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Abstract

Transformers that are pre-trained on multilin-
gual corpora, such as, mBERT and XLM-
RoBERTa, have achieved impressive cross-
lingual transfer capabilities. In the zero-shot
transfer setting, only English training data is
used, and the fine-tuned model is evaluated on
another target language. While this works sur-
prisingly well, substantial variance has been
observed in target language performance be-
tween different fine-tuning runs, and in the
zero-shot setup, no target-language develop-
ment data is available to select among multi-
ple fine-tuned models. Prior work has relied
on English dev data to select among models
that are fine-tuned with different learning rates,
number of steps and other hyperparameters, of-
ten resulting in suboptimal choices. In this pa-
per, we show that it is possible to select con-
sistently better models when small amounts of
annotated data are available in auxiliary pivot
languages. We propose a machine learning ap-
proach to model selection that uses the fine-
tuned model’s own internal representations to
predict its cross-lingual capabilities. In ex-
tensive experiments we find that this method
consistently selects better models than English
validation data across twenty five languages
(including eight low-resource languages), and
often achieves results that are comparable to
model selection using target language develop-
ment data.1

1 Introduction

Pre-trained Transformers (Vaswani et al., 2017; De-
vlin et al., 2019) have achieved state-of-the-art re-
sults on a range of NLP tasks, often approaching
human inter-rater agreement (Joshi et al., 2020a).
These models have also been demonstrated to learn
effective cross-lingual representations, even with-
out access to parallel text or bilingual lexicons (Wu
and Dredze, 2019; Pires et al., 2019).

1Our code and data is available at: https://github.
com/edchengg/model_selection

In the zero-shot transfer learning, training and de-
velopment data are only assumed in a high resource
source language (e.g. English), and performance
is evaluated on another target language. Because
no target language annotations are assumed, source
language data is typically used to select among
models that are fine-tuned with different hyper-
parameters and random seeds. However, recent
work has shown that English dev accuracy does not
always correlate well with target language perfor-
mance (Keung et al., 2020).

In this paper, we propose an alternative strategy
for model selection in zero-shot transfer. Our ap-
proach, dubbed Learned Model Selection (LMS),
learns a function that scores the compatibility be-
tween a fine-tuned multilingual Transformer, and
a target language. The compatibility score is
calculated based on features of the multilingual
model’s learned representations. This is done
by aggregating representations over an unlabeled
target language text corpus after fine-tuning on
source language data. We show that these model-
specific features effectively capture information
about how the cross-lingual representations will
transfer. We also make use of language embed-
dings from the lang2vec package (Malaviya
et al., 2017),2 which have been shown to encode
typological information that may help inform how
a multilingual model will transfer to a particular
target. These model and language features are com-
bined in a bilinear layer to compute a ranking on the
fine-tuned models. Parameters of the ranking func-
tion are optimized to minimize a pairwise loss on a
set of held-out models, using one or more auxiliary
pivot languages. Our method assumes training data
in English, in addition to small amounts of auxil-
iary language data. This corresponds to a scenario
where the multilingual model needs to be quickly
adapted to a new language. LMS does not rely on
any annotated data in the target language, yet it is

2https://github.com/antonisa/lang2vec

 https://github.com/edchengg/model_selection
 https://github.com/edchengg/model_selection
https://github.com/antonisa/lang2vec
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Figure 1: An illustration of our approach to select
the best model for zero-shot cross-lingual transfer. (a)
Prior work selects the best model using source lan-
guage development data. (b) LMS: A learned func-
tion scores fine-tuned models based on their hidden
layer representations when encoding unlabeled target
language data.

effective in learning to predict how well fine-tuned
representations will transfer.

In experiments on twenty five languages, LMS
consistently selects models with better target-
language performance than those chosen using
English dev data. Furthermore, our proposed ap-
proach improves performance on low-resource lan-
guages such as Quechua, Maori and Turkmen that
are not included in the pretraining corpus (§6.1).

2 Background: Cross-Lingual Transfer
Learning

The zero-shot setting considered in this paper
works as follows. A Transformer model is first pre-
trained using a standard masked language model
objective. The only difference from the mono-
lingual approach to contextual word representa-
tions (Peters et al., 2018; Devlin et al., 2019) is
the pre-training corpus, which contains text writ-
ten in multiple languages; for example, mBERT
is trained on Wikipedia data from 104 languages.

After pre-training, the resulting network encodes
language-independent representations that support
surprisingly effective cross-lingual transfer, simply
by fine-tuning with English data. For example, af-
ter fine-tuning mBERT using the English portion
of the CoNLL Named Entity Recognition dataset,
the resulting model can perform inference directly
on Spanish text, achieving an F1 score around 75,
and outperforming prior work using cross-lingual
word embeddings (Xie et al., 2018; Mikolov et al.,
2013). A challenge, however, is the relatively high
variance across multiple training runs. Although
mean F1 on Spanish is 75, the performance of 60
fine-tuned models with different learning rates and
random seeds ranges from around 70 F1 to 78. In
zero-shot learning, no validation/development data
is available in the target language, motivating the
need for a machine learning approach to model
selection.

3 Ranking Model Compatibility with a
Target Language

Given a set of multilingual BERT-based models,
M = m1,m2, ...,mn that are fine-tuned on an En-
glish training set using different hyperparameters
and random seeds, our goal is to select the model
that performs best on a specific target language,
ltarget. Our approach (LMS) learns to rank a set of
models based on two sources of information: (1)
the models’ own internal representations, and (2)
lang2vec representations of the target language
(Malaviya et al., 2017).

We adopt a pairwise approach to learning to
rank (Burges et al., 2005; Köppel et al., 2019).
The learned ranking is computed using a scoring
function, s(m, l) = f(gmBERT(m), glang2vec(l)),
where gmBERT(m) is a feature vector for model
m, which is computed from the model’s own hid-
den state representations, and glang2vec(l) is the
lang2vec representation of language l. The
model and language features are each passed
through a feed-forward neural network and then
combined using a bilinear layer to calculate a final
score as follows:

s(m, l) = f(gmBERT(m), glang2vec(l))

= FFNN(gmBERT(m))TWbiFFNN(glang2vec(l))

Using the above score, we can represent the prob-
ability that model mi performs better than mj on
language l:

P (mi .l mj) = σ(s(mi, l)− s(mj , l))
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where σ(·) is the sigmoid function. To tune the
parameters of the scoring function, which include
the feed-forward and bilinear layers, we minimize
cross-entropy loss:

C =
∑

l∈L\{ltarget}

∑
mi∈M

∑
mj∈M

−Cmi,mj ,l (1)

where

Cmi,mj ,l = 1[mi .l mj ] logP (mi .l mj)

+1[mj .l mi] logP (mj .l mi)

Here 1[mj .l mi] is an indicator function that has
the value 1 if mj outperforms mi, as evaluated
using labeled development data in language l.

The first sum in Equation 1 ranges over all lan-
guages where development data is available (this
excludes the target language). After tuning param-
eters to minimize cross-entropy loss on these lan-
guages, models are ranked based on their scores for
the target language, and the highest scoring model,
m̂ = arg maxm s(m, ltarget), is selected.

4 Tasks and Datasets

We perform model selection experiments on five
well-studied NLP tasks in the zero-shot transfer
setting: part-of-speech (POS) tagging, question
answering (QA), relation extraction (RE), event-
argument role labeling (ARL), and named entity
recognition (NER). In total, we cover 25 target lan-
guages including 8 low-resource languages in our
experiments following prior work (shown in Ta-
ble 1). We adopt the best performing model from
Soares et al. (2019), [ENTITY MARKERS - EN-
TITY START], for RE and ARL. For other tasks,
we use established task-specific layers and evalua-
tion protocols, following the references in Table 1.
Labeled training data for each task is assumed in
English and trained models are evaluated on each
target language.

4.1 Low-resource Languages
To evaluate LMS on truly low-resource languages,
we use the 8 target languages (summarized in Ta-
ble 2) following (Pfeiffer et al., 2020; Xia et al.,
2021) which uses the WikiAnn NER dataset (Pan
et al., 2017). These languages are considered low-
resource because: 1) the Wikipedia size ranges
from 4k to 22k; 2) they are not covered by pre-
trained multilingual models (i.e., by mBERT and
XLM-RoBERTa). The train, development, and test

partition of Rahimi et al. (2019) is used following
the XTREME benchmark’s NER setup (Hu et al.,
2020). The related language used for the Pivot-
Dev baseline is chosen following Xia et al. (2021),
which is based on LangRank (Lin et al., 2019).

5 Experimental Design

For a multilingual NLP task with n languages
L : {l1, ..., ln}, our goal is to select the model that
performs best on a new target language, ltarget 6∈ L.
We assume the available resources are English train-
ing and development data, in addition to a small
development set for each of the pivot languages,
L. First, a set of mBERT models, M , are fine-
tuned on an English training set using different
hyperparameters and random seeds and shuffled
into meta-train/dev/test sets. We then evaluate each
model, mi, on the pivot languages’ dev sets to cal-
culate a set of gold rankings, .l, that are used in
the cross-entropy loss (Equation 1). Model-specific
features are extracted from the fine-tuned mBERTs,
by feeding unlabeled pivot language text as input.
Development and Evaluation mBERT models in
the meta-dev set are used to experiment with dif-
ferent model and language features. Evaluation is
performed using models in the meta-test set. We
use the leave-one-language-out setup for each task
during evaluation. For each target language, we
rank models using the learned scoring function, se-
lect the highest scoring model, and report results in
Table 3.

5.1 Baselines and Oracles

En-Dev is our main baseline following standard
practice for model selection in zero-shot transfer
learning (Wu and Dredze, 2019; Pires et al., 2019).
Because our approach assumes additional develop-
ment data in auxiliary languages, we also include
a baseline that uses pivot-language language dev
data.3 In addition, we compare against an ora-
cle that selects models using 100 annotated sen-
tences from the target language dev set to examine
how our approach compares with the more costly
alternative of annotating small amounts of target
language data. Finally, we include an oracle that
simply picks the best model using the full target lan-
guage development set (All-Target). All baselines
and oracles are summarized below:

3The auxiliary language with highest similarity to the tar-
get language, as measured using cosine similarity between
lang2vec embeddings, is used in this baseline.
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Task Dataset References Target Languages

POS UD (Nivre et al., 2016) Wu and Dredze (2019)
ar,bg,da,de,es,fa,hu,it
nl,pt,ro,sk,sl,sv,vi,zh

QA MLQA (Lewis et al., 2020) Lewis et al. (2020) ar, de, es, hi, vi, zh
RE ACE05 (Walker et al., 2006) Subburathinam et al. (2019) ar, zh
ARL ACE05 (Walker et al., 2006) Subburathinam et al. (2019) ar, zh
NER CoNLL (Sang, 2002) Wu and Dredze (2019) de, es, nl, zh

Low-resource languages

NER WikiAnn (Pan et al., 2017) Pfeiffer et al. (2020); Xia et al. (2021)
cdo, gn, ilo, mhr
mi, tk, qu, xmf

Table 1: 25 target languages and five tasks used in our experiments. English is used as the source language. ar:
Arabic, bg: Bulgarian, da: Danish, de: German, es: Spanish, fa: Persian, hi: Hindi, hu: Hungarian, it: Italian,
nl: Dutch, pt: Portuguese, ro: Romanian, sk: Slovak, sl: Slovene, sv: Swedish, vi: Vietnamese, zh: Chinese.
Low-resource languages information can be found in Table 2.

Language Code Language Related #Wiki
Family Language articles

Min Dong cdo Sino-Tibetan Chinese (zh) 15k
Guarani gn Tupian Spanish (es) 4k
Ilocano ilo Austronesian Indonesian (id) 14k
Meadow Mari mhr Uralic Russian (ru) 10k
Maori mi Austronesian Indonesian (id) 7k
Turkmen tk Turkic Turkish (tr) 6k
Quechua qu Quechua Spanish (es) 22k
Mingrelian xmf Kartvelian Georgian (ka) 13k

Table 2: Low-resource target languages used in the
WikiAnn NER task. Related languages, used in the
Pivot-Dev baseline, are selected following (Xia et al.,
2021).

• En-Dev (baseline): chooses the fine-tuned
mBERT with best performance on the English
dev set.

• Pivot-Dev (baseline): chooses the fine-tuned
mBERT with best performance on develop-
ment data in the most similar pivot language
(similarity to the target language is measured
using lang2vec embeddings).

• 100-Target (oracle): chooses the fine-tuned
mBERT with best performance on 100 labeled
target language instances.

• All-Target (oracle): chooses the fine-tuned
mBERT using the full target language dev set.

5.2 Hyperparameters and Other Settings
To train the scoring function, s(·), we use
Adam (Kingma and Ba, 2015), and select the
batch size among {16, 32, 64, 128}, learning rate
λ among {1 × 10−4, 5 × 10−5, 1 × 10−5, 5 ×
10−6, 1 × 10−6}, and train for {3} epochs. The

scoring function, s(·), contains a 2-layer FFNN

with 1024 hidden units and ReLU activation (Glo-
rot et al., 2011). The base cased mBERT has
179M parameters and a vocabulary of around 120k
wordpieces. Both the pre-trained Transformer lay-
ers and task-specific layers are fine-tuned using
Adam, with β1 = 0.9, β2 = 0.999, and an L2
weight decay of 0.01. Model candidates are fine-
tuned with varying learning rates and number of
epochs with the following settings: learning rate
∈ {3 × 10−5, 5 × 10−5, 7 × 10−5}; number of
epochs ∈ {3, 4, 5, 6}; batch size ∈ {32}; random
seeds ∈ {0, 1, ..., 239}. 240 mBERT models with
different random seeds are fine-tuned with 12 differ-
ent hyperparameter settings (20 random seeds for
each set of hyperparameters), and then split into
meta-train/dev/test sets (120/60/60). All models
are trained on an RTX 2080 Ti.

6 Evaluation

Below we report model selection results on
mBERTs in the meta-test set for each of the five
tasks.
POS Table 3 presents POS accuracies on the test
set, using various approaches to model selection for
the fifiteen target languages. LMS outperforms En-
Dev and Pivot-Dev except in the case of Swedish
(sv) and Dutch (nl). Interestingly, model selection
for Italian with Spanish dev set does not outperform
LMS. We use (Wu and Dredze, 2019) as references
for zero-shot cross-lingual transfer with mBERT.
QA Our method selects a model with higher F1
across all languages compared with En-Dev, al-
though we find that Pivot-Dev performs slightly



5679

Task Lang Ref En-Dev Pivot-Dev LMS 100-Target All-Target # All-Target

POS (Acc)

ar - 49.7 50.3 (de)∗∗ 51.6∗∗ 50.6 52.7 786
de 89.8 89.3 88.7 (nl) 89.8∗∗ 89.4 89.9 799
es 85.2 84.8 85.3 (nl)∗∗ 85.6∗∗ 84.8 85.1 1552
nl 75.9 75.7 75.9 (de)∗∗ 75.9∗∗ 75.5 76.0 349
zh - 66.9 66.9 (de)∗∗ 68.0∗∗ 67.3 68.8 500
bg 87.4 87.1 87.0 (es) 87.9∗∗ 87.9 87.9 1115
da 88.3 88.6 88.8 (nl)∗∗ 88.9∗∗ 88.6 89.2 322
fa 72.8 71.6 71.6 (es) 73.6∗∗ 73.6 73.7 599
hu 83.2 82.5 82.0 (de) 83.3∗∗ 83.3 83.1 179
it 84.7 84.5 84.9 (es)∗∗ 85.2∗∗ 85.4 85.8 489
pt 82.1 81.8 81.8 (es) 82.2∗∗ 81.8 82.2 271
ro 84.7 83.8 84.2 (es)∗∗ 84.7∗∗ 84.4 85.4 1191
sk 83.6 83.7 83.6 (es) 84.2∗∗ 83.6 84.8 1060
sl 84.2 84.5 83.6 (es) 85.2∗∗ 83.8 85.5 735
sv 91.3 91.4 91.8 (nl)∗∗ 91.7∗∗ 91.3 91.8 504

AVG En-Dev ∆ - 0.0 0.0 0.9 0.3 1.0 -

QA (F1)

ar 45.7 47.7 49.4 (de)∗∗ 49.3∗∗ 49.4 49.4 517
de 57.9 55.3 55.8 (ar)∗∗ 55.9∗∗ 57.1 55.8 512
es 64.3 64.9 64.7 (ar) 65.0 64.5 65.1 500
zh 57.5 58.0 58.0 (de) 58.1 58.1 58.4 504
hi 43.8 39.1 42.1 (es)∗∗ 42.4∗∗ 38.8 42.9 507
vi 57.1 57.3 56.9 (ar) 58.2∗∗ 59.1 58.1 511

AVG En-Dev ∆ - 0.0 0.8 1.1 0.8 1.2 -

RE (F1) ar 39.4 36.1 35.3 (zh) 39.5∗∗ 34.7 41.9 4482
zh 32.7 67.7 67.4 (ar) 70.8∗∗ 68.2 69.1 7096

AVG En-Dev ∆ - 0.0 -0.6 3.3 -0.5 3.6 -

ARL (F1) ar 16.5 44.1 48.1 (zh)∗∗ 47.1∗∗ 44.1 47.2 1221
zh 23.5 61.0 61.3 (ar) 62.1∗∗ 62.5 63.8 2226

AVG En-Dev ∆ - 0.0 2.2 2.1 0.8 3.0 -

NERCoNLL (F1)

de 69.6 69.9 70.7 (nl)∗∗ 71.0∗∗ 66.7 72.1 2867
es 75.0 74.6 73.1 (nl) 75.7∗∗ 75.7 75.7 1915
nl 77.6 78.7 79.3 (de)∗∗ 78.9∗∗ 78.7 80.3 2895
zh 51.9 54.9 53.0 (de) 55.1 55.4 56.9 4499

AVG En-Dev ∆ - 0.0 -0.5 1.1 -1.1 2.1 -

Low-resource languages

NERWikiAnn (F1)

cdo 14.2 11.0 12.4 (zh) 19.4∗∗ 19.4 19.4 100
gn 45.4 45.0 47.1 (es) 49.0∗∗ 46.2 46.2 100
ilo 63.5 61.4 59.2 (id) 61.1 66.1 66.1 100
mhr 46.0 45.3 41.1 (ru) 48.6∗∗ 48.3 48.3 100
mi 21.8 28.2 33.8 (id)∗∗ 43.7∗∗ 55.6 55.6 100
tk 47.2 51.6 55.5 (tr)∗∗ 54.9∗∗ 56.5 56.5 100
qu 54.9 59.8 62.2 (es)∗∗ 59.8 63.4 63.4 100
xmf 31.1 34.3 36.4 (ka)∗∗ 37.5∗∗ 37.8 37.8 100

AVG En-Dev ∆ - 0.0 1.4 4.7 7.1 7.1 -

Table 3: Model scores selected based on LMS for POS, QA, RE, ARL, and NER. All mBERT models are fine-tuned
on English training data. En-Dev / Pivot-Dev / 100-Target / All-Target: model selection based on the highest F1 of
English dev set / Pivot language dev set (pivot language in bracket) / 100 target language dev set examples / target
language dev set. LMS: model selection based on the highest scores for the target language: arg maxm s(m, ltarget);
“# All-Target” is the number of labeled target-language sentences used for model selection in the All-Target oracle.
Bold / underlined indicates the best / second best. AVG En-Dev∆: average differences with En-Dev baseline.
Significance compared to the En-Dev is indicated with ∗∗(p < 0.05) – all tests are computed using the paired
bootstrap procedure (Berg-Kirkpatrick et al., 2012).

better on Arabic (ar). We use (Lewis et al., 2020)
as references for zero-shot cross-lingual transfer
with mBERT.

ARL and RE In Table 3, our method selects mod-
els with higher F1 scores compared to En-Dev. It
also outperforms 100-Target on Arabic. We hypoth-
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esize this is because 100 target-language examples
is not sufficient for effective model selection, as
the dataset contains a large proportion of negative
examples (no relation). Also, RE and ARL have
large label sizes (18 and 35) so a random sample
of 100 instances might not cover every label. In
contrast, the full dev set contains thousands of ex-
amples. We use a Graph Convolutional Network
(GCN) (Subburathinam et al., 2019) as a reference
(see Appendix A.1 for details) and models were
selected using the English dev set.
CoNLL NER As illustrated in Table 3, our method
selects models with a higher F1 score than En-
Dev. Besides, it outperforms model selection us-
ing small amounts of target-language annotations
(100-Target) on Dutch (nl) and German (de) and
selects a model that performs as well on Spanish
(es). On average, LMS achieves 1.6 point increase
in F1 score relative to Pivot-Dev. We use (Wu and
Dredze, 2019) as references for zero-shot cross-
lingual transfer with mBERT.
Model Score Distributions Figure 2 visualizes the
En-Dev and LMS results on the test set in the con-
text of the score distributions of the 60 models
in the meta-test set, using kernel density estima-
tion. English development data tends to select mod-
els that perform only slightly better than average,
whereas LMS does significantly better.
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Figure 2: Model F1 score distributions for RE and
ARL. Red line: LMS and blue line: En-Dev. X-axis
is F1 score. Selecting models with LMS achieve better
results compared to En-Dev.

6.1 Evaluation on low-resource languages

We present results of low-resource languages NER
in the bottom section of Table 3, where we use 40
pivot languages in the XTREME benchmark (Hu
et al., 2020) to train LMS and test on 8 target lan-

guages. LMS, outperforms the En-Dev and Pivot-
Dev baselines, leading to an average gain of 4.7 and
3.3 F1 respectively. Since the setting is targeting
truly low-resource languages where lang2vec
might not be available, the scoring function thus
directly predicts a score based on the representa-
tion from unlabeled target language text. We use
the mBERT zero-shot cross-lingual transfer results
from (Pfeiffer et al., 2020) as references.

6.2 Evaluation on multilingual fine-tuned
models

An interesting question is whether fine-tuning on
available development data in the auxiliary lan-
guages can improve performance. Since our model
assumes access to small amounts of labeled data in
a set of pivot languages, we experiment with multi-
lingual fine-tuning and show LMS is still beneficial
for selecting among models that are fine-tuned on
both English and pivot language data.

Part of speech tagging experiments are presented
in Table 4, where all mBERT models are fine-tuned
on English and the development sets of five pivot
languages (ar,de,es,nl,zh). A single LMS is then
trained using English fine-tuning, with gold rank-
ings computed on the pivot languages. Then, we
directly apply the English LMS model to do model
selection on the multilingual fine-tuned mBERT
models. We find LMS outperforms the En-Dev
baseline on seven out of the ten target languages
used in our evaluation, with an average gain of
0.1 accuracy. This also demonstrates LMS that is
trained on English fine-tuned representations gen-
eralizes to multilingual fine-tuning. We use models
that are fine-tuned only on English data, from Wu
and Dredze (2019), as references, and find that
multilingual fine-tuning shows better cross-lingual
transfer performance compared to fine-tuning on
only English data.

7 Analysis

In Section 6, we empirically demonstrated that our
learned scoring function, s(·), consistently selects
better models than the standard approach (En-Dev),
and is comparable to small amounts of labeled tar-
get language data. Section 7.1 presents additional
analysis of our approach, exploring the impact of
various modeling choices with {ar, de, es, nl, zh}.
In addition, analysis of generalization beyond
mBERT and across tasks capability are present in
Appendices A.3 and A.4.
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Task Lang Ref En-Dev Pivot-Dev LMS 100-Target All-Target # All-Target

POS (Acc)

bg 87.4 90.3 90.3 (es) 90.8∗∗ 90.6 90.8 1115
da 88.3 89.4 89.2 (nl) 89.3 88.6 89.2 322
fa 72.8 80.8 79.9 (es) 81.1∗∗ 89.4 89.7 599
hu 83.2 84.2 84.1 (de) 84.0 82.1 82.1 179
it 84.7 94.0 94.0 (es) 94.9∗∗ 95.1 95.1 489
pt 82.1 91.1 91.3 (es) 91.1 91.1 91.5 271
ro 84.7 88.7 88.7 (es) 88.8∗∗ 89.1 89.1 1191
sk 83.6 88.3 88.3 (es) 88.6∗∗ 89.0 89.0 1060
sl 84.2 86.1 86.4 (es) 86.8∗∗ 86.8 86.8 735
sv 91.3 91.8 90.9 (nl) 92.2∗∗ 92.5 92.5 504

AVG En-Dev ∆ - 0.0 0.0 0.1 0.6 0.7 -

Table 4: Model scores selected based on LMS for POS. En-Dev / Pivot-Dev / 100-Target / All-Target: model
selection based on the highest F1 of English dev set / Pivot language dev set (pivot language in bracket) / 100
target language dev set examples / target language dev set. All mBERT models are fine-tuned on English training
data in addition with a small amount of data from pivot languages in {ar, de, es, nl, zh}. We use English data
fine-tuned mBERT results from Wu and Dredze (2019) as references (Ref). Significance compared to the En-Dev
is indicated with ∗∗(p < 0.05) – all tests are computed using the paired bootstrap procedure (Berg-Kirkpatrick
et al., 2012).

7.1 Model and Language Features
This section explores the impact of different
choices for model and language representations
for LMS. Four types of model features and two
language embeddings are explored. We start by de-
lineating possible choices for representations, then
describe the details of our experiments, results, and
the final choices used in §6.

Four model-specific features are described below.
Note [CLS] vectors are extracted from mBERT
by feeding unlabeled text as input.

• [Eng]: Averaged [CLS] vectors computed
over an unlabeled English text corpus are used
for both training and testing.4

• [Pivot]: During training, [CLS] vectors
are averaged over an unlabeled text corpus
in the pivot language. At test time, [CLS]
embeddings are averaged over an unlabeled
corpus in the target language. We use the
target-language development set (ignoring la-
bels) for this purpose in our experiments.

• [Target]: [CLS] vectors are averaged
over a text corpus in the target language (for
both training and testing).

• Fusion: A linear combination of the above
features. Weights on each representation are
learned during training.

Two types of language embeddings are examined.
4In our experiments, sentences in the English dev set are

used for this purpose (ignoring the labels).

• lang2vec: 512-dimensional vectors
learned by a neural network trained for
typological prediction (Malaviya et al., 2017).

• syntax: 103-dimensional binary vectors,
which capture syntax features from the URIEL
knowledge base (Littell et al., 2017).

First, we determine the choice of model-specific
features by averaging performance across both lan-
guage embeddings. Table 5 reports averaged eval-
uation metrics for each model-specific representa-
tion across all target languages with En-Dev as a
baseline.

Averaged evaluation metrics across all target lan-
guages for each language embedding are reported
in Table 6. In addition to evaluating the effective-
ness of each language embedding, we also experi-
mented with a variant of our scoring function that
does not include any language embeddings as in-
put. Results are reported on mBERT models in the
meta-dev set and the target languages’ dev sets for
all experiments in this section.

In Table 5, [PIVOT] features achieve top-2 per-
formance in all five tasks. [Eng] and [Target]
achieve mixed results, and the fusion of three fea-
tures does not effectively incorporate the advan-
tages of each representation, except in the case of
ARL. Table 6 shows that lang2vec outperforms
syntax for all tasks but ARL and also outper-
forms our approach when language embeddings
are not included. Thus, lang2vec and [PIVOT]
are used for all experiments in Section 6.
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Task En-Dev [Eng] [Pivot] [Target] Fusion

POS 74.69 75.58 75.54 75.48 75.04
QA 56.31 56.49 56.79 56.68 56.63
RE 51.81 54.92 55.57 55.56 54.57
ARL 50.98 51.99 53.74 52.31 54.69
NER 70.45 70.64 71.18 71.87 70.66

Avg 60.85 61.92 62.60 62.38 62.32

Table 5: Model-specific feature analysis. We use
mBERT models in the meta-dev set for analysis. Each
number represents average of scores across all the tar-
get languages in a particular task.

Task En-Dev lang2vec syntax None

POS 74.69 75.72 75.36 75.20
QA 56.31 56.81 56.77 56.49
RE 51.81 55.92 55.22 52.53
ARL 50.98 53.60 53.88 53.14
NER 70.45 71.37 70.98 70.08

Avg 60.85 62.68 62.44 61.49

Table 6: Language embedding analysis across
lang2vec, syntax, and no language embedding.
We use mBERT models in the meta-dev set for anal-
ysis. Each number represents average of scores across
all the target languages in a particular task.

8 Related Work

Recent work has explored hyper-parameter opti-
mization (Klein et al., 2019), and model selection
for a new task. task2vec (Achille et al., 2019)
presents a meta-learning approach to selecting a
pre-trained feature extractor from a library for a
new visual task. More concretely, task2vec rep-
resents tasks in a vector space and is capable of
predicting task similarities and taxonomic relations.
It encodes a new task and selects the best feature
extractor trained on the most similar task. Unlike
task2vec, we select a trained model for a spe-
cific task, and we represent a trained model with
model-specific features on a target language.

MAML (Finn et al., 2017; Rajeswaran et al.,
2019) is another approach to meta-learning, pre-
training a single model with a meta-loss to initial-
ize a set of parameters that can be quickly fine-
tuned for related tasks. Nooralahzadeh et al. (2020)
explore the use of MAML in the cross-lingual
transfer setting. MAML is designed to support
few-shot learning through better initialization of
model parameters and does not address the prob-
lem of model selection. In contrast, our approach
improves model selection in the zero-shot cross-
lingual transfer setting.

Most relevant to our work, Xia et al. (2020) use

regression methods to predict a model’s perfor-
mance on an NLP task. They formulate this as
a regression problem based on features of the task
(dataset size, average sentence length, etc.), incor-
porating a discrete feature to represent the choice
of model. In contrast, LMS inspects a model’s
internal representations, thus it is suitable for pre-
dicting which out of a set of fine-tuned models will
best transfer to a target language. Also relevant is
prior work on learning to select the best language
to transfer from (Lin et al., 2019).

There is a need for more NLP research on low-
resource languages (Joshi et al., 2020b). Lauscher
et al. (2020) present a number of challenges in
transferring to languages with few resources us-
ing pre-trained Transformers. Our experiments do
cover a set of 8 truly low-resource languages fol-
lowing prior work (Pfeiffer et al., 2020; Xia et al.,
2021) and a fairly diverse set of languages, includ-
ing Arabic and Chinese. We believe that there is
still a need for more research on multilingual NLP
for high-resource languages as well, as this is not
a solved problem. Finally, we note that there are
several other prominent benchmarks for evaluat-
ing cross-lingual transfer including XTERME (Hu
et al., 2020) and XGLUE (Liang et al., 2020), both
of which include some datasets used in this work.

9 Conclusion

In this paper, we presented a machine learning
approach to model selection for zero-shot cross-
lingual transfer, which is appropriate when small
amounts of development data are available in one
or more pivot languages, but not in the target lan-
guage. We showed that our approach improves
over the standard practice of model selection using
source language development data. Experiments on
five well-studied NLP tasks show that by inspecting
internal representations, our method consistently
selects better models. LMS also achieves compa-
rable results to the more expensive alternative of
annotating small amounts of target-language devel-
opment data. Finally, we demonstrated that LMS
selects better models for low-resource languages,
such as Quechua and Maori, that are not included
during pretraining.
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A Appendix

A.1 Data for Relation Extraction and
Argument Role Labeling

In this section, we describe details of the dataset
for RE and ARL. Table 7 reports the statistics of
the dataset and Table 8 summarizes references and
baseline results.

We create a dataset using the ACE2005 corpus
(Walker et al., 2006), which more closely repli-
cates the setting a model will be faced with in a
real-world information extraction scenario. First,
we shuffle documents into 80%/10%/10% splits for
train/dev/test, then extract candidate entity-pairs
from each document. For RE, the first approach
in Ye et al. (2019) is adopted to extract negative
instances. Negative instances whose entity-type
combination has never appeared as a positive ex-
ample in the training data are filtered out. For ARL,
we create negative instances by pairing each trigger
with every entity in a sentence. Details on the two
datasets are summarized in Table 7.

As a baseline for the dataset, we reimplement
the Graph Convolutional Network (GCN) model
of Subburathinam et al. (2019) using multilingual
embeddings learned by fastText (Bojanowski et al.,
2017) on Wikipedia (GCNReImp). Tables 8 display
F1 for zero-shot cross-lingual transfer.

Task Lang Train Dev Test Pos/Neg

en 63177 10218 6861 1:8.9
RE zh 57824 7096 8162 1:9.4

ar 32984 4482 4638 1:8.9

en 21875 3345 2603 1:2.6
ARL zh 15095 2226 2017 1:2.7

ar 11587 1221 1568 1:2.9

Table 7: Statistics of the dataset. Number of instances
and the total positive/negative ratio.

A.2 Variance of Different Meta-train/dev/test
Split is Relatively Low

In this section, we present a statistical analysis of
model selection results for POS and QA between
different meta-train/dev/test splits. Table 9 shows
LMS on average improves a point of 0.74 relative
to En-Dev and a point of 0.44 relative to Pivot-Dev.
We found that the variance in end-task performance
between different meta-train/dev/test splits is rela-
tively low.

RE (F1) ARL (F1)
ar zh ar zh

GCNReImp 39.43 32.74 16.48 23.49

Model Selection

En-Dev 36.10 67.68 44.11 60.96
LMS 39.54 70.75 47.08 62.05

100-Target 34.68 68.20 44.11 62.52
All-Target 41.92 69.13 47.15 63.81

Table 8: F1 scores for relation extraction and argument
role labeling on the test set. En-Dev/100-Target/All-
Target: model selection based on the highest F1 of
English dev set/100 target language dev set exam-
ples/target language dev set. Ours: model selection
based on the highest scores for the target language:
arg maxm s(m, ltarget).

We train a single LMS with pivot languages in
{ar, de, es, nl, zh} for POS and {ar, de, es, zh}
for QA, and test it on all the target languages. All
the results are reported with mean and standard de-
viation with five runs (different meta-train/dev/test
splits). A Z-test is performed to the differences
between LMS/Pivot-Dev and En-Dev. LMS is sta-
tistically significantly (p-value ≤ 0.05) higher than
En-Dev baseline across all languages and two tasks
while Pivot-Dev fails in three languages. LMS also
obtains a lower standard deviation for the model
scores except for Swedish (sv) and Vietnamese (vi).

A.3 Does this Approach Generalize to
XLM-RoBERTa?

In Section 6, we showed that our approach consis-
tently selects better fine-tuned models than those
chosen using English development data. To test the
robustness of our approach with a different multilin-
gual pre-trained Transformer, we re-train and eval-
uate using XLM-RoBERTa-base (Conneau et al.,
2019), with the same settings used for mBERT in
Section 6 for RE and ARL.

RE In the left section of Table 10, our approach
selects a model with a higher F1 score compared
to En-Dev in Chinese and on par with En-Dev in
Arabic.

ARL In the right section of Table 10, our approach
selects a model with a higher F1 score compared to
En-Dev in Arabic but performs worse on Chinese
(En-Dev outperforms the All-Target). Overall, our
approach appears to be effective when used with
XLM-RoBERTa.
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Task Lang Ref En-Dev Pivot-Dev LMS 100-Target All-Target # All-Target

POS (Acc)

bg 87.4 87.22±0.24 87.35±0.37 (es) 87.75±0.14* 87.72±0.50 88.09±0.17 1115
da 88.3 88.59±0.17 88.81±0.12 (nl)* 88.74±0.14* 88.74±0.06 89.01±0.18 322
fa 72.8 71.58±0.28 71.55±1.02 (es) 73.57±0.13* 73.00±0.76 73.80±0.31 599
hu 83.2 82.81±0.37 82.34±0.27 (de) 83.28±0.17* 83.14±0.17 83.18±0.15 179
it 84.7 84.44±0.45 84.68±0.48 (es)* 85.04±0.19* 85.14±0.27 85.61±0.21 489
pt 82.1 81.87±0.16 82.06±0.23 (es)* 82.18±0.08* 82.14±0.34 82.36±0.17 271
ro 84.7 83.84±0.30 85.59±0.48 (es)* 84.74±0.04* 84.79±0.47 85.39±0.16 1191
sk 83.6 83.49±0.42 84.09±0.50 (es)* 83.93±0.28* 84.07±0.58 84.90±0.33 1060
sl 84.2 84.26±0.34 84.10±0.57 (es) 84.91±0.24* 84.23±0.56 85.41±0.61 735
sv 91.3 91.37±0.05 91.63±0.19 (nl)* 91.55±0.21* 91.58±0.23 91.73±0.05 504

QA (F1) hi 43.8 39.93±1.45 41.40±1.35(es)* 42.09±0.91* 40.04±0.81 42.56±0.26 507
vi 57.1 57.18±0.82 57.66±2.03(ar) 57.73±1.16* 58.83±0.90 59.12±0.92 511

Table 9: Model scores (mean ± sd) selected based on LMS for POS and QA over 5 runs. Bold indicates the
best score and underline indicates the second best. ∗ indicates the LMS/Pivot-Dev is statistically significantly
(p-value ≤ 0.05) higher than En-Dev.

RE (F1) ARL (F1)
ar zh ar zh

GCNReImp 39.43 32.74 16.48 23.49
mBERT 36.10 67.68 44.11 60.96

Model Selection

En-Dev 40.79 64.48 50.65 62.73
LMS 40.79 65.11 52.96 61.92

100-Target 42.33 65.38 52.90 62.12
All-Target 44.66 65.75 53.09 62.27

Table 10: XLM-RoBERTa experiment: F1 of relation
extraction and argument role labeling. Model selection
results are based on XLM-RoBERTa-base models in
the meta-test set.

A.4 Can Multi-task Learning Help?

Our setting does not assume access to the labeled
data in the target language for a particular task.
However, labeled data in the target language may
be available for a relevant auxiliary task, which
could help the scoring function learn to better es-
timate whether a model is a good match for the
target language.

To test whether an auxiliary task in the target
language might help to select a better model for
the target task, we train the LMS on two tasks: RE
and ARL. Gold rankings on the models are then
computed for each language using the pivot lan-
guages’ dev sets. Also, another “silver” ranking
is computed for each language using the auxiliary
task. The scoring function is then trained to rank
mBERT models for both tasks. To differentiate
the two tasks, a variant of the scoring function,
s(m, l, t), which concatenates a randomly initial-
ized task embedding with the language embedding
is adopted.

In Table 11, our approach selects a model with a

higher F1 score for RE. However, multi-task does
not benefit ARL but still outperforms En-Dev. As
for future direction, we believe an LMS that is
trained on an auxiliary dataset can be transferred
to the target dataset, hence release the requirement
of a small amount of pivot language development
data in the target dataset.

Task En-Dev ([Pivot], lang2vec) + Multi-task

RE 51.81 55.92 57.31
ARL 50.98 53.60 51.99

Table 11: Multi-task analysis using additional train-
ing data in the target language from another task.
([Pivot], lang2vec): baseline of training within
a single task data. Model selection is based on the
highest scores for the target language and target task:
arg maxm s(m, ltarget, ttarget)


