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Abstract

Feed-forward layers constitute two-thirds of a
transformer model’s parameters, yet their role
in the network remains under-explored. We
show that feed-forward layers in transformer-
based language models operate as key-value
memories, where each key correlates with tex-
tual patterns in the training examples, and each
value induces a distribution over the output
vocabulary. Our experiments show that the
learned patterns are human-interpretable, and
that lower layers tend to capture shallow pat-
terns, while upper layers learn more semantic
ones. The values complement the keys’ in-
put patterns by inducing output distributions
that concentrate probability mass on tokens
likely to appear immediately after each pattern,
particularly in the upper layers. Finally, we
demonstrate that the output of a feed-forward
layer is a composition of its memories, which
is subsequently refined throughout the model’s
layers via residual connections to produce the
final output distribution.

1 Introduction

Transformer-based language models (Vaswani
et al., 2017) are at the core of state-of-the-art natu-
ral language processing (Devlin et al., 2019; Brown
et al., 2020), largely due to the success of self-
attention. While much literature has been devoted
to analyzing the function of self-attention layers
(Voita et al., 2019; Clark et al., 2019; Vig and Be-
linkov, 2019), they account for only a third of a typ-
ical transformer’s parameters (4d2 per layer, where
d is the model’s hidden dimension). Most of the
parameter budget is spent on position-wise feed-
forward layers (8d2 per layer), yet their role re-
mains under-explored. What, if so, is the function
of feed-forward layers in a transformer language
model?

We show that feed-forward layers emulate neural
memories (Sukhbaatar et al., 2015), where the first
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Figure 1: An illustration of how a feed-forward layer
emulates a key-value memory. Input vectors (here, x5)
are multiplied by keys to produce memory coefficients
(e.g., the memory coefficient for v1 is 0.2), which then
weigh distributions over the output vocabulary, stored
in the values. The feed-forward layer’s output is thus
the weighted sum of its values.

parameter matrix in the layer corresponds to keys,
and the second parameter matrix to values. Figure 1
shows how the keys (first parameter matrix) inter-
act with the input to produce coefficients, which
are then used to compute a weighted sum of the val-
ues (second parameter matrix) as the output. While
the theoretical similarity between feed-forward lay-
ers and key-value memories has previously been
suggested by Sukhbaatar et al. (2019), we take
this observation one step further, and analyze the
“memories” that the feed-forward layers store.

We find that each key correlates with a specific
set of human-interpretable input patterns, such as
n-grams or semantic topics. For example, k2 in
Figure 1 is triggered by inputs that describe a pe-
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riod of time and end with “a”. Simultaneously, we
observe that each value can induce a distribution
over the output vocabulary, and that this distribu-
tion correlates with the next-token distribution of
the corresponding keys in the upper layers of the
model. In the above example, the corresponding
value v2 represents a distribution that puts most of
its probability mass on the word “while”.

Lastly, we analyze how the language model, as
a whole, composes its final prediction from indi-
vidual memories. We observe that each layer com-
bines hundreds of active memories, creating a dis-
tribution that is qualitatively different from each of
its component memories’ values. Meanwhile, the
residual connection between layers acts as a refine-
ment mechanism, gently tuning the prediction at
each layer while retaining most of the residual’s
information.

In conclusion, our work sheds light on the func-
tion of feed-forward layers in transformer-based
language models. We show that feed-forward lay-
ers act as pattern detectors over the input across
all layers, and that the final output distribution is
gradually constructed in a bottom-up fashion.1

2 Feed-Forward Layers as
Unnormalized Key-Value Memories

Feed-forward layers A transformer language
model (Vaswani et al., 2017) is made of intertwined
self-attention and feed-forward layers. Each feed-
forward layer is a position-wise function, process-
ing each input vector independently. Let x ∈ Rd

be a vector corresponding to some input text pre-
fix. We can express the feed-forward layer FF(·) as
follows (bias terms are omitted):

FF(x) = f(x ·K>) · V (1)

Here, K,V ∈ Rdm×d are parameter matrices, and
f is a non-linearity such as ReLU.

Neural memory A neural memory (Sukhbaatar
et al., 2015) consists of dm key-value pairs, which
we call memories.2 Each key is represented by a
d-dimensional vector ki ∈ Rd, and together form
the parameter matrix K ∈ Rdm×d; likewise, we
define the value parameters as V ∈ Rdm×d. Given
an input vector x ∈ Rd, we compute a distribution

1The code for reproducing our experiments is available at
https://github.com/mega002/ff-layers/.

2We use the terms “memory cells” and “memories” inter-
changeably.

over the keys, and use it to compute the expected
value:

p(ki | x) ∝ exp(x · ki)

MN(x) =

dm∑
i=1

p(ki | x)vi

With matrix notation, we arrive at a more compact
formulation:

MN(x) = softmax(x ·K>) · V (2)

Feed-forward layers emulate neural memory
Comparing equations 1 and 2 shows that feed-
forward layers are almost identical to key-value
neural memories; the only difference is that neu-
ral memory uses softmax as the non-linearity f(·),
while the canonical transformer does not use a
normalizing function in the feed-forward layer.
The hidden dimension dm is essentially the num-
ber of memories in the layer, and the activation
m = f(x ·K>), commonly referred to as the hid-
den layer, is a vector containing an unnormalized
non-negative coefficient for each memory. We re-
fer to each mi as the memory coefficient of the ith
memory cell.

Sukhbaatar et al. (2019) make an analogous ob-
servation, and incorporate the parameters of the
feed-forward layers as persistent memory cells in
the self-attention layers. While this reparameteriza-
tion works in practice, the experiment does not tell
us much about the role of feed-forward layers in the
canonical transformer. If transformer feed-forward
layers are indeed key-value memories, then what
memories do they store?

We conjecture that each key vector ki captures
a particular pattern (or set of patterns) in the input
sequence (Section 3), and that its corresponding
value vector vi represents the distribution of tokens
that follows said pattern (Section 4).

3 Keys Capture Input Patterns

We posit that the key vectors K in feed-forward lay-
ers act as pattern detectors over the input sequence,
where each individual key vector ki corresponds to
a specific pattern over the input prefix x1, . . . , xj .
To test our claim, we analyze the keys of a trained
language model’s feed-forward layers. We first re-
trieve the training examples (prefixes of a sentence)
most associated with a given key, that is, the input
texts where the memory coefficient is highest. We

https://github.com/mega002/ff-layers/
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Key Pattern Example trigger prefixes

k1
449

Ends with “substitutes”
(shallow)

At the meeting, Elton said that “for artistic reasons there could be no substitutes
In German service, they were used as substitutes
Two weeks later, he came off the substitutes

k6
2546

Military, ends with
“base”/“bases”
(shallow + semantic)

On 1 April the SRSG authorised the SADF to leave their bases
Aircraft from all four carriers attacked the Australian base
Bombers flying missions to Rabaul and other Japanese bases

k10
2997

a “part of” relation
(semantic)

In June 2012 she was named as one of the team that competed
He was also a part of the Indian delegation
Toy Story is also among the top ten in the BFI list of the 50 films you should

k13
2989

Ends with a time
range (semantic)

Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7
Weekend tolls are in effect from 7:00 pm Friday until
The building is open to the public seven days a week, from 11:00 am to

k16
1935 TV shows (semantic)

Time shifting viewing added 57 percent to the episode’s
The first season set that the episode was included in was as part of the
From the original NBC daytime version , archived

Table 1: Examples of human-identified patterns that trigger different memory keys.

then ask humans to identify patterns within the re-
trieved examples. For almost every key ki in our
sample, a small set of well-defined patterns, recog-
nizable by humans, covers most of the examples
associated with the key.

3.1 Experiment

We conduct our experiment over the language
model of Baevski and Auli (2019), a 16-layer
transformer language model trained on WikiText-
103 (Merity et al., 2017). This model defines
d = 1024 and dm = 4096, and has a total of
dm · 16 = 65, 536 potential keys to analyze. We
randomly sample 10 keys per layer (160 in total).

Retrieving trigger examples We assume that
patterns stored in memory cells originate from ex-
amples the model was trained on. Therefore, given
a key k`

i that corresponds to the i-th hidden dimen-
sion of the `-th feed-forward layer, we compute the
memory coefficient ReLU(x`

j · k`
i) for every prefix

x1, . . . , xj of every sentence from the WikiText-
103’s training set.3 For example, for the hypotheti-
cal sentence “I love dogs”, we will compute three
coefficients, for the prefixes “I”, “I love”, and “I
love dogs”. Then, we retrieve the top-t trigger ex-
amples, that is, the t prefixes whose representation
at layer ` yielded the highest inner product with k`

i .

Pattern analysis We let human experts (NLP
graduate students) annotate the top-25 prefixes re-
trieved for each key, and asked them to (a) identify
repetitive patterns that occur in at least 3 prefixes
(which would strongly indicate a connection to the
key, as this would unlikely happen if sentences

3We segment training examples into sentences to simplify
the annotation task and later analyses.
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Figure 2: Breakdown of the labels experts assigned to
trigger examples in each layer. Some examples were
not associated with any pattern (“not-covered”).

were drawn at random) (b) describe each recog-
nized pattern, and (c) classify each recognized pat-
tern as “shallow” (e.g. recurring n-grams) or “se-
mantic” (recurring topic). Each key and its corre-
sponding top-25 prefixes were annotated by one
expert. To assure that every pattern is grounded in
at least 3 prefixes, we instruct the experts to specify,
for each of the top-25 prefixes, which pattern(s) it
contains. A prefix may be associated with multiple
(shallow or semantic) patterns.

Table 1 shows example patterns. A fully-
annotated example of the top-25 prefixes from a
single memory key is shown in Appendix A.

3.2 Results

Memories are associated with human-
recognizable patterns Experts were able
to identify at least one pattern for every key,
with an average of 3.6 identified patterns per
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Figure 3: Relative change in memory coefficient
caused by removing the first, the last, or a random to-
ken from the input.

key. Furthermore, the vast majority of retrieved
prefixes (65%-80%) were associated with at least
one identified pattern (Figure 2). Thus, the top
examples triggering each key share clear patterns
that humans can recognize.

Shallow layers detect shallow patterns Com-
paring the amount of prefixes associated with shal-
low patterns and semantic patterns (Figure 2), the
lower layers (layers 1-9) are dominated by shallow
patterns, often with prefixes that share the last word
(e.g. k1

449 in Table 1). In contrast, the upper layers
(layers 10-16) are characterized by more semantic
patterns, with prefixes from similar contexts but
without clear surface-form similarities (e.g. k16

1935

in Table 1). This observation corroborates recent
findings that lower (upper) layers in deep contextu-
alized models encode shallow (semantic) features
of the inputs (Peters et al., 2018; Jawahar et al.,
2019; Liu et al., 2019).

To further test this hypothesis, we sample 1600
random keys (100 keys per layer) and apply lo-
cal modifications to the top-50 trigger examples of
every key. Specifically, we remove either the first,
last, or a random token from the input, and measure
how this mutation affects the memory coefficient.
Figure 3 shows that the model considers the end of
an example as more salient than the beginning for
predicting the next token. In upper layers, remov-
ing the last token has less impact, supporting our
conclusion that upper-layer keys are less correlated
with shallow patterns.

4 Values Represent Distributions

After establishing that keys capture patterns in train-
ing examples, we turn to analyze the information
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Figure 4: Agreement rate between the top-ranked to-
ken based on the value vector v`

i , and the next token of
the top-ranked trigger example associated with the key
vector k`

i .

stored in their corresponding values. We show that
each value v`

i can be viewed as a distribution over
the output vocabulary, and demonstrate that this
distribution complements the patterns in the corre-
sponding key k`

i in the model’s upper layers (see
Figure 1).

Casting values as distributions over the vocabu-
lary. We begin by converting each value vector
v`
i into a probability distribution over the vocab-

ulary by multiplying it by the output embedding
matrix E and applying a softmax:4

p`
i = softmax(v`

i · E).

The probability distribution p`
i is uncalibrated,

since the value vector v`
i is typically multiplied

by the input-dependent memory coefficient m`
i ,

changing the skewness of the output distribution.
That said, the ranking induced by p`

i is invariant to
the coefficient, and can still be examined. This con-
version assumes (naïvely) that all model’s layers
operate in the same embedding space.

Value predictions follow key patterns in upper
layers. For every layer ` and memory dimension
i, we compare the top-ranked token according to
v`
i , (argmax(p`

i)) to the next token w`
i in the top-

1 trigger example according to k`
i (the example

whose memory coefficient for k`
i is the highest).

Figure 4 shows the agreement rate, i.e. the fraction
of memory cells (dimensions) where the value’s
top prediction matches the key’s top trigger exam-
ple (argmax(p`

i) = w`
i ). It can be seen that the

4This is a simplification; in practice, we use the adaptive
softmax (Baevski and Auli, 2019) to compute probabilities.
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Figure 5: Distribution of the rank of the next-token in
the top-1 trigger example of k`

i (w`
i ), according to the

ranking induced by the value vector v`
i . We cut the tail

of the distribution, which stretches up to the vocabulary
size (∼270K tokens).

agreement rate is close to zero in the lower layers
(1-10), but starting from layer 11, the agreement
rate quickly rises until 3.5%, showing higher agree-
ment between keys and values on the identity of the
top-ranked token. Importantly, this value is orders
of magnitude higher than a random token predic-
tion from the vocabulary, which would produce a
far lower agreement rate (0.0004%), showing that
upper-layer memories manifest non-trivial predic-
tive power.

Next, we take the next token of k`
i’s top-1 trig-

ger example (w`
i ), and find where it ranks in the

value vector’s distribution p`
i . Figure 5 shows that

the rank of the next token of a trigger example in-
creases through the layers, meaning that w`

i tends
to get higher probability in the upper layers.

Detecting predictive values. To examine if we
can automatically detect values with high agree-
ment rate, we analyze the probability of the values’
top prediction, i.e., (max(p`

i)). Figure 6 shows
that although these distributions are not calibrated,
distributions with higher maximum probabilities
are more likely to agree with their key’s top trigger
example. We then take the 100 values with highest
probability across all layers and dimensions (97
out of the 100 are in the upper layers, 11-16), and
for each value v`

i , analyze the top-50 trigger ex-
amples of k`

i . We find that in almost half of the
values (46 out of 100), there is at least one trigger
example that agrees with the value’s top prediction.
Examples are provided in Table 2.

Discussion. When viewed as distributions over
the output vocabulary, values in the upper lay-
ers tend to assign higher probability to the next-
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Figure 6: Agreement rate (between the top-ranked to-
ken based on the value vector v`

i and the next token
of the top-ranked trigger example associated with the
key vector k`

i ) as a function of the maximal probability
assigned by the value vector.

token of examples triggering the corresponding
keys. This suggests that memory cells often store
information on how to directly predict the output
(the distribution of the next word) from the input
(patterns in the prefix). Conversely, the lower lay-
ers do not exhibit such clear correlation between
the keys’ patterns and the corresponding values’
distributions. A possible explanation is that the
lower layers do not operate in the same embedding
space, and therefore, projecting values onto the vo-
cabulary using the output embeddings does not pro-
duce distributions that follow the trigger examples.
However, our results imply that some intermediate
layers do operate in the same or similar space to
upper layers (exhibiting some agreement), which
in itself is non-trivial. We leave further exploration
of this phenomenon to future work.

5 Aggregating Memories

So far, our discussion has been about the function
of a single memory cell in feed-forward layers.
How does the information from multiple cells in
multiple layers aggregate to form a model-wide
prediction? We show that every feed-forward layer
combines multiple memories to produce a distri-
bution that is qualitatively different from each of
its component memories’ value distributions (Sec-
tion 5.1). These layer-wise distributions are then
combined via residual connections in a refinement
process, where each feed-forward layer updates the
residual’s distribution to finally form the model’s
output (Section 5.2).
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Value Prediction Precision@50 Trigger example

v15
222 each 68% But when bees and wasps resemble each

v16
752 played 16% Her first role was in Vijay Lalwani’s psychological thriller Karthik Calling

Karthik, where Padukone was cast as the supportive girlfriend of a depressed
man (played

v13
2601 extratropical 4% Most of the winter precipitation is the result of synoptic scale, low pressure

weather systems (large scale storms such as extratropical

v15
881 part 92% Comet served only briefly with the fleet, owing in large part

v16
2070 line 84% Sailing from Lorient in October 1805 with one ship of the line

v12
3186 jail 4% On May 11, 2011, four days after scoring 6 touchdowns for the Slaughter, Grady

was sentenced to twenty days in jail

Table 2: Example values, their top prediction, the fraction of their key’s top-50 trigger examples that agree with
their prediction, and a matching trigger example (with the target token marked in blue).

5.1 Intra-Layer Memory Composition
The feed-forward layer’s output can be defined as
the sum of value vectors weighted by their memory
coefficients, plus a bias term:

y` =
∑
i

ReLU(x` · k`
i) · v`

i + b`.

If each value vector v`
i contains information about

the target token’s distribution, how is this infor-
mation aggregated into a single output distribu-
tion? To find out, we analyze the behavior of 4,000
randomly-sampled prefixes from the validation set.
Here, the validation set is used (rather than the
training set used to find trigger examples) since we
are trying to characterize the model’s behavior at in-
ference time, not find the examples it “memorizes”
during training.

We first measure the fraction of “active” mem-
ories (cells with a non-zero coefficient). Figure 7
shows that a typical example triggers hundreds
of memories per layer (10%-50% of 4096 dimen-
sions), but the majority of cells remain inactive.
Interestingly, the number of active memories drops
towards layer 10, which is the same layer in which
semantic patterns become more prevalent than shal-
low patterns, according to expert annotations (see
Section 3, Figure 2).

While there are cases where a single memory
cell dominates the output of a layer, the majority
of outputs are clearly compositional. We count the
number of instances where the feed-forward layer’s
top prediction is different from all of the memories’
top predictions. Formally, we denote:

top(h) = argmax(h · E)

as a generic shorthand for the top prediction from
the vocabulary distribution induced by the vector
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Figure 7: The fraction of active memories (i.e., with
positive memory coefficient) out of 4096 memories in
every layer, for a random sample of 4,000 examples.

h, and compute the number of examples where the
following condition holds:

∀i : top(v`
i) 6= top(y`)

Figure 8 shows that, for any layer in the network,
the layer’s final prediction is different than every
one of the memories’ predictions in at least ∼68%
of the examples. Even in the upper layers, where
the memories’ values are more correlated with the
output space (Section 4), the layer-level prediction
is typically not the result of a single dominant mem-
ory cell, but a composition of multiple memories.

We further analyze cases where at least one mem-
ory cell agrees with the layer’s prediction, and find
that (a) in 60% of the examples the target token is
a common stop word in the vocabulary (e.g. “the”
or “of”), and (b) in 43% of the cases the input
prefix has less than 5 tokens. This suggests that
very common patterns in the training data might
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Figure 8: The fraction of examples in a random sam-
ple of 4,000 examples where the layer’s prediction is
different from the prediction of all of its memories.

be “cached” in individual memory cells, and do not
require compositionality.

5.2 Inter-Layer Prediction Refinement

While a single feed-forward layer composes its
memories in parallel, a multi-layer model uses the
residual connection r to sequentially compose pre-
dictions to produce the model’s final output:5

x` = LayerNorm(r`)

y` = FF(x`)

o` = y` + r`

We hypothesize that the model uses the sequential
composition apparatus as a means to refine its pre-
diction from layer to layer, often deciding what the
prediction will be at one of the lower layers.

To test our hypothesis, we first measure how
often the probability distribution induced by the
residual vector r` matches the model’s final output
oL (L being the total number of layers):

top(r`) = top(oL)

Figure 9 shows that roughly a third of the model’s
predictions are determined in the bottom few layers.
This number grows rapidly from layer 10 onwards,
implying that the majority of “hard” decisions oc-
cur before the final layer.

We also measure the probability mass p that each
layer’s residual vector r` assigns to the model’s

5The residual propagates information from previous layers,
including the transformer’s self-attention layers.
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Figure 9: Fraction of examples in each layer, where the
residual’s top prediction matches the model’s output.
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Figure 10: Probability of the token output by the model
according to the residual of each layer.

final prediction:

w = top(oL)

p = softmax(r` · E)

p = pw

Figure 10 shows a similar trend, but emphasizes
that it is not only the top prediction’s identity that
is refined as we progress through the layers, it is
also the model’s confidence in its decision.

To better understand how the refinement pro-
cess works at each layer, we measure how of-
ten the residual’s top prediction changes follow-
ing its interaction with the feed-forward layer
(top(r`) 6= top(o`)), and whether this change re-
sults from the feed-forward layer overriding the
residual (top(o`) = top(y`)) or from a true com-
position (top(r`) 6= top(o`) 6= top(y`)).

Figure 11 shows the breakdown of different
cases per layer. In the vast majority of exam-
ples, the residual’s top prediction ends up being the



5491

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
layer

0

20

40

60

80

100
%

 e
xa

m
pl

es

residual
agreement
composition
ffn

Figure 11: Breakdown of examples by prediction cases:
the layer’s output prediction matches the residual’s pre-
diction (residual), matches the feed-forward layer’s pre-
diction (ffn), matches both of the predictions (agree-
ment), or none of the predictions (composition). By
construction, there are no cases where the residual’s
prediction matches the feed-forward layer’s prediction
and does not match the output’s prediction.

model’s prediction (residual+agreement). In most
of these cases, the feed forward layer predicts some-
thing different (residual). Perhaps surprisingly,
when the residual’s prediction does change (com-
position+ffn), it rarely changes to the feed-forward
layer’s prediction (ffn). Instead, we observe that
composing the residual’s distribution with that of
the feed-forward layer produces a “compromise”
prediction, which is equal to neither (composition).
This behavior is similar to the intra-layer compo-
sition we observe in Section 5.1. A possible con-
jecture is that the feed-forward layer acts as an
elimination mechanism to “veto” the top prediction
in the residual, and thus shifts probability mass to-
wards one of the other candidate predictions in the
head of the residual’s distribution.

Finally, we manually analyze 100 random cases
of last-layer composition, where the feed-forward
layer modifies the residual output in the final layer.
We find that in most cases (66 examples), the
output changes to a semantically distant word
(e.g., “people”→ “same”) and in the rest of the
cases (34 examples), the feed-forward layer’s out-
put shifts the residual prediction to a related word
(e.g. “later”→ “earlier” and “gastric” → “stom-
ach”). This suggests that feed-forward layers tune
the residual predictions at varying granularity, even
in the last layer of the model.

6 Related Work

Considerable attention has been given to demys-
tifying the operation of neural NLP models. An

extensive line of work targeted neuron functionality
in general, extracting the properties that neurons
and subsets of neurons capture (Durrani et al., 2020;
Dalvi et al., 2019; Rethmeier et al., 2020; Mu and
Andreas, 2020; Vig et al., 2020), regardless of the
model architecture or neurons’ position in it. Ja-
covi et al. (2018) analyzed CNN architectures in
text classification and showed that they extract key
n-grams from the inputs.

The study of the transformer architecture has
focused on the role and function of self-attention
layers (Voita et al., 2019; Clark et al., 2019; Vig
and Belinkov, 2019) and on inter-layer differences
(i.e. lower vs. upper layers) (Tenney et al., 2019;
Jawahar et al., 2019). Previous work also high-
lighted the importance of feed-forward layers in
transformers (Press et al., 2020; Pulugundla et al.,
2021; Xu et al., 2020). Still, to date, the role of
feed-forward layers remains under-explored.

Also related are interpretability methods that ex-
plain predictions (Han et al., 2020; Wiegreffe and
Pinter, 2019), however, our focus is entirely differ-
ent: we do not interpret individual predictions, but
aim to understand the mechanism of transformers.

Characterizing the functionality of memory cells
based on examples that trigger maximal activations
has been used previously in NLP (Rethmeier et al.,
2020) and vision (Erhan et al., 2009).

7 Discussion and Conclusion

Understanding how and why transformers work is
crucial to many aspects of modern NLP, includ-
ing model interpretability, data security, and de-
velopment of better models. Feed-forward layers
account for most of a transformer’s parameters, yet
little is known about their function in the network.

In this work, we propose that feed-forward lay-
ers emulate key-value memories, and provide a set
of experiments showing that: (a) keys are corre-
lated with human-interpretable input patterns; (b)
values, mostly in the model’s upper layers, induce
distributions over the output vocabulary that corre-
late with the next-token distribution of patterns in
the corresponding key; and (c) the model’s output
is formed via an aggregation of these distributions,
whereby they are first composed to form individual
layer outputs, which are then refined throughout
the model’s layers using residual connections.

Our findings open important research directions:

• Layer embedding space. We observe a correla-
tion between value distributions over the output
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vocabulary and key patterns, that increases from
lower to upper layers (Section 4). Is this because
the layer’s output space transforms across layers?
If so, how? We note that this possible transforma-
tion cannot be explained solely by the function of
feed-forward layers: if the model only did a se-
ries of key-value look-ups and value-distribution
aggregation via weighted addition, then a single,
unifying embedding space would appear more
natural. Thus, the transformation might have to
do with the interplay between feed-forward lay-
ers and self-attention layers.

• Beyond language modeling. Our formulation
of feed-forward networks as key-value memories
generalizes to any transformer model, e.g. BERT
encoders and neural translation models. We thus
expect our qualitative empirical observations to
hold across diverse settings, and leave verifica-
tion of this for future work.

• Practical implications. A better understanding
of feed-forward layers has many implications in
NLP. For example, future studies may offer in-
terpretability methods by automating the pattern-
identification process; memory cells might af-
fect training-data privacy as they could facili-
tate white-box membership inference (Nasr et al.,
2019); and studying cases where a correct pattern
is identified but then suppressed during aggrega-
tion may guide architectural novelties.

Thus, by illuminating the role of feed-forward
layers, we move towards a better understanding of
the inner workings of transformers, and open new
research threads on modern NLP models.
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A Pattern Analysis

Table 3 provides a fully-annotated example of 25
prefixes from the memory cell k5

895.

B Implementation details

In this section, we provide further implementation
details for reproducibility of our experiments.

For all our experiments, we used the language
model of Baevski and Auli (2019) (247M
parameters) trained on WikiText-103 (Merity
et al., 2017). Specifically, we used the model
transformer_lm.wiki103.adaptive
trained with the fairseq toolkit6.

WikiText-1037 is a well known language model-
ing dataset and a collection of over 100M tokens
extracted from Wikipedia. We used spaCy8 to split
examples into sentences (Section 3).

6https://github.com/pytorch/fairseq
7https://blog.einstein.ai/the-

wikitext-long-term-dependency-language-
modeling-dataset/

8https://spacy.io/

https://github.com/pytorch/fairseq
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
https://spacy.io/
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1 It requires players to press
1 The video begins at a press
1 The first player would press
1 Ivy, disguised as her former self, interrupts a Wayne Enterprises press
1 The video then cuts back to the press
1 The player is able to press

Leto switched
1 In the Nintendo DS version, the player can choose to press
1 In-house engineer Nick Robbins said Shields made it clear from the outset that he (Robbins) “was just there to press
1 She decides not to press
1 she decides not to press
1 Originally Watson signaled electronically, but show staff requested that it press
1 At post-game press
1 In the buildup to the game, the press
2 Hard to go back to the game after that news
1 In post-trailer interviews, Bungie staff members told gaming press

Space Gun was well received by the video game
1 As Bong Load struggled to press

At Michigan, Clancy started as a quarterback, switched
1 Crush used his size advantage to perform a Gorilla press

1,2 Groening told the press
1 Creative director Gregoire <unk> argued that existing dance games were merely instructing players to press

1,2 Mattingly would be named most outstanding player that year by the press
1 At the post-match press

1,2 The company receives bad press

ID Description shallow / semantic
1 Ends with the word “press” shallow
2 Press/news related semantic

Table 3: A pattern annotation of trigger examples for the cell memory k5
895. Trigger examples are annotated with

repetitive patterns (upper table), which are classified as “shallow” or “semantic” (bottom table).


