate the feasibility of this approach with an ex-
ample downstream task from a medical domain
and highlighted text from a news article available
in a general domain corpus. The key for a suc-
cessful implementation is finding the best way of
evaluating the similarity of a given snippet to the
downstream task.

RCT20K TASK DATA

To investigate the efficacy of 6 weeks of daily low-dose
oral prednisolone in improving pain, mobility, and systemic
los-grade . . . [OBJECTIVE]
A total of 125 patients with primary knee OA were random-
ize . . . [METHODS]
Outcome measures included pain reduction and systemic
inflammation markers . . . [METHODS]

News Article

For as much as we workout warriors recite that whole “no
pain, no gain” mantra, we sure do pop a lot of painkillers.
A recent article published in. . . These popular medicines,
known as nonsteroidal anti-inflammatory drugs, or NSAIDs,
work by suppressing inflammation. . . the article kind of
blows past is the fact plenty of racers . . .

Figure 1: Identification of task-data (top panel, medical data)
in general domain corpus (bottom panel).

Although not many methods exist to solve the
problem of domain shift in the context of pre-
training, literature on Domain Adaptation provides
several methods for the core task of evaluating
the above mentioned similarity. These previous
approaches use either a simple language model
(LM) (Moore and Lewis, 2010; Axelrod et al.,
2011; Duh et al., 2013; Wang et al., 2017b; van der
Wees et al., 2017), or a hand crafted similarity
score (Wang et al., 2017a; Plank and Van Noord,

2011; Remus, 2012; Van Asch and Daelemans,
2010). The LM based technique are often both over
simplistic, and require a fairly large corpus of task
data to create a reasonable LM. The hand crafted
similarity scores can be seen as ad-hoc methods for
distinguishing inliers from outliers (i.e., anomaly
detection); they tend to be focused on individual
tasks and do not generalize well.

We formulate the similarity evaluation task as
that of anomaly detection and propose a Task
ADapted Pre-training via anOmaLy dEtection
(TADPOLE) framework. Indeed, anomaly detec-
tion methods given a domain of instance are able
to provide a score for new instances assessing how
likely they are to belong to the input domain. We
exploit pre-trained models to get sentence repre-
sentations that are in turn used to train an anomaly
detection model. By using pre-trained models, our
method is effective even for small text corpora.
By taking advantage of existing anomaly detection
methods, we replace hand-crafted rules with tech-
niques proven to generalize well. Our approach
does not require any manual data curation. To train
the anomaly detection method, we only use the task
data which is already available as it is necessary
for fine-tuning.

In what follows we discuss how we implement
our technique and compare it with other data se-
lection methods based on extensive experimental
results. We start by filtering out the subset of gen-
eral domain corpus most relevant to the task. To do
this, we explore several anomaly detection methods
and give a quantitative criterion to identify the best
method for a given task data. Then, we start with
a pre-trained model on the general domain corpus
and run additional pre-training for only 5% more
steps on the filtered corpus from different methods.
This is followed by the regular finetuning on the
labeled task data. We measure the performance
gain as an improvement in accuracy of finetuned
model with additional pre-training vs the accuracy
of finetuned model without additional pre-training.
To establish the performance gain of TADPOLE,
we evaluate it on eight tasks across four domains:
Biomedical, Computer Science, News, and Movie
reviews. We investigate all aspects of TADPOLE
by comparing its performance with various base-
lines based on its variants and the competitive meth-
ods available in literature. The main highlights of
our work are as follows:

• We provide TADPOLE, a novel anomaly de-
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Figure 2: Average performance gain as function of #training
samples available for a task.

tection based framework for adapting pre-
training for the downstream task. The frame-
work is explained in detail and all its steps are
justified via extensive ablation studies.
• TADPOLE is superior to all the baseline meth-

ods including (i) LM based relevance score
(iii) Distance based relevance score (iii) Con-
tinued pre-training on the task data (iv) Data
Augmentation while finetuning.
• On tasks with small labeled dataset (less than

5K examples), our method achieves an aver-
age 1.82% lift in performance whereas the
baselines achieve no more than 0.48%.
• For tasks with large labeled dataset, our

method does not depreciate in performance
and achieves an average gain of 0.32%. In ad-
dition, if only a subset of training samples are
available, we observe significantly higher gain.
In particular, if only 1000 training samples are
available, we observe an average 2.01% gain
in performance whereas the baselines achieve
no more than 0.24% gain. In all individual
tasks, our method is either on par or (statisti-
cal) significantly better than all alternatives.
• TADPOLE complements some of the other

techniques known for improving performance
for small datasets. For instance, TADPOLE
performs better than data augmentation and
performs even better when combined with
data augmentation; Data-Aug ≤ TADPOLE
≤ TADPOLE + Data-Aug.
• For a task requiring little domain adapta-

tion, GLUE sentiment analysis, our method
achieves an improvement of 0.4% in accuracy.

2 Related Work

Since our focus is on Data Selection Methods, we
only discuss the related work on Data Selection
in Domain Adaptation here. We discuss the other
Domain Adaptation techniques in Appendix A.

Data Selection: As discussed above, core of data
selection is to determine the relevance weights that
in turn modify the source domain to become more
similar to the target domain. There has been a
sequence of works in trying to find the relevance
weights via language models (Moore and Lewis,
2010; Wang et al., 2017b; van der Wees et al.,
2017). For instance, Moore and Lewis (2010), Ax-
elrod et al. (2011) and Duh et al. (2013) train two
language models, an in-domain language model on
the target domain dataset (same as task domain in
our case) and an out-of-domain language model
on (a subset of) general domain corpus. Then, rel-
evance score is defined as the difference in the
cross-entropy w.r.t. two language models. These
methods achieve some gain but have a major draw-
back. A crucial assumption they rely on: there
is enough in-domain data to train a reasonable
in-domain language model. This assumption is
not true in most cases. For most tasks, we only
have access to a few thousands or in some cases a
few hundreds of examples which is not enough to
train a reasonably accurate language model. Our
techniques rely on text representations based on the
available pre-trained model. As such, our similarity
score does not rely on models that can be trained
with a small amount of data.

Another line of work defines hand crafted do-
main similarity measures to assign relevance score
and filter out text from a general domain corpus
(Wang et al., 2017a; Plank and Van Noord, 2011;
Remus, 2012; Van Asch and Daelemans, 2010;
Gururangan et al., 2020). For instance, Wang
et al. (2017a) define the domain similarity of a
sentence as the difference between Euclidean dis-
tance of the sentence embedding from the mean
of in-domain sentence embeddings and the mean
of out-of-domain sentence embeddings. Plank and
Van Noord (2011) and Remus (2012) define the
similarity measure as the Kullback-Leibler (KL) di-
vergence between the relative frequencies of words,
character tetra-grams, and topic models. Van Asch
and Daelemans (2010) define domain similarity as
Rényi divergence between the relevant token fre-
quencies. These are adhoc measures suitable only
for the respective tasks, and can be seen as a man-
ual task-optimized anomaly detection. They fail to
generalize well for new tasks and domains. Ruder
and Plank (2017) attempts to remedy this issue
and tries to learn the correct combination of these
metrics for each task. They learn the combination
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weight vector via Bayesian optimization. However,
Bayesian optimization is infeasible for deep net-
works like BERT. Each optimization step of this
process amounts to pre-training the model and fine-
tuning it for the task. For Bayesian optimization to
work well it requires repeating this process multi-
ple times, which is prohibitively computationally
expensive. Thus, they use models such as linear
SVM classifier and LDA which do not yield state-
of-the-art performance. In contrast, we propose
a lightweight method - based on anomaly detec-
tion - that can be applied to state-of-the-art deep
language models like BERT.

3 TADPOLE: Task ADapted
Pre-training via anOmaLy dEtection

Language model and Downstream Tasks. A
generic approach for using state-of-the-art lan-
guage models such as ELMo, GPT, BERT, and
XLNet is to pre-train them on an extremely large
general domain corpus and then finetune the pre-
trained model on the downstream labeled task data.
There is evident correlation between model’s pre-
training loss and its performance on the down-
stream task after finetuning (Devlin et al., 2018).
Our design is motivated by an observation, backed
by empirical evidence, that the correlation is even
stronger if we consider the pre-training loss not on
the pre-training data but the downstream task data.

To make this distinction formal, let D, Din be
the pre-training and task data. Let Θ denote the
parameters of the language model and `LM denote
the language model loss function. The pre-training
loss on pre-training data (LLM(Θ)) and target data
(Lin

LM(Θ)) are defined as follows: LLM(Θ) =∑
x∈D `LM(x; Θ), Lin

LM(Θ) =
∑

x∈Din
`LM(x; Θ).

To show that Lin
LM(Θ) is better correlated with the

performance of the downstream task we consider
several BERT language models pre-trained on ran-
dom combinations of datasets from different do-
mains mentioned in Section 4. Among these we
select the BERT models M1, . . . ,Mk such that
selected models have similar Masked Language
Model (MLM) loss on the general domain cor-
pus; |`LM (Θi) − `LM (Θj)| <= 0.02. MLM
loss of these models on the text from task domain
(`inLM (Θi)) is different. For each Mi, we contrast it
with the accuracy/f1 score of the finetuned model
on the task data.

We observe in Figure 3 that if we have two
equally good language models (similar language

model loss on general domain), the language model
which is better (tailored) for the task domain has
significantly better downstream performance. We

Figure 3: Masked Language Model (MLM) loss of pre-trained
BERT on the task data vs accuracy/f1 score of correspond-
ing finetuned BERT. Different points correspond to different
BERT models, pre-trained on random combination of different
datasets. MLM loss on the general domain corpus for all the
pre-trained BERT models considered here is roughly the same
(within 0.02 of each other).

conclude that in order to ensure success in the
downstream task, we should aim to minimize
Lin

LM(Θ). A first attempt would be to pre-train
or finetune the language model on Din. However,
training a language model such as ELMo, GPT,
BERT or XLNet requires a large corpus with sev-
eral GBs of text and the available domain specific
corpus Din is often just the task data which has
few MBs of text. Training on such a small dataset
would introduce high variance. We reduce this vari-
ance by taking training examples from the general
domain corpusD, but control the bias this incurs by
considering only elements having high relevance to
the domain Din. Formally, we optimize a weighted
pre-training loss function

LΛ
LM(Θ) =

∑
x∈D

λ(x,Din) · `LM(x; Θ), (1)

where λ(x,Din) are relevance weights of instance
x for domain Din. λ(x,Din) is (close to) 1 if x
is relevant to Din and (close to) 0 otherwise. We
compute these weights using an anomaly detec-
tion model fitted on Din. Note that concept of
weighted loss to handle noisy or irrelevant data
is well known (Moore and Lewis, 2010; Wang
et al., 2017a). Major contribution of our paper
is in proposing an anomaly detection based robust
approach to find the relevance weights.

3.1 Anomaly Detection to solve the Domain
Membership Problem

Detecting whether an instance x is an in-domain
instance is equivalent to solving the following prob-
lem: Given task data T and a sentence s, deter-
mine if s is likely to come from the distribution
generating T or if s is an anomaly.
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This view helps us make use of a wide variety
of anomaly detection techniques developed in lit-
erature (Noble and Cook, 2003; Chandola et al.,
2009; Chalapathy and Chawla, 2019). To make
use of these techniques, we first need a good nu-
meric representation (embedding) with domain dis-
crimination property. We use pre-trained BERT to
embed each sentence into a 768 dimensional vec-
tor. Once the data is embedded, we need to decide
which among the many anomaly detection algo-
rithms proposed in literature should be applied on
the embeddings. To decide the anomaly detection
method, we propose an evaluation method rank-
ing the techniques based on their discriminative
properties.

Ranking anomaly detection algorithms: The
idea is to treat the anomaly score as the prediction
of a classifier distinguishing between in-domain
and out-of-domain data. By doing so, we can con-
sider classification metrics such as the f1_score as
the score used to rank the anomaly detection al-
gorithm. To do this, we split the in-domain data
(the task data) into Dtrain

in ,Dtest
in using a 90/10 split.

We also create out-of-domain data Dout as a ran-
dom subset of D of the same size as Dtest

in . We
train an anomaly detection algorithm A with Dtrain

in ,
and evaluate it’s f1_score on the labeled test set
composed of the union Dtest

in ∪ Dout, where the la-
bels indicate which set the instance originated from.
Note that anomaly detection algorithms considered
do not require labeled samples for training. Thus,
mixing data from Dout does not add much value.

Table 1 provides the results of this evaluation
on six anomaly detection algorithms. Details of
the tasks can be found in Section 4. We can see
that Isolation Forest consistently performs well for
most of the tasks. Local Outlier Factor performs
almost equally well but is slower in prediction. Al-
though it is possible to adaptively choose for every
task the anomaly detection algorithm maximizing
the f1_score, we chose to use a single algorithm,
Isolation Forests, for the sake of having a simpler
technique and generalizable results. Due to space
constraints, we push the discussion on Isolation
Forest to Appendix C.

Now that we chose the anomaly detection tech-
nique, we move to discuss the effectiveness of the
algorithm in (i) identifying the domain from the
task data (ii) identifying the domain related data
from the general domain corpus.

Figure 4 (left) shows that the anomaly detection

Task RC kNN PCA OCS LOF IF

CHEMPROT 0.89 0.85 0.92 0.87 0.92 0.96
ACL-ARC 0.77 0.88 0.90 0.89 0.91 0.88
HYPERPARTISAN 0.86 0.86 0.95 0.98 0.91 0.98
RCT20K 0.85 0.88 0.82 0.76 0.87 0.93
IMDB 0.88 0.96 0.87 0.81 0.96 0.94
SCIERC 0.78 0.84 0.86 0.76 0.88 0.92
HELPFULNESS 0.82 0.89 0.83 0.76 0.83 0.92
IMDB 0.84 0.89 0.80 0.73 0.92 0.87

Table 1: Scores of different anomaly detection algorithms for
different tasks. RC: Robust Covariance (Nguyen and Welsch,
2010), kNN: Nearest neighbor (Gu et al., 2019), PCA: Prin-
cipal Component Analysis (Harrou et al., 2015), OCS: One
Class SVM (Schölkopf et al., 2000), LOF: Local Outlier Fac-
tor (Breunig et al., 2000), IF: Isolation Forest (Liu et al., 2008)

Figure 4: Sentence anomaly scores for SST with anomaly
detection algorithm trained on embeddings from Left: pre-
trained BERT, Right: finetuned BERT. In-task: sentences
from the task data, out-of-task: sentences from general domain
corpus.

Corpus Input data Filtered (Bio) Filtered (CS)

News 7.1G (21.8%) 0.1G (2.0%) 0.0G (0.7%)
Finance 4.9G (15.0%) 0.0G (0.1%) 0.0G (0.3%)
CS 8.0G (24.5%) 1.0G (15.4%) 5.1G (78.0%)
Bio 12.6G (38.7%) 5.3G (82.4%) 1.4G (20.9%)

Figure 5: Filtering algorithm trained with Bio Abstracts and
CS task data. We mix four corpora, filter out 80% of the data
and retain the remaining 20% in both cases.

algorithm is able to distinguish between the in-task-
domain data and out-of-task domain data. These
experiments are done for the Sentiment Analysis
task (SST) discussed in Section 4. Interestingly, we
noticed in our experiments that a language model
pre-trained on a diverse corpus is a better choice
when compared to a model finetuned on the target
domain. We conjecture that the reason is that a
finetuned BERT is overly focused on the variations
in the task data which are useful for task predic-
tion and forgets information pertaining to different
domains which is useful for domain discrimina-
tion. We exhibit this phenomenon more clearly in
Figure 4 (right) where it is evident that the discrim-
inating ability of the finetuned model is worse.

In order to assess the ability of our model to
identify related text we perform the following ex-
periment. First, we create a diverse corpus by tak-
ing the union of 4 datasets: News, Finance, CS
abstracts and Biology abstracts. Figure 5, column
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‘Input data’ contains their respective sizes. We then
train two anomaly score based discriminators, one
on CS task data and the other on Bio abstracts. For
each model we choose a threshold that would filter
out 80% of the data, and observe the data eventu-
ally retained by it. The fraction of data retained
from each corpus for each model is given in Fig-
ure 5, columns ‘Filtered (Bio)’ and ‘Filtered (CS)’.
We see that data from the News and Finance corpus
is almost completely filtered as it is quite different
than the text in abstracts of academic papers. We
also see that a non-negligible percent of the filtered
data for the Bio model comes from CS and vice
versa. Since both corpora are abstracts of academic
papers it makes sense that each corpus contains
relevant data for the other. The details related to
these corpora are given in Appendix B.

3.2 From Anomaly Detection Scores to
Domain Adapted Pre-training

Once the anomaly detection object is trained, we
use it to compute the relevance weights i.e. com-
pute λ values defined in equation 1 . Let the
sentences in the pre-training corpus be s1, . . . , sN
with anomaly scores {A(s1), . . . , A(sN )}. We ex-
plore two different strategies of λ value computa-
tion. First is when we normalize and transform the
scores to compute continuous values and second
when we use threshold and compute 0/1 values.
Continuous λ values: We start by normaliz-
ing the anomaly scores to be mean zero and
variance 1. Let µ = (

∑N
i=1A(si))/N, σ =√

(
∑N

i=1(A(si)− µ)2)/N . Then, for every i ∈
{1, . . . , N}, normalized score is Ā(si) = (A(si)−
µ)/σ. Using these normalized sentence anomaly
scores, we compute the relevance weights as fol-
lows: λ(si) = 1

1+e−C(α−Ā(si))
where C and α are

hyper-parameters. C controls the sensitivity of the
weight in terms of anomaly score and α controls
the fraction of target domain data present in the gen-
eral domain corpus. C →∞ results in 0/1 weights
corresponding to discrete λ setting whereas C = 0
results in no task adaptation setting.
Discrete λ values: We sort the sentences as per
anomaly scores, A(sσ(1)) ≤ A(sσ(2)) ≤ · · · ≤
A(sσ(N)) and pick β fraction of the sentences
with lowest anomaly scores, λ(sσ(i)) = 1 for i ∈
{1, . . . , βN} and 0 otherwise. Even though this
approach is less general than the continuous λ val-
ues case, it has an advantage of being model inde-
pendent. We can filter out text, save it and use it to

train any language model in a black box fashion. It
does not require any change in pre-training or fine-
tuning procedure. However, to utilize this option
we need to make a change. Instead of filtering out
sentences we need to filter out segments containing
several consecutive sentences.

To understand why, suppose we filter out sen-
tence 1 and sentence 10 and none of the sentences
in between. When we save the text and construct
input instances from it for a language model, then
an input instance may contain the end of sentence
1 and the start of sentence 10. This is problem-
atic as sentence 1 and sentence 10 were not adja-
cent to each other in the original corpus and hence,
language model does not apply to them. It dis-
torts the training procedure resulting in worse lan-
guage models. To resolve this issue, we group
sentences into segments and classify the relevance
of each segment. Formally, let γ be a hyper-
parameter and for all j ∈ 1, . . . , bN/γc let the
segment score be yj =

∑j∗γ
i=(j−1)∗γ+1

A(si)
γ . We

sort the segments according to their anomaly scores,
yσ′(1) ≤ · · · ≤ yσ′(N/γ) and select the β fraction
with lowest anomaly scores; save the sentences cor-
responding to these segments. To completely avoid
the issue, we may set segment length very large.
However, this is not feasible as the diverse nature
of pre-training corpus makes sure that large enough
segments rarely belong to a specific domain, mean-
ing that the extracted data will no longer represent
our target domain. We experimented with a handful
of options for the segment length, and found the
results to be stable with segments of 15 sentences.

Continued pre-training instead of pre-training
from scratch: Once we have computed the rele-
vance weights λ(si), we do not start pre-training
the language model from scratch as this is not fea-
sible for each new task/domain. Instead, we start
with a language model pre-trained on the general
domain corpus and perform additional pre-training
for relatively fewer steps with the weighted loss
function. In our case, we start with a BERT lan-
guage model pre-trained for one million steps and
continued pre-training with updated loss function
for either 50, 000 or 100, 000 steps.

4 Experiments

We use datasets listed in Table 2 along with a gen-
eral domain corpus consisting of 8GB of text from
Wikipedia articles. We use BERTBASE model pro-
vided in the GluonNLP library for all our exper-
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Task Train Dev Test C

HYPERPARTISAN 516 64 65 2
ACL-ARC 1688 114 139 6
SCIERC 3219 455 974 7
CHEMPROT 4169 2427 3469 13
IMDB 20000 5000 25000 2
SST 67349 872 1821 2
AGNEWS 115000 5000 7600 4
HELPFULNESS 115251 5000 25000 2
RCT20K 180040 30212 30135 5

Table 2: Specification of task datasets. C refers to the num-
ber of classes. CHEMPROT (Kringelum et al., 2016) and
RCT20K (Dernoncourt and Lee, 2017) are from biomedi-
cal domain. HYPERPARTISAN (Kiesel et al., 2019) and AG-
NEWS (Zhang et al., 2015) are from news domain. HELPFUL-
NESS (McAuley et al., 2015) and IMDB (Maas et al., 2011)
are from reviews domain. ACL-ARC (Jurgens et al., 2018) and
SCIERC (Luan et al., 2018) are from CS domain. SST (Socher
et al., 2013) is a general domain sentiment analysis task.

iments. It has 12 layers, 768 hidden dimensions
per token, 12 attention heads and a total of 110
million parameters. It is pre-trained with a sum of
two objectives. First is the masked language model
objective where model learns to predict masked to-
kens. Second is the next sentence prediction objec-
tive where sentence learns to predict if sentence B
follows sentence A or not. We use learning rate of
0.0001, batch size 256 and warm-up ratio 0.01. For
finetuning, we pass the final layer [CLS] token em-
bedding through a task specific feed-forward layer
for prediction. We use learning rate 3e-5, batch
size 8, warm-up ratio 0.1 and finetune the network
for five epochs. In all the experiments, we start
with a BERT pre-trained for one million steps and
continue pre-training for additional 50, 000 steps
in case of discrete λ, and 100, 000 steps in case of
continuous λ. Also, as mentioned in Section 3.2,
we filter out segments instead of sentences and save
them. We set the segment length to be 15 sentences
and filter out 20% of the data. Pseudo-code of the
end-to-end algorithm can be found in Appendix B.

4.1 Baseline Methods
For each baseline data selection method, we start
with a BERT pre-trained on general domain corpus
for one million steps as in case of TADPOLE. Then,
we continue pre-training the baseline method for
the same number of steps as in case of our method.
In case of baseline methods which filter general
domain corpus, we filter the same fraction of text
as in case of our method. Due to space constraints,
we discuss some of the technical details of Baseline
methods in Appendix ??.
General: Continued pre-training on general do-

main corpus.
Random: Continued pre-training on random sub-
set of general domain corpus.
Task (Gururangan et al., 2020): Continued pre-
training on task data. Since task data is small, we
can not pre-train on the task data for as many steps
as in other cases. Instead we do 100 epochs, save
the model after every epoch and pick the best one.
LM (Moore and Lewis, 2010): Continued pre-
training on text filtered via language models trained
on task data. We train two language models, one
on the task data and another on a subset of general
domain corpus (same size as the task data). We
select sentences with lowest scores given by the
function f(s) = HI(s)−HO(s), whereHI(s) and
HO(s) are the cross-entropy between the n-gram
distribution and the language model distribution.
Distance (Wang et al., 2017a): Continued pre-
training on data filtered via Euclidean distance
scoring function. For each sentence f , we con-
sider BERT embedding vf and compute vector
centers CFin and CFout of the task data Fin and
a random subset of general domain corpus Fout;

CFin =

∑
f∈Fin

vf

|Fin| , CFout =
∑
f∈Fout

vf
|Fout| . We score

a sentence f as per the scoring function:δf =
d(vf , CFin)− d(vf , CFout).
Data-Aug (Xie et al., 2019): Data augmentation
via back translation and tfidf based word replace-
ment. In back translation, for each sentnence f , we
tranlate it to french and then back into english. In
tfidf based word replacement, we replace uniforma-
tive words with other uninformative words. Label
of the new training example is same as the label
of original example. Due to space constraints, we
report the average scores of the two data augmen-
tation strategies. Note that data augmentation only
applies to task data used while finetuning and does
not involve additional pre-training.

4.2 Results

Table 3 shows the effectiveness of TADPOLE, au-
tomatically adapting pre-training to the task do-
main. Top half contains the result for four small
datasets and bottom half contains the results for five
large datasets. Since focus of the paper is on small
datasets, we take subsamples of large datasets of
size 500, 1000, 2000, 5000, 20000. For tasks with
less than 5k samples, continuing pre-training on
the unfiltered corpus (General or Random subset)
yields an average gain less than 0.11%. Adapting
pre-training by training on the task data only yields
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Task Base General Random Task LM Distance Data-Aug TADPOLE T+ Data-Aug

Small datasets: # training examples < 5K

HPRPARTISAN 70.573.04 70.972.03 71.042.32 70.882.63 71.472.56 72.162.14 71.182.86 73.582.39 73.872.86

ACL-ARC 72.314.7 72.383.93 72.423.71 72.463.48 72.401.85 72.472.64 72.763.03 72.813.83 73.312.77

SCIERC 82.841.39 82.851.38 82.811.13 83.181.09 82.992.75 83.402.17 83.271.12 85.850.95 85.760.95

CHEMPROT 81.620.74 81.590.67 81.620.71 81.630.82 81.830.74 81.640.76 82.080.88 82.410.62 82.810.68

Average Gain - 0.110.05 0.150.05 0.200.04 0.340.08 0.340.06 0.480.02 1.820.3 2.10.26

Average gain over five tasks: SST, RCT20K, HELPFULNESS, IMDB, AGNews with subset of training samples

#Training samples General Random Task LM Distance Data-Aug TADPOLE T + Data-Aug

500 0.20.11 0.210.03 0.180.05 0.220.13 0.40.02 0.210.09 2.160.06 2.010.13

1000 0.040.15 −0.220.07 0.130.05 −0.240.07 0.180.03 0.240.06 2.010.07 2.040.04

2000 0.140.09 0.160.02 0.230.03 0.180.04 0.20.01 0.10.05 1.480.06 1.520.03

5000 0.090.06 0.140.02 0.110.01 0.00.01 0.080.01 0.120.06 1.00.02 1.310.05

20000 0.080.05 0.070.03 0.00.01 −0.160.03 0.00.01 0.050.05 0.740.09 0.80.04

Table 3: Performance of TADPOLE, six baseline methods and TADPOLE combined with Data Augmentation. At top, we list the
performance of each task whereas at bottom we list the average performance gain over five tasks such that for each task, we
subsample a fixed number of training samples. Base corresponds to the pre-trained model on general domain corpus with no
further pre-training. Baseline methods are mentioned in previous subsection. TADPOLE corresponds to our method with discrete
relevance weights. T+Data-Aug corresponds to our method combined with data augmentation during finetuning. Keeping in
line with the previous works, we use the following metrics: accuracy for SST, micro f1 score for CHEMPROT and RCT20K,
macro f1 score for ACL-ARC, SCIERC, HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is finetuned eight
times with different seeds and the mean value is reported. Subscript correspond to the standard deviation in the finetuned model
performance. Average gain corresponds to the average improvement over Base for each of the baseline methods and TADPOLE.
Subscript in Average Gain corresponds to the standard deviation in the estimate of the average gain.

an average gain of 0.20%. Applying popular data
selection methods known for domain adaptation in-
cluding Language Model based relevance score or
Distance based relevance score yields a maximum
gain of 0.34%. TADPOLE beats all these meth-
ods and achieve an average gain of 1.82%. Data
augmentation on task data while finetuning (no
additional pre-training) achieves an average gain
0.48%. Combining Data-Augmentation with TAD-
POLE yields the maximum average gain showing
that TADPOLE and Data Augmentation are com-
plimentary methods and TADPOLE is superior to
Data Augmentation on it’s own. For tasks with
more than 5k samples, we achieve an average gain
of 0.36%. Detailed results can be found in Ap-
pendix G. To further test the efficacy of TADPOLE
with small number of training samples, we ran-
domly select a subset of training samples from the
large task datasets and treat it as a new task. We ob-
serve that the gap between performance gain from
TADPOLE and baseline methods increase when
the number of training samples are low.

Models pre-trained on each of the four domain
specific corpus can achieve a higher gain (3.37%)
over the base model. However, unlike these mod-
els, our method has the advantage that it does not
require access to any large domain specific corpus.
Instead we only need a small task datasetalready
available for finetuning. So, it is applicable to any

new task from any new domain. We observe that
Performance boost is higher if the corresponding
boost via additional pre-training on large domain
specific corpus is higher. Results for this compar-
ison can be found in Appendix F. In Table 3, re-
sults are presented for the discrete relevant weight
case as they are better when the number of steps
available to continue pre-training are small. Re-
sults for continuous weights case can be found in
Appendix E. Results are not very sensitive to the
fraction of data filtered as can be seen in Figure 6
in Appendix H.

5 Conclusion

Domain shift in finetuning from Pre-training can
significantly impact the performance of deep learn-
ing models. We address this issue in the most rea-
sonable setting when we only have access to the
labeled task data for finetuning. We adapt data se-
lection methods from Domain Adaptation to adapt
pre-training for the downstream task. The existing
methods either require sufficiently large task data,
or are based on adhoc techniques that do not gen-
eralize well across tasks. Our major contribution
is providing a new data selection technique that
performs well even with very little task data, and
generalizes well across tasks.
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Appendix

A Related Work

Domain Adaptation: A typical set up for Domain
Adaptation involves access to labeled data in source
domain, very limited or no labeled data in the tar-
get domain and unlabeled data in both source and
target domains. This is somewhat different than the
setup for our paper where we have access to labeled
data with no additional unlabeled data in the task
domain and our objective is optimize performance
for the same domain. Nevertheless, several tech-
niques of Domain Adaptation have similarities or
core components useful for our setup. There are
two sets of approaches addressing Domain Adap-
tation problem: model-centric and data-centric.
Model-centric approaches redesign parts of the
model: the feature space, the loss function or reg-
ularization and the structure of the model (Blitzer
et al., 2006; Pan et al., 2010; Ganin et al., 2016). A
recent such approach, appropriate for our setting
is called Pivot-based Domain Adaptation; it has re-
cently been applied to Task Adaptive Pre-training
when there is additional unlabeled task data avail-
able (Ben-David et al., 2020). In a nutshell, the
idea is to distinguish between pivot and non-pivot
features, where pivot features behave similarly in
both domains. Then, by converting the non-pivot
to pivot features, one can make use of a model
trained on the source data. This approach does not
work well when the target data is small since the
mapping of non-pivot to pivot features cannot be
trained with a limited size dataset. Since our tech-
nique is data-centric and applies to the regime of a
small target corpus, we do not further analyze this
or any other model-centric approach.

Data-centric approaches for domain adaptation
include pseudo-labeling, using auxiliary tasks and
data selection. Pseudo-labeling apply a trained
classifier to predict labels on unlabeled instances
which are then treated as ’pseudo’ gold labels for
further training (Abney, 2007; Cui and Bollegala,
2019). Auxiliary-task domain adaptation use la-
beled data from auxiliary tasks via multi-task learn-
ing (Peng and Dredze, 2016) or intermediate-task
transfer (Phang et al., 2018, 2020). The methods
most relevant to us are those of data selection and
are discussed above in detail.

B Datasets in accuracy estimation of
Anomaly score based data filtration

CS task data: To train anomaly score discrimina-
tor for CS data, we use the tasks data from ACL-
ARC and SCIERC. Details of these datasets are
mentioned in Section 4.
CS and Bio Abstracts: Semantic Scholar cor-
pus (Ammar et al., 2018) contains datasets from a
variety of domain. We filter out text based on the
domain field and only keep the abstracts from CS
and bio domain.
News: We use REALNEWS (Zellers et al., 2019)
corpus containing news articles from 500 news
domains indexed by Google News. It is obtained
by scraping dumps from Common Crawl.
Finance: We use the TRC2-financial dataset.
This a subset of Reuters TRC24 corpus con-
taining news articles published between 2008
and 2010. It can be obtained by apply-
ing here: https://trec.nist.gov/data/
reuters/reuters.html

C Isolation Forest (Liu et al., 2008)

. Isolation Forest is an unsupervised decision
tree ensemble method that identifies anomalies by
isolating outliers of the data. It isolates anoma-
lies in data points instead of profiling the normal
points. Algorithm works by recursively partition-
ing the data using a random split between the min-
imum and maximum value of a random feature.
It works due to the observation that outliers are
less frequent than the normal points and lie fur-
ther away from normal points in the feature space.
Thus, in a random partitioning, anomalous points
would require fewer splits on features resulting in
shorter paths and distinguishing from the rest of
the points. Anomaly score of a point x is defined

as s(x, n) = 2
−E(h(x))

c(n) , where E[h(x)] is the ex-
pected path length of x in various decision trees,
c(n) = 2H(n − 1) − 2(n − 1)/n is the average
path length of unsuccessful search in a Binary Tree
and H(n−1) is the n−1-th harmonic number and
n is the number of external nodes.

D Pseudo Code

Algorithm 1 shows the pseudo code for the case
of continuous relevance weights. Discrete rele-
vance weight setting is same as C → ∞. As dis-
cussed in 3.2, in case of discrete relevance weights,
we filter out segments containing several consec-

https://trec.nist.gov/data/reuters/reuters.html
https://trec.nist.gov/data/reuters/reuters.html
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Algorithm 1 Task Adaptive Pre-training
Input: Pre-trained model B, Pre-training in-
stances x1, . . . , xN , task data T , (C,α), #steps

Stage 1: Instance weight computation
Let the sentences of the task be
s1, . . . , st with sentence embeddings
P = {Embed(s1), . . . ,Embed(st)}.
Let a random subset of pre-training instances
(sentences of these instances) be s′1, . . . , s

′
t/10

with BERT based sentence embeddings N =
{Embed(s′1), . . . ,Embed(s′t/10)}
Train an anomaly detection object, IF =
IsolationForest(P ∪N)
For i ∈ [N ], let S(xi) = IF.score(Embed(xi))
Let µ = 1

N

∑N
i=1 S(xi) and σ =√

1
N

∑N
i=1(S(xi)− µ)2.

For every i ∈ [N ], S̄(xi) = S(xi)−µ
σ .

For every i ∈ [N ], λ(xi) = 1
1+e−C(α−S̄(xi))

Stage 2: Adaptation of pre-training to target
domain
Continue training language model B for #steps
on instances x1, . . . , xN with instance weights
λ(x1), . . . , λ(xN ).
Finetune resulting model on the labeled task data
T

utive sentences. We experimented with several
options for the segment length and found the stable
segment length to be 15 sentences. Here, a sen-
tence is a consecutive piece of text such that when
applied through the BERT tokenizer, it results in
256 sentences.

E Continuous relevance weights

We see in Table 4 that a model additionally pre-
trained for 50,000 with discrete λ values consis-
tently over performs the continuous case even when
we train with continuous relevance weights for
far higher number of steps. This is because of
the fact that many of those steps yield virtually
no training at all. For instance, suppose the rele-
vance weights are uniformly distributed between
0 and 1; [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].
Then, in discrete case we pick the top two sentences
and thus two steps are sufficient to train on these
most relevant sentences (assume batch size is 1).
However, in continuous case, we need to train the
model for ten steps to train on these top two rele-
vant sentences. Thus, we need many more steps to

achieve and beat the performance achieved in the
Discrete case. An open question is to combine the
two settings so as to benefit from the generality of
Continuous case and efficiency of the discrete case.

F Performance boost with
Domain-specific Corpus vs TADPOLE

We compare the performance boost we achieved
due to TADPOLE with the performance boost we
achieve if we have access to large pre-training cor-
pus. In Table 5, we list the gain in performance in
both cases over eight tasks from four domains. We
see that the performance boost is higher with TAD-
POLE if the corresponding boost is higher with
domain specific corpus. Thus if there is a large
domain shift between the general domain corpus
and the task data, as can be measured by the per-
formance boost via large pre-training corpus, then
TADPOLE is able to achieve large performance
boost via Task Adaptation. Scale of numbers in
the two columns are not directly comparable due to
the following two reasons. First is that additional
pre-training done is Gururangan et al. (2020) is
for almost as many steps as the number of steps
required to pre-train a network from scratch. How-
ever, in our case additional pre-training is done for
only 5% of the number of steps required to pre-
train a network from scratch. Second reason is that
the model used in (Gururangan et al., 2020) is
different, ROBERTA. Also, the general domain
corpus is different and thus the domain shift is not
exactly the same as in our case. The point however
remains the same, which is that as the target do-
main is further away from the pre-training corpus,
the benefits of TADPOLE increase.

G Performance gain for large datasets

Table 6 shows the results for datasets with more
than 5k training samples.

H Different data fraction

Figure 6 shows that results shown in Table 3 are not
very sensitive to the fraction of pre-training data
filtered. We can chose anywhere between 2-20%
of the data.
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Task Base Discrete Continuous-1 Continuous-3

CHEMPROT 81.620.74 82.410.62 81.740.81 81.640.83

RCT20K 87.520.16 87.820.13 87.490.28 87.560.22

HPRPARTISAN 70.573.04 73.582.39 70.941.98 71.292.95

AGNEWS 93.990.13 94.030.16 94.010.14 94.010.15

HELPFULNESS 69.300.60 69.700.92 69.350.5 69.370.44

IMDB 88.650.24 89.290.22 88.630.51 88.710.46

ACL-ARC 72.314.7 72.813.83 72.262.33 72.362.12

SCIERC 82.841.39 85.850.95 83.141.96 83.132.65

SST 92.020.29 92.420.32 92.110.32 92.130.37

Table 4: Comparison of discrete vs continuous relevance weight setting. Base corresponds to the pre-trained model on general
domain corpus with no further pre-training. Discrete refers to TADPOLE with discrete relevance weights/filtered out text and
pre-trained additionally for 50000 steps. Continuous-x refers to TADPOLE with continuous relevance weights and pre-trained
additionally for x ∗ 100, 000 more steps. Metrics used for different tasks: accuracy for SST, micro f1 score for CHEMPROT and
RCT20K, macro f1 score for ACL-ARC, SCIERC, HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is
finetuned eight times with different seeds and the mean value is reported. Subscript correspond to the standard deviation in the
finetuned model performance.

Task TADPOLE Domain Corpus

CHEMPROT 0.79 2.3
RCT20K 0.3 0.4
HYPERPARTISAN 3.01 1.6
AGNEWS 0.04 0.0
HELPFULNESS 0.4 1.4
IMDB 0.64 5.4
ACL-ARC 0.5 3.5
SCIERC 3.01 12.4

Table 5: Performance boost via TADPOLE vs pre-training on
domain specific corpus. TADPOLE corresponds to our method
with discrete relevance weights/filtered out text and pre-trained
additionally for 50000 steps. Domain Corpus refers to the
model trained in (Gururangan et al., 2020) over the domain
same as the downstream task. Metrics used for different
tasks: accuracy for SST, micro f1 score for CHEMPROT and
RCT20K, macro f1 score for ACL-ARC, SCIERC, HELPFUL-
NESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is
finetuned eight times with different seeds. We report the dif-
ference in the mean value of performance between the model
with additional pre-training and base model with no additional
pre-training.
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Figure 6: Performance gain as fraction of data filtered for
tasks with less than 5k training samples.
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Task Base General Random Task LM Distance Data-Aug TADPOLE T+ Data-Aug

Large datasets: # training examples ≥ 5K

IMDB 88.650.24 88.530.27 88.630.26 88.770.39 88.670.44 88.690.47 88.750.52 89.290.22 88.910.17

SST 92.020.29 92.210.31 92.140.24 92.210.24 92.250.4 92.150.35 91.980.12 92.420.32 92.670.55

AGNEWS 93.990.13 94.060.19 94.090.11 94.040.08 94.030.13 94.040.11 93.970.28 94.030.16 94.450.3

HELPFULNESS 69.300.60 69.390.78 69.340.58 69.410.50 69.580.59 69.420.69 69.30.56 69.700.92 69.330.64

RCT20K 87.520.16 87.570.16 87.540.17 87.600.18 87.850.23 87.620.24 87.570.19 87.820.13 87.830.37

Average Gain - 0.020.02 0.040.01 0.110.01 0.180.03 0.090.01 0.020.01 0.360.04 0.340.04

Table 6: Performance of TADPOLE and five Baseline methods. Base corresponds to the pre-trained model on general domain
corpus with no further pre-training. Baseline methods are mentioned in previous subsection. TADPOLE corresponds to our
method with discrete relevance weights. T+Data-Aug corresponds to our method combined with data augmentation during
finetuning. Keeping in line with the previous works, we use the following metrics: accuracy for SST, micro f1 score for
CHEMPROT and RCT20K, macro f1 score for ACL-ARC, SCIERC, HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS.
Each model is finetuned eight times with different seeds and the mean value is reported. Subscript correspond to the standard
deviation in the finetuned model performance. Average gain corresponds to the average improvement over Base for each of the
baseline methods and TADPOLE. Subscript in Average Gain corresponds to the standard deviation in the estimate of the average
gain.


