
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5393–5402
November 7–11, 2021. c©2021 Association for Computational Linguistics

5393

Extracting Material Property Measurement Data from Scientific Articles

Gihan Panapitiya*, Fred Parks, Jonathan Sepulveda and Emily Saldanha*

Pacific Northwest National Laboratory, Richland, WA, 99354, USA
{gihan.panapitiya, fred.parks, jonathan.sepulveda, emily.saldanha}@pnnl.gov

Abstract
Machine learning-based prediction of material
properties is often hampered by the lack of
sufficiently large training datasets. The ma-
jority of such measurement data is embedded
in scientific literature and the ability to auto-
matically extract these data is essential to sup-
port the development of reliable property pre-
diction methods. In this work, we describe
a methodology for an automatic property ex-
traction framework using material solubility as
the target property. We create an annotated
dataset containing tags for solubility-related
entities using a combination of regular expres-
sions and manual tagging. We then compare
five entity recognition models leveraging both
token-level and span-level architectures on the
task of classifying solute names, solubility val-
ues, and solubility units. Additionally, we ex-
plore a novel pretraining approach that lever-
ages automated chemical name and quantity
extraction tools to generate large datasets that
do not rely on intensive manual effort. Finally,
we perform an analysis to identify the causes
of classification errors.

1 Introduction

While the application of machine learning meth-
ods for material property prediction holds great
promise for material discovery and design across a
broad range of applications, such methods are of-
ten hampered by a lack of sufficiently large and di-
verse training datasets. Typically, relevant measure-
ments and information exist only in unstructured
formats such as the published scientific literature
and are not available in aggregated and standard-
ized databases. The ability to automatically extract,
process, and analyze large sets of material property
data would represent a significant capability for the
advancement of material design efforts.

The development of predictive models for the
solubility of organic molecules is one such use case
that would support a wide range of application ar-
eas including pharmaceutical, environmental, and

energy storage applications. For example, molec-
ular solubility is a key performance driver for re-
dox flow battery (RFB) technologies which rely
on energy-bearing redox active molecules that are
dissolved in a liquid electrolyte. The solubility of
a molecule determines its maximal concentration
in the electrolyte and the resulting energy density
of the system. To support the development of pre-
dictive models for the discovery and design of new
materials for these batteries, a comprehensive solu-
bility measurement database is required.

The ability to automatically parse the scientific
literature for existing and newly published solubil-
ity measurements would provide a significant ac-
celeration to our ability to enlarge existing datasets,
as well as keep predictive models up-to-date with
the newest data. However, the extraction of numer-
ical data from the materials science and chemistry
literature presents several key challenges. Material
property measurements are often highly sensitive
to the specifics of the experimental conditions. Ad-
ditionally, in comparison with tasks for general
information extraction, this task requires the ability
of models to target specific measurement types and
distinguish them from other measurements which
may be expressed using similar language.

In this paper, we make several key contributions.
First, we collect a corpus of solubility-related sen-
tences from the scientific literature and perform
manual tagging to annotate key components of the
solubility measurements including the solute, the
solubility value, and the solubility unit. Secondly,
we apply and compare several entity-extraction
deep learning models to the problem of automatic
extraction of solubility data. Additionally, we de-
velop and explore several possible methods for
the pretraining of quantitative measurement extrac-
tion models. Overall, our best performing models
achieves F1 scores of 0.75, 0.79, and 0.9 on the
extraction of solutes, values, and units. Finally, we
perform detailed performance and error analysis to
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provide insights into the strengths and weaknesses
of the current models and to identify directions for
future improvements to the methodology.

2 Related Work

The majority of existing solubility datasets which
have been employed for solubility prediction
are small, with typically a few thousand data
points (Boobier et al., 2017; Llinàs et al., 2008;
Delaney, 2004; Huuskonen et al., 1997; Tang et al.,
2020), with recent datasets starting to reach the
level of 10,000 data points (Cui et al., 2020). There
are no previously existing datasets linking the sol-
ubility measurement values to their source text in
publications to support the development of infor-
mation extraction efforts.

Several annotated datasets have been developed
to support efforts for more general scientific infor-
mation extraction including the ScienceIE dataset
with task, process, and material annotations in the
material science, physics, and computer science do-
mains (Augenstein et al., 2017), the SciERC dataset
with entity and relation annotations in the computer
science domain (Luan et al., 2018), annotations of
conditional facts from the life science and biomed-
ical domain (Jiang et al., 2019), and a dataset with
annotations of process, method, material, and data
across ten scientific domains (Brack et al., 2020).

Prior work on information extraction in the ma-
terials science and chemistry domains has focused
both the development of general tools such as
ChemDataExtractor (Swain and Cole, 2016), which
leverages conditional random field (CRF) mod-
els, custom dictionaries, and rule-based grammers
for information extraction, and the development
of models for specific extraction tasks. Some ex-
amples include extraction of zeolite synthesis in-
formation using regular expressions (Jensen et al.,
2019), extraction of nanomaterial composition and
morphology using unsupervised methodology on
TF-IDF features and synthesis protocols using a
sentence-level logistic regression classifier (Hisz-
panski et al., 2020), extraction of synthesis condi-
tions for metal oxides using supervised classifica-
tion of parsed noun phrases (Kim et al., 2017), tag-
ging of material science-related named entities us-
ing bidirectional LSTMs (Weston et al., 2019), and
construction of a knowledge base related to solid
oxide fuel cells through the development of en-
tity and relation extraction models (Friedrich et al.,
2020).

The majority of prior work has focused on the
extraction of fixed scientific entities, such as ma-
terial names or methodologies, and their relation-
ships. However, less work has been performed
to develop methods targeted toward the extraction
of numerical and quantitative data as is needed
for the extraction of experimental measurements
like solubility. Several prior task-specific mod-
els include extraction of Curie and Néel magnetic
phase transition temperatures using ChemDataEx-
tractor combined with semi-supervised relation ex-
traction (Cole et al., 2018) and the use of a rule-
based approach to extract numerical data from elec-
tronic medical records (Cai et al., 2019).

3 Approach

3.1 Data with solubility-related tags
We aim to develop models which can extract quan-
tities related to solubility measurements from sci-
entific text. To support this task we develop a
dataset of annotated sentences which contain sol-
ubility information including the solute, the sol-
ubility value, and the solubility unit. To extract
sentences for annotation, we rely on the PubMed
Central (PMC) open access text mining dataset1

with the full text of 2.75 million articles and the
S2ORC database (Lo et al., 2020) with the full text
of 8.1 million papers. We first perform sentence
segmentation of the articles using the sent_tokenize
method from NLTK2.

We next filter the sentences to those that may
contain a solubility measurement by filtering those
sentences that contain the word “solubility of” and
at least one digit. Upon manual inspection of the
sentences, we found occasional failure modes of
the sentence segmentation leading to extractions
which actually span multiple sentences. To mini-
mize the presence of such sentences, we filter out
extremely long sentence extractions containing 77
tokens or more. This results in 19,963 and 76,333
sentences from the PMC and S2ORC databases
respectively.

We pursue two strategies for tagging these sen-
tences: manual tagging and automated tagging us-
ing ChemDataExtractor (Swain and Cole, 2016).
The manual tagging generates higher fidelity an-
notations while the automated tagging generates
potentially noisier annotations at the benefit of in-
creasing the data size with reduced manual anno-

1https://www.ncbi.nlm.nih.gov/pmc/tools/textmining/
2https://www.nltk.org/
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Figure 1: Examples of ChemDataExtractor-based regular expressions and resulting extractions.

tation workload. For the automated tagging, cus-
tom regular expression were developed for Chem-
DataExtractor in order to extract solute names
(CHEM), solubility values (VALUE) and solubility
units (UNIT). Figure 1 shows several examples of
the regular expressions and the entities extracted
using them.

To capture more complex sentence structures
and to establish a higher-fidelity labelled dataset,
we rely on manual tagging. Some of the labelled
data was initially collected using Excel spread-
sheets before transitioning to the use of the Prodigy
software3 to generate additional labels. The tags we
used for manual tagging are solute name (CHEM),
solvent name (SLVN), solubility value (VALUE),
solubility unit (UNIT), temperature unit (TEMPU),
temperature value (TEMPV), pressure unit (PRSU),
and pressure value (PRSV). In this paper, we fo-
cus on the extraction of the solute name, solubility
value, and solubility unit, but future work will tar-
get the extraction of more complete experimental
details captured in the additional annotations.

The dataset collected using manual and regular
expression based taggers contains a total of 5,337
sentences with 4,478 sentences from manual tag-
ging and 859 from extractions using regular ex-
pressions. This shows that relatively fewer sen-
tences use the types of formulaic language that
can be captured by regular expression extractions
and that more sophisticated extraction techniques
are needed to capture the variability in language
used for expressing these measurements. Overall,
21% of the sentences in the dataset were found to
contain at least one solubility value and 20% were
found to contain both a solubility value and a solute
name. The distribution of the number of entities of
each type per sentence can be seen in Figure 2. We
find that the majority of sentences contain a single
measurement result only, with only a small propor-

3https://prodi.gy/

tion containing more than two such measurements
in the same sentence. The sentences have a total
of 1,652, 1,437, and 1,876 tags of solute names,
solubility values, and solubility units respectively.
The number of unique solute names is 1,243 and
the number of unique units is 141. The most com-
mon units are “%”, “mg/mL”, “mg/ml”, “mM”,
and “µg/mL”. The tagged sentences were split into
train, validation and testing sets containing 80%,
10% and 10% of the data respectively.

3.2 Pre-training data

Due to the time and effort intensiveness of the man-
ual labelling of the candidate sentences, generat-
ing a large set of labelled sentences for training is
a challenge. To support the training of measure-
ment extraction tasks, we explore several transfer
learning strategies that rely on pretraining tasks
which leverage only automatically generated data
labels. Specifically, we perform pretraining on the
tasks of detecting general chemical names, mea-
surement values, and measurement units, rather
than tagging only those related to solubility. After
this pre-training, we fine-tune the models on the
solubility extraction task. Because the pretrained
model has learned to identify chemical names, mea-
surement values, and measurement units in general,
the task of the solubility tagging fine-tuning will
be to learn to select and tag which chemical names,
measurement values, and measurement units are
related to the desired quantity of interest.

To generate the pretraining labels, we rely on
several previously existing information extraction
tools, namely grobid-quantities (gro, 2015–2021)
and ChemDataExtractor (Swain and Cole, 2016).
The grobid-quantities package4 leverages a linear
CRF model to identify all expressions of measure-
ments within the text including both values and
units. Meanwhile, ChemDataExtractor leverages

4https://github.com/kermitt2/grobid-quantities
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Figure 2: Distributions of entity counts within sentences in the solubility dataset for those sentences that contain
at least one solute names and solubility value.

Figure 3: Examples of entities tagged by the pretraining tagging (general chemical names and measurements) and
the regex (upper) and manual (lower) solubility taggers (solutes and solubility measurements). Entities detected
by the pretraining tagging are indicated by grey horizontal lines. Entities detected by both the pretraining and
solubility taggers are colored boxes (blue = solute, green = value, brown = units).

CRF-based named entity recognizer in combina-
tion with a dictionary approach to identify chemi-
cal names. We use these tools to annotate a dataset
with potentially noisy, low-fidelity annotations of
chemical names, values, and units. We explore two
variants of the pretraining task, one which uses all
three tag types (chemical names, values, and units)
and one which just uses values and units. In Fig-
ure 3, we show examples of entities tagged by the
pretraining taggers and the solubility taggers.

To generate the pretraining dataset, we start from
the PMC dataset sentences which contain the word
“solubility”. Next, we select the sentences (com-
posed of more than 10 and less than 350 characters)
that contain a chemical name and a value based on
the extractions from grobid-quantities and Chem-
DataExtractor. The sentences that contain less than
5 and greater than 76 tokens were removed. The
resulting number of sentences were 2,737,620 from
which 100,000 random sentences were selected for
the final pretraining dataset. This dataset contains
a total of 184,129, 165,136, and 110,395 entities
tagged as chemical names, values, and units respec-
tively.

3.3 Models

To extract the relevant solubility data from the
sentences, we explore several modeling archi-
tectures for token-level and span-level tagging
of the CHEM, VALUE, and UNIT tags. For
token-level classification, we explore several varia-
tions of the HuggingFace implementations of the
BERT architecture (Devlin et al., 2019), leveraging
the pretrained weights from bert-base-cased and
SciBERT (Beltagy et al., 2019) (scibert-scivocab-
cased). For these models, we perform simple token-
level annotation prediction by sending the output
of the BERT model through a linear layer with
dropout to predict the CHEM, VALUE, UNIT, and
O (other) tags. Secondly, we experiment with the
addition of a conditional random field (CRF) layer
to the BERT models to enable joint predictions
of the tags across the sentence. In addition to the
BERT-based approaches, we experiment with the
span-based SpERT architecture (Eberts and Ulges,
2020), which has shown good performance on
entity and relation extraction from scientific text.
SpERT is a relation classifier which also contains
a span classification layer. For this work, we re-
moved the final relation classification layer and
used the span classification layer to predict token
class. All five models contain ∼ 110M parameters.
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Table 1: Solubility tag prediction performance. Results in bold are best across all model configurations.

Model CHEM VALUE UNIT
Precision Recall F1 Precision Recall F1 Precision Recall F1

N
o

Pr
et

ra
in BERT 0.76 0.68 0.72 0.67 0.82 0.74 0.82 0.92 0.87

SciBERT 0.8 0.66 0.73 0.77 0.55 0.64 0.76 0.97 0.85
BERT+CRF 0.78 0.72 0.75 0.7 0.81 0.75 0.82 0.94 0.88
SciBERT+CRF 0.79 0.72 0.75 0.75 0.82 0.79 0.87 0.92 0.9
SPERT 0.8 0.63 0.71 0.67 0.65 0.66 0.78 0.88 0.83

C
+V

+U
Pr

et
ra

in

BERT 0.77 0.59 0.66 0.72 0.77 0.74 0.8 0.93 0.86
SciBERT 0.65 0.7 0.68 0.76 0.46 0.57 0.68 0.97 0.8
BERT+CRF 0.76 0.59 0.66 0.7 0.75 0.72 0.79 0.93 0.85
SciBERT+CRF 0.6 0.63 0.62 0.83 0.4 0.54 0.67 0.97 0.79
SPERT 0.5 0.74 0.59 0.53 0.77 0.63 0.64 0.96 0.77

V
+U

Pr
et

ra
in

BERT 0.75 0.64 0.69 0.72 0.75 0.74 0.79 0.89 0.84
SciBERT 0.77 0.64 0.7 0.78 0.76 0.77 0.8 0.9 0.85
BERT+CRF 0.76 0.59 0.66 0.69 0.79 0.74 0.78 0.89 0.83
SciBERT+CRF 0.68 0.62 0.65 0.8 0.36 0.5 0.67 0.97 0.79
SPERT 0.53 0.53 0.53 0.55 0.63 0.59 0.64 0.83 0.72

For the BERT/SciBERT models, a maximum
sequence length of 128 tokens was considered. A
dropout rate of 0.3 is applied to the BERT/SciBERT
output before linearly transforming it to predict the
token labels. We leverage a learning rate scheduler
that linearly decreases the learning rate from 3e−5
to 0 and compare performance for 10, 12, 15, 20
or 25 epochs with 12 epochs performing best ac-
cording to the validation F1 score. Models were
trained using training and validation batch sizes
of 32 and 8. All the hyperparameters used in the
SpERT model are the default parameters used by
the authors in the code in the GitHub repository5.

4 Results

We summarize the results of our experiments in
Table 1. For the models that are trained on the
solubility data from scratch without leveraging pre-
training, we find that the SciBERT+CRF model
performs the best overall, achieving the highest F1
score across all three tag types. For both the BERT
and SciBERT weights, the addition of the CRF
layer improves extraction performance across all
three tag types. UNIT tags are easiest to identify,
which can be expected as the number of unique
units in the dataset is small (141 unique values)
allowing the model to memorize the types of unit
tags to expect.

In Table 2 we show the confusion matrix for
predictions made by the best-performing SciB-
ERT+CRF model. Typically, the model does not
confuse tags of different types but instead makes
errors regarding whether or not a tag exists for the

5https://github.com/lavis-nlp/spert

token. This makes sense as the three tag types are
likely to be quite different from each other.

4.1 Impact of Pretraining
We find that the performance on the pretraining
task is very high across all five model architec-
tures, with F1 scores of around 0.89, 0.93, and 0.96
for CHEM, VALUE, and UNIT tags respectively.
This shows that the models are successfully able
to reproduce the automated labels for general mea-
surement data and chemical names within scien-
tific text. However, after fine-tuning these models
on the solubility extraction task, we find that our
two pretraining strategies have not been effective
in improving the accuracy. Instead, we find that
the pretrained models typically have reduced per-
formance on the detection of all three tag types
compared with the models trained from scratch on
solubility data alone. Of the two pretraining strate-
gies, we find that pretraining using only VALUE
and UNIT tags seems to be favorable over using
CHEM, VALUE and UNIT tags. When CHEM,
VALUE and UNIT tags are used in the pretraining,
BERT models without the CRF layer produce best
fine tuning results. For the VALUE and UNIT only
pretraining, the SciBERT model without the CRF
layer produces the best results.

The failure of the pretraining task to improve
the ability to extract solubility measurements, may
be because the model struggles to adapt from the
task of general value extraction to the task related
to the measurement of interest. Since we find that
inclusion of the chemical name tags in the pretrain-
ing task is more detrimental to performance, we
hypothesize that the mismatch between traditional
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Figure 4: Effect of the training set size on model per-
formance.

chemical names and the tokens which are actu-
ally tagged as solutes may be causing part of the
issue. The automated taggers used for the pretrain-
ing data will tend to identify “official” chemical
names, such as o-chloroacetophenone, 6-Gingerol,
and Atrazine, while the actual phrasing of solubility
measurement data often incorporates solute names
that include abbreviations or shortened versions,
such as DETC, M5bG7, and Se-L-M.

Manual inspection of the sentences which the
SciBERT+CRF model predicted correctly but SciB-
ERT with V+U pretraining predicted incorrectly
revealed that the pretrained model seems to strug-
gle when the solubility value is not immediately
preceded by ‘solubility of’. Examples of such al-
ternate prefixing terms that lead to errors are “(<”,
“is extremely low (” and “is up to”.

4.2 Impact of Data Size

We next evaluate the dependence of the model per-
formance on the availability of training data. In
Figure 4, we show the F1 scores using samples
of different sizes from the full training set. We
find that performance significantly increases as the
dataset size increases from 853 sentences to 1707
sentences. After this point, performance improve-
ments are slower with the addition of new data.
These trends show that substantial amounts of addi-
tional data would likely be need to achieve signifi-
cant improvements in the extraction performance.
We also find that the use of the pretraining strate-
gies are not effective compared with training from
scratch, even when very small amounts of training
data are available for the target task.

4.3 Error Analysis

We perform extensive analysis of the errors made
by the model to understand the types of inputs on
which the model performs well and the types on

Table 2: Confusion matrix for SciBERT+CRF model
output.

Predicted
CHEM VALUE UNIT O

Tr
ue

CHEM 406 3 0 154
VALUE 1 381 1 79
UNIT 0 0 437 36
O 110 121 65 21870

which it performs poorly. The results in this section
are derived from the best performing SciBERT +
CRF model.

4.3.1 Qualitative Error Exploration
We first perform qualitative observation of the pre-
diction errors made by the model by exploring the
properties of individual tokens for which the model
made incorrect predictions. We observed the 154
cases where our model confused CHEM tags for O
tags. 13 of these tags are “-” characters and 34 are
associated with words that contain a “-” character
as part of the chemical name (e.g., “DNM-2”, “n-
octanol”). 19 of the 154 tags contain one or more
digits.

Out of the 79 tags where the model con-
fused a VALUE tag for an O tag, 16 are “.”
characters. These 79 also contain the words,
“greater”,“least”,“less”,“than”,“to”,“up”, and “wa-
ter”. This shows that the model has difficulty rec-
ognizing non-digit tokens, which are relatively less
common within the training data. Only 10% of
labelled VALUE tokens are something other than a
digit or a “.”.

Out of the 36 unit tags predicted as O tags 13
are “%” characters. This is not surprising as “%”,
despite being a common solubility unit, is often
used for non-solubility values. Units “mm” and
“wt” have been confused for O tags four and three
times respectively. Even though in solubility mea-
surements “mm” corresponds to milli-moles, “mm”
is also the abbreviation for millimeters, which is
not a solubility unit.

Of the 110 tokens wrongly predicted to be
CHEM tags, 6 of them are “-” characters which
are part of chemical names. In one of the cases, the
chemical name is not a solute name and in three
of the cases, even though the chemical names are
solutes, the regex tagger has not been able to cor-
rectly tag them as such. In the other two cases, the
manual tagger has missed to tag the solute name.
This shows that the model has picked up on cor-
rect solute name extractions despite some level of
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Table 3: Extraction performance based on subsets of
sentences that contain annotated tags of each type with
certain characteristics.

Description Recall F1 Sentences

CHEM
All upper case 0.70 0.79 43
Some lower case 0.69 0.76 87
Has a digit 0.64 0.75 25
No digit 0.69 0.76 105
Has “-” 0.68 0.77 20
No “-” 0.71 0.78 110
VALUE
All digits or “.” 0.79 0.83 95
Some non digits/“.” 0.88 0.92 18
Has “.” 0.83 0.87 65
No “.” 0.74 0.77 50
UNIT
Common units 0.91 0.93 64
(>90 in train)
Less common units 0.93 0.93 67

noise in the labelled dataset. The words “raw” and
“pure” are also among the tags that got confused
for CHEM tags. These words may be inconsis-
tently tagged as part of the description of a solute
material.

Of the 121 tokens that were wrongly predicted
to be VALUE tags, 70% are digits and 21% are
“.” characters. Among the other characters that
got wrongly classified as VALUE are “<”, “±”,
“×”, “–”, and “10−”. This shows that the model
is correctly identifying numerical quantities as the
VALUE tags, but sometimes identifies values that
are not solubility measurements.

Out of the 65 tokens wrongly classified as UNIT
tags, the most frequently confused tokens are “/”,
“ml”, “mg”, “%”, and “mm”. All of these are com-
monly found in solubility units. However, they
can also be part of the concentration measurements
that often occur in the same sentence containing
solubility measurements.

4.3.2 Quantitative Error Exploration
Based on the common patterns observed in the qual-
itative analysis of errors made by the model, we
next compare the model performance on different
subsets of the test data based on the characteristics
of the ground truth tags. In Table 3 we compare the
model performance on sentences in which the tags
have certain properties. For CHEM tags, we find
that different properties of the tags have only small
impact on the performance. We find that inclusion
of digit characters slightly decreases performance,
use of upper-casing slightly increases performance,
and inclusion of a “-” character slightly reduces

Figure 5: F1 score versus the distance between CHEM
and VALUE tags in the sentence.

performance. For the extraction of VALUE tags,
we find that the models perform well even when
the values contain characters that are not strictly nu-
meric. We also find that the model performs better
for floating point numbers that contain a “.” char-
acter. While we might expect the UNIT extraction
to rely on memorization of commonly occurring
units, we find that the performance is not signif-
icantly reduced for the less commonly occurring
units.

We next observe how the larger structure of the
sentences beyond the properties of the tagged to-
kens themselves affect the accuracy of the model.
For example, how does the proximity of the solute
name to the solubility value in the sentence affect
accuracy? In Figure 5, we show the F1 score for
different groups of sentences binned by the number
of tokens separating the CHEM and VALUE tags
for sentences which have exactly one CHEM and
one VALUE entity. We find that model is able to
achieve similar performance even when the solute
name is separated from the corresponding solubil-
ity value by many tokens.

We also explore how the phrasing of the sen-
tence affects the model performance. We analysed
whether the extraction of solute names depends on
whether or not the name is preceded by the phrase
“solubility of” (Table 4). We find that employing
this standard phrasing significantly improves the
ability of the model to correctly detect the solute
name. To further explore the impact of phrasing,
we list the model performance on sentences tagged
using regular expressions versus those tagged man-
ually in Table 5. We expect that sentences tagged
using regular expressions will employ more stan-
dard and formulaic phrasing than the manually
tagged sentences which required human expertise
to parse. However, we also expect that the regex
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Table 4: Impact of preceding text on CHEM prediction

CHEM preceded by Recall F1 Sentences

“solubility of” 0.78 0.83 101
some other text 0.58 0.67 26

Table 5: F1 scores of manually versus regex tagged sen-
tences

Tagger CHEM VALUE UNIT Sentences

Regex 0.82 0.72 0.93 72
Manual 0.68 0.82 0.86 462

tagging will have higher susceptibility to tagging
errors. Interestingly, we find that the relative per-
formance difference depends on the tag type. The
model performs better on the manually tagged sen-
tences for VALUE tags but performs better on the
regex tagged sentences for CHEM and UNIT tags.

Finally, we observe the effect of the number of
unique entities within a sentence on the success
of the model extractions. While we showed in
Figure 2 that the majority of sentences contain only
a single solubility measurement, there are more
complex sentences within the dataset that express
multiple solubility measurements under different
conditions or for different solutes. In Figure 6 we
show the performance of the model as the number
of tags of each type changes. We find that there is
not a strong effect here, but that performance on
solute name extraction significantly declines when
the number of solutes in the sentence reaches 4.

5 Conclusions

We demonstrate the performance of several differ-
ent token-level and span-level extraction architec-
tures on the novel task of solubility measurement
data extraction from scientific literature. We find
that a token-level extraction model leveraging pre-
training SciBERT weights combined with a CRF
layer achieves the best performance on this task.
We explore the impact of pretraining on a large
set of general value extraction data but find that
it reduces the model performance compared with
training from scratch. We also find that the model
performance has a weak sensitivity to increases in
the training data size. This points to the necessity
of developing alternative modeling approaches or
more effective pretraining tasks to improve per-
formance in this domain due to the challenge of
collecting sufficiently large labelled datasets.

We perform error analysis to understand the

Figure 6: How the prediction accuracy depends on the
number of chemical names, solubility values and units
within the sentence.

strengths and weaknesses of the extraction model.
We find that the model performance is robust to
several variations that had the potential to make the
extraction task more challenging. The model per-
forms well at unit extraction even when less com-
monly used units are employed. The model also
appears to perform well even when solute names
and values are separated by many tokens in the
sentence. However, we do observe that the model
performs poorly on solute name extraction when
the sentence does not employ the standard phrasing
“solubility of”. This points to the need for continu-
ing to supplement the dataset with sentences that
contain more diverse and complex phrasing.

While we have demonstrated promising perfor-
mance on this novel scientific measurement extrac-
tion task, there are several key directions for future
development of these efforts. First, while the pre-
training strategies employed in this work did not
provide a benefit to model performance, further
exploration is needed to understand the types of
pretraining tasks that may best support measure-
ment extraction efforts. Next, to fully contextualize
extracted solubility measurements it will be nec-
essary to extract the relevant experimental details
(solvent, temperature, pH, etc.). We have collected
manual annotation data to support this expansion
of the task. Additionally, the current approach
can detect the existence of several solubility mea-
surements within a sentence but cannot determine
which solubility values are associated with which
solutes or which experimental conditions. Relation
extraction capabilities will be needed to associate
solubility values with the correct solutes, solvents,
and conditions.
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