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Abstract

In recent years pre-trained language models
(PLM) such as BERT have proven to be very
effective in diverse NLP tasks such as Informa-
tion Extraction, Sentiment Analysis and Ques-
tion/Answering. Trained with massive general-
domain text, these pre-trained language mod-
els capture rich syntactic, semantic and dis-
course information in the text. However, due
to the differences between general and spe-
cific domain text (e.g., Wikipedia text versus
clinic notes), these models may not be ideal for
domain-specific tasks (e.g., extracting clinical
relations). Furthermore, it may require addi-
tional medical knowledge to understand clini-
cal text properly. To solve these issues, in this
research, we conduct a comprehensive exami-
nation of different techniques to add medical
knowledge into a pre-trained BERT model for
clinical relation extraction. Our best model
outperformed the state-of-the-art systems on
the benchmark i2b2/VA 2010 clinical relation
extraction dataset.

1 Introduction

In recent years pre-trained language models
(PLMs) such as ELMo (Peters et al., 2017),
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), and GPT (Radford et al., 2018) have be-
come very popular as they can effectively boost
the performance of diverse NLP tasks such as In-
formation Extraction (Shi and Lin, 2019; Jia et al.,
2020), Sentiment Analysis(Gao et al., 2019), Ques-
tion/Answering(Lv et al., 2020) and language en-
tailment (Devlin et al., 2019). These models are
trained on large text corpora using self-supervised
tasks such as masked language modeling (MLM)
and next sentence prediction. As these models
can learn meaningful context-sensitive text embed-
dings, they are frequently used to encode input
text in many downstream text analysis tasks. How-
ever, PLMs trained on general-domain text (e.g.,
books, Wikipedia and webdata) may not be ideal

for domain-specific NLP applications (e.g., bio-
medical NLP). In this research, we explore how
medical knowledge can be added to PLMs to facili-
tate clinical relation extraction.

Previously, significant effort has been made on
adding domain knowledge into PLMs. Based on
the types of knowledge added, we can group the
work into two categories: integrating domain text in
PLMs (Lee et al., 2020; Peng et al., 2019a; Gu et al.,
2020) and integrating domain-specific knowledge
graphs into PLMs (Wang et al., 2021; Zhang et al.,
2019; Peters et al., 2019). In this study, we conduct
a comprehensive investigation of these methods.
We test their effectiveness in integrating knowledge
from Unified Medical Language System (UMLS)
into BERT for clinical relation extraction. Here
we focus on UMLS because it is one of the most
widely used bio-medical knowledge sources for
clinical NLP. Among all the PLMs, we focus on
BERT since it often achieves the state of the art
performance on diverse NLP tasks. The main con-
tributions of our work include:
• We conducted a comprehensive empirical analy-

sis of the effectiveness of applying diverse knowl-
edge integration techniques to combine medical
knowledge encoded in UMLS with embeddings
from pre-trained BERT models for clinical rela-
tion extraction.

• We proposed several knowledge fusion meth-
ods such as ClinicalBERT-EE-RI-CT/ST/SG,
ClinicalBERT-EE-ED-CT and ClinicalBERT-EE-
KB-MLM for clinical relation extraction.

• Our proposed method ClinicalBERT-EE-RI-ST
achieved the state of the art performance on a
benchmark clinical relation extraction dataset.

2 Related Work

In this section, we survey the representative work
on topics that are most relevant to this research: (a)
incorporating domain text in BERT during model
training and (b) combining knowledge graph infor-
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mation with BERT. We also summarize the state-of-
the-art techniques for extracting clinical relations
from text.
Incorporating domain text in BERT: There are
quite a few BERT models which have been
trained (or fine-tuned) with bio-medical text:
BioBERT (Lee et al., 2020) is pre-trained on
PubMed abstracts and PMC full-text articles; Clin-
icalBERT (Alsentzer et al., 2019) is pre-trained on
the clinic notes in the MIMIC-III database (John-
son et al., 2016); BlueBERT (Peng et al., 2019a)
is pre-trained on the PubMed abstracts and the
clinical notes in MIMIC-III; PubMedBERT (Gu
et al., 2020) is pre-trained using abstracts from
PubMed and full-text articles from PMC. Among
them, BioBERT and BlueBERT are initialized with
weights from a general-domain BERT model, Clin-
icalBERT is initialized from BioBERT, and Pub-
MedBERT is trained from scratch.
Combining knowledge graph information with
BERT: The simplest method to combine knowl-
edge graph information with BERT is concate-
nation. For example, (Jeong et al., 2020) com-
bines knowledge graph embedding trained using
Graph Convolution Networks (GCN) with BERT
embeddings for citation recommendation. Efforts
to directly inject knowledge graph information into
BERT can be further categorized into the following
categories. (a) Joint optimization with knowledge
graph objectives: Clinical KB-BERT (Hao et al.,
2020) pre-trained BERT with a knowledge graph
objective. In addition to predicting masked words,
a triplet classification objective is added, where
given a triplet of two concepts and a relation in
UMLS, the model aims to correctly predict if the
relationship exists between the two concepts. (b)
Fusing entity embeddings from knowledge graphs
with BERT: (Peters et al., 2019) first retrieves pre-
trained entity embeddings from a knowledge graph,
then uses them to update BERT word embeddings
via word-to-entity attention. (Weinzierl et al., 2020)
incorporates entity embeddings learned from a
UMLS knowledge graph into BERT using adver-
sarial learning. (c) Augmenting BERT input with
knowledge graph information: (Liu et al., 2020)
presents K-BERT in which triples from knowl-
edge graphs are added into the input sentences be-
fore sent to BERT. In (Mitra et al., 2019), relevant
knowledge statements are assigned to each training
instance and BERT is fine-tuned on the modified
training data to facilitate question answering tasks.

Clinical relation extraction: Early work on clin-
ical relation extraction employed supervised ma-
chine learning with a wide range of hand-crafted
features such as lexical features, syntactic features
as well as semantic features extracted from external
knowledge resources such as UMLS, cTAKES, and
Medline. Among them, (de Bruijn et al., 2010; Mi-
nard et al., 2011) derived concept mapping and con-
cept types based on UMLS. Later, pre-trained word
embeddings (e.g. Word2Vec) became the most
popular input features for relation extraction. A
neural network-based classifier (e.g., CNN, LSTM,
GCN) is often used to predict clinical relations
based on word embeddings (Sahu et al., 2016; Luo
et al., 2018; Li et al., 2019; Ningthoujam et al.,
2019). Word embedding features were frequently
combined with additional features such as word
types, POS tags, IOB encoding of semantic con-
cepts, relative distance, and dependency relations
to further improve performance (Hasan et al., 2020).
Recently, BERT-based text embedding has gained
dominance due to it superior performance (Peng
et al., 2019b). (Wei et al., 2019) is the first to com-
bine BERT embeddings with traditional IOB tags.
(Hasan et al., 2020) combines part-of-speech, IOB
encoding, relative distance and dependency tree
information with BERT. (He et al., 2020; Weinzierl
et al., 2020) utilized pre-trained UMLS knowledge
graph embeddings to enhance BERT.

Despite a substantial body of research on clini-
cal relation extraction, it is still an open question
in terms of what is the best method to integrate
bio-medical knowledge graphs (e.g., UMLS) into
BERT for clinical relation extraction.

3 Methodology

The main steps in this research include: (a) gen-
erating text embeddings using BERT, (b) aligning
the entities in text with the concepts in UMLS, (c)
generating UMLS knowledge graph embeddings
and (d) integrating UMLS knowledge with BERT.

3.1 Generating Text Embeddings Using
BERT

(Wu and He, 2019) shows that incorporating in-
formation about the target entities along with a
BERT sentence representation greatly benefits re-
lation classification. To implement this, given a
sentence S, we insert four markers e11, e12, e21
and e22 at the beginning and end of the two target
entities (e1,e2) in a relation. In the i2b2 relation
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extraction dataset, the ground truth entity locations
were provided as the input to the relation extrac-
tion model. After inserting these special tokens,
for a sentence “The patient was given ibuprofen for
high fever.” with target entities “ibuprofen” and
“fever” becomes: “[CLS] The patient was given
e11 ibuprofen e12 for high e21 fever 22 . [SEP]”.
Based on the positions of the two target entities in
the BERT embedding, entity embeddings (EE) can
be calculated. Then sentence embedding derived
from the [CLS] token embedding and the entity
embeddings are concatenated and passed through a
fully connected layer to generate a representation
that contains both sentence and entity embeddings
(BERT+EE).

3.2 Text and UMLS Concept Alignment
To incorporate external knowledge from UMLS
into language models, we need to identify UMLS
concepts in clinical notes. We use Apache cTAKES
(Savova et al., 2010) to extract named entity men-
tions in clinical notes and align them with the con-
cepts in UMLS. cTAKES is a clinical Text Analy-
sis and Knowledge Extraction System that extracts
clinical information from unstructured text. It pro-
cesses clinical notes, identifies types of clinical
named entities such as drugs, diseases/disorders,
signs/symptoms, anatomical sites and procedures
and maps them to UMLS concepts. Using cTAKES
we can map 46,305 out of 58,688 entities in our
dataset to UMLS concepts.

3.3 Generating UMLS Knowledge Graph
Embeddings

The Unified Medical Language System (UMLS)
(Bodenreider, 2004) is a repository of biomedical
vocabularies developed by the National Library of
Medicine of US. It has three knowledge sources:
(a) The Metathesaurus integrates millions of con-
cepts from over 200 vocabularies. The Metathe-
saurus is organized by concepts, each concept is
characterized by a unique concept identifier (CUI),
definition, attributes and relationships with other
concepts. For example, the concept “Headache”
(CUI C0018681) has a definition “The symptom
of pain in the craninal region” and it is related to
the concept “Acetanilide” (CUI C0000973) with
the relation “may treat”. (b) Semantic Network
provides consistent categorization of all concepts
represented in the UMLS Metathesaurus. Each con-
cept in the Metathesaurus is assigned one or more
semantic types, which are linked with each other

through semantic relationships. Each semantic type
has an identifier, a definition, a few examples, and
a few relationships. Semantic groups are smaller
and coarser-grained semantic type groupings. For
example, the semantic type of “Headache” is “Sign
or Symptom” and its semantic group is “Disorder”.
(c) SPECIALIST Lexicon and Lexical Tools in-
clude a large syntactic lexicon and tools for nor-
malizing strings, generating lexical variants, and
creating indexes.

Both the Metathesaurus and the Semantic Net-
work can be considered as multi-relational knowl-
edge graphs with nodes representing concepts or
semantic types and edges representing relations.
Each relationship is represented as a triplet (h, r,
t), indicating a relationship (r) between two nodes
(h and t). We use a subset of the Metathesauras
and the complete semantic network to create our
knowledge graph (KG). Specifically, we select all
the CUIs extracted from our dataset using cTAKES.
Then we select a subset of the Metathesauras by
collecting all CUIs and relations that are one hop
away from the initial set of CUIs. We connect
this graph with the semantic network by including
CUIs and their semantic type relationships. This
created knowledge graph contains 312,474 nodes
and 1,613,019 relations. An example of the created
knowledge graph can be seen in figure 1.

Once the knowledge graph is created, we
tested the effectiveness of several popular Knowl-
edge Graph Embedding (KGE) models such as
a translation-based model TransE (Bordes et al.,
2013), two semantic matching models DistMult
(Yang et al., 2014) and ComplEx (Trouillon et al.,
2016) and a convolution network based models
(Dettmers et al., 2018) and ConvKB (Nguyen et al.,
2017) to create UMLS knowledge graph embed-
dings. We evaluate the effectiveness of these meth-
ods on a link prediction task, which predicts an
entity that has a specific relation with a given entity,
i.e., predicting h given (r, t) or t given (h, r). Among
these KGE methods, ComplEx performed the best
on the link prediction task. As a result, we only
use knowledge graph embeddings from ComplEx
in our experiments. From KGE, we can extract
concept embedding, semantic type embedding, se-
mantic group embedding and relation embedding.

3.4 Integrating UMLS knowledge with BERT

In our experiments, we primarily use ClinicalBERT
trained on clinical text corpora. We systematically
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Figure 1: A snippet of a knowledge graph created from UMLS

investigate different techniques to infuse knowl-
edge from UMLS with pre-trained ClinicalBERT.
We have examined the following methods.

ClinicalBERT-EE-KGE: The first technique we
tried is to combine knowledge graph embedding
with the text embeddings from ClinicalBERT and
feed them to the relation classifier. For two en-
tities in an input sentence, we retrieve their re-
spective concept embeddings (CT), semantic type
embeddings (ST) and semantic group embeddings
(SG) from KGE. In addition, for a pair of concepts
mapped from two entities in a sentence, we use
KGE to predict the UMLS relation between them.
Then we retrieve the UMLS relation embedding
from KGE. Finally, we concatenate all the KGE
embeddings with the sentence and entity embed-
dings from ClinicalBERT for relation classification.
Please note that in this approach, text embeddings
and knowledge graph embeddings are in two sepa-
rate embedding spaces.
ClinicalBERT-EE-MLP: Effectively merging
knowledge graph embeddings with BERT can be
tricky. Because pre-trained language models, such
as BERT, are often trained for 2 to 5 epochs with
smaller learning rate during fine-tuning, whereas
graph embedding features extracted from KGE
need to be trained for much longer with a higher
learning rate. If we directly concatenate the BERT
output with the KGE features, the relation classi-
fier might not benefit much from the KGE features.
To solve this issue, we first train a multi-layer per-
ceptron (MLP) with knowledge graph embeddings
for relation classification. The output of the MLP

hidden layer is combined with BERT text embed-
dings in relation classification. The use of a trained
MLP ensures that the model does not underfit when
trained in an ensemble with pre-trained BERT mod-
els for a small number of epochs.
ClinicalBERT with Relation Indicator: In each
input sentence, relevant knowledge from a knowl-
edge graph is injected into an input sentence to
BERT, which transforms the original sentence into
a knowledge-enriched text input. We add knowl-
edge from UMLS as the second sentence in the
BERT input. Then, we feed both the original in-
put sentence and the synthesized second sentence
to pre-trained ClinicalBERT and it will use these
knowledge enriched sentences to predict relation
labels. With this method, we inject UMLS knowl-
edge directly into the BERT embedding space. To
construct this second sentence, first, we find cor-
responding CUIs for the two entities in a sentence
using cTAKES. Then we use pre-trained KGE to
predict the UMLS relation between them. Then
we construct the second input sentence in the form
of “concept1 relation concept2”. For the input sen-
tence “The patient was given ibuprofen for high
fever”, we first map “ibuprofen” and “fever” to their
UMLS CUIs. Pre-trained KGE predicts the UMLS
relation between them is “may_treat”. Then we
construct the second sentence as “ibuprofen may
treat fever”. This KGE-predicted UMLS relation
can potentially act as a relation indicator that may
help to differentiate relation class labels. To pass
this relation indicator information to BERT, we use
special tokens before and after the relation indica-
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tor phrase. These tokens are used to extract the
relation indicator embedding from BERT. Finally,
the combined sentence embedding, entity embed-
ding and relation indicator embedding are used for
relation classification. For example, the final input
would be “[CLS] Patient was given e11 ibuprofen
e12 for high e21 fever e22 . [SEP] ibuprofen r31
may treat r32 fever . [SEP]”. We also tried a variety
of templates to generate the second sentence where
each entity is replaced by its semantic type or se-
mantic group. In the same example, the second
sentence would be “pharmacologic substance r31
may treat r31 sign or symptom” or “drug and chem-
ical r31 may treat r31 disease and disorder”, where
“pharmacologic substance” and “sign or symptom"
are the semantic types of “ibuprofen” and “fever”,
and “drug and chemical” and “disease and disor-
der” are the semantic groups of “ibuprofen” and
“fever”. We call these models ClinicalBERT-EE-RI-
CT, ClinicalBERT-EE-RI-ST and ClinicalBERT-
EE-RI-SG where “RI” stands for “relation indica-
tor”, “CT” for “concept”, “ST” for “semantic type”
and “SG” for “semantic group”.
ClinicalBERT with Entity Definition: In this
method, we fine-tune BERT not only with input
sentences but also with the text descriptions of
the two entities. For entities in an input sentence,
we extract their corresponding concept definitions
from UMLS. They are used as the input to BERT
to get concept embeddings (ClinicalBERT-EE-ED-
CT). We can also generate semantic type embed-
dings using its definitions (ClinicalBERT-EE-ED-
ST). These definitions are fed to a separate BERT
model as input. Text representations are extracted
based on the special entity markers we inserted. We
use the [CLS] token embeddings related to the con-
cept and semantic type definitions as the concept
and semantic type embeddings. These embeddings
are concatenated with the text embeddings of the
input sentence in relation classification. There are
no definitions for semantic groups in UMLS.
ClinicalBERT-EE-KB: UMLS knowledge is in-
fused into BERT by jointly optimizing both a
knowledge graph objective and a masked language
model objective. Jointly optimizing the two objec-
tives can implicitly integrate knowledge from exter-
nal knowledge graphs into language models. Here
we adopt the pre-trained Clinical KB-BERT (Hao
et al., 2020) in our analysis.
ClinicalBERT-EE-KB-MLM: In this method, we
pre-train BERT with UMLS information with

only the masked language model (MLM) objec-
tive. We use the abbreviations provided by UMLS
to map a triple into a natural language sentence
(e.g., generating a sentence like “fever may be
treated by ibuprofen” based on the triple (fever,
may_be_treated_by, ibuprofen). In this way, we
can get a set of sentences based on the triples
in UMLS. We have created a total of 1,613,019
UMLS sentences. We then fine-tune ClinicalBERT
with these UMLS sentences using only the MLM
objective. By transferring the knowledge graph
into natural language texts, we fuse UMLS knowl-
edge with BERT in the same representation space.
We call this model ClinicalBERT-EE-KB-MLM.

Summary of Methods: Table 1 summarizes the
methods we proposed to add domain knowledge to
BERT. We characterize them along multiple dimen-
sions: infusion stage, type of domain knowledge
added, form of domain knowledge added and fu-
sion methods.
Fusion stage: Domain knowledge fusion can hap-
pen (a) during BERT model training, which results
in a BERT model that is aware of the domain infor-
mation encoded in clinical notes or UMLS (BERT-
train) and (b) during BERT prediction, where do-
main knowledge is combined with the input or out-
put of BERT in relation classification (we call them
BERT-PredIn or BERT-PredOut).
Knowledge type: Additional domain knowledge
can be characterized into (a) domain text cor-
pora such as clinical notes or PubMed publica-
tions (Text-Corpora), (b) UMLS concept, semantic
type, semantic group, relation as well as UMLS
triples with two entities and one relation (UMLS-
CT, UMLS-ST, UMLS-SG, UMLS-RE, UMLS-
triple) and (c) UMLS concept and semantic type
definitions (UMLS-CTD and UMLS-STD).
Knowledge form: Before fusion, domain knowl-
edge is transformed into (a) embedding features ex-
tracted from KGE or KGE with MLP fine turning
(embedding) or (b) text which are either synthetic
sentences generated from UMLS or entity descrip-
tions extracted from UMLS (text) or (c) training
objective where knowledge graph training objec-
tive is combined with the BERT training objective
to fuse knowledge in BERT (Training-Obj).
Fusion method: Finally, in terms of fusion meth-
ods, we characterize them into (a) concatenation
where BERT features are concatenated with knowl-
edge graph features in relation classification, (b)
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Method Stage Knowledge Type Knowledge Form Fusion Methods

ClinicalBERT-EE-KGE BERT-PredOut UMLS-(CT,ST,SG,RE) Embedding Concatenate
ClinicalBERT-EE-MLP BERT-PredOut UMLS-(CT,ST,SG,RE) Embedding Concatenate
ClinicalBERT-EE-RI-CT BERT-PredIn UMLS-(CT,RE) Text BERT-Fuse
ClinicalBERT-EE-RI-ST BERT-PredIn UMLS-(CT,RE) Text BERT-Fuse
ClinicalBERT-EE-RI-SG BERT-PredIn UMLS-(SG,RE) Text BERT-Fuse
ClinicalBERT-EE-ED-CT BERT-PredIn UMLS-CTD Text BERT-Fuse
ClinicalBERT-EE-ED-ST BERT-PredIn UMLS-STD Text BERT-Fuse
ClinicalBERT-EE-KB BERT-train UMLS-Triple Training-Obj Joint-Opt
ClinicalBERT-EE-KB-MLM BERT-train UMLS-Triple Text BERT-Tune

Table 1: Summary of the knowledge fusion methods

joint optimization with both BERT and knowledge
graph objectives (Joint-Opt), (c) BERT fine-tuning
on sentences synthesized from UMLS using only
the BERT training objective (BERT-Tune) and (d)
BERT-fusion where additional domain knowledge
is provided as the second sentence to BERT so that
BERT itself becomes the fusion mechanism to com-
bine domain knowledge with each input sentence
(BERT-Fuse).

4 Experiments and Results

4.1 Dataset Description
For this study, we use the clinical relation ex-
traction dataset from the 2010 i2b2/VA on Nat-
ural Language Processing Challenges for Clini-
cal Records. This dataset contains discharge sum-
maries and progress reports from different health-
care providers. The relation extraction task is to
identify nine target relations between three types of
medical concepts: treatments, problems and tests.
The dataset used during the 2010 i2b2/VA chal-
lenge includes a total of 394 training reports, 477
test reports, and 877 un-annotated reports. After
the challenge, however, only a part of the data was
publicly released. The dataset we downloaded from
the i2b2 website1 only includes 170 training and
256 testing documents. Descriptions and statistics
of the target relations can be found in table 2.

4.2 Experiment Details
In all the BERT-based classifiers, we use both the
BERT sentence embedding and entity embedding
(EE). We train all classifiers for 5 epochs with a
learning rate of 0.00002 and a batch size of 8 with
a softmax classification layer.

In addition, for ClinicalBERT-EE-KGE we con-
catenate 700 dimensional KGE with 768 dimen-
sional BERT text representations. This 1468 di-

1https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

mensional vector is used as the input to the softmax
layer. To implement ClinicalBERT-EE-MLP, we
first train a MLP with KGE as the input. We use a
single hidden layer consisting of 128 hidden units,
a tanh activation function and a final linear layer
with a softmax function to make predictions. We
train this model for 50 epochs with a learning rate
of 0.001 and a batch size of 32. After the MLP
model is trained, we combine the output of the
hidden layer (a 128 dimensional vector) with the
BERT text embeddings (a 768 dimensional vector).
This combined vector is connected to a linear layer
and a softmax function to make predictions. In
ClinicalBERT-EE-RI-CT/ST/SG, we employ dif-
ferent variations of the second input sentence. Text
embedding is created by combining sentence em-
bedding, entity embedding and relation indicator
embedding. We connect the combined embeddings
to a fully connected layer. In addition, we combine
sentence embedding (768 dimensional vector) with
two concept embedding (each a 768 dimensional
vector) to create a 2304 dimensional input vector in
ClinicalBERT-EE-ED-CT/ST. ClinicalBERT-EE-
KB uses only the 768 dimensional text embedding.
We pre-train ClinicalBERT-EE-KB-MLM with 4.4
million token text created from the UMLS knowl-
edge graph with 425K steps and a learning rate of
0.00002. We initialized this model with weights
from ClinicalBERT.

4.3 Baseline Methods

To compare with the current state-of-the-art, we
consider systems that employ the same number of
training instances and define the classification task
with the same granularity level as ours. So far, we
have found only two existing systems (Li et al.,
2019; Hasan et al., 2020) meeting these criteria.
In addition, (He et al., 2020) and (Weinzierl et al.,
2020) also integrate UMLS knowledge into BERT
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Relation Type Total Sentences

Treatment improve or cure medical problem (TrIP) 203
Treatment worsen medical problem (TrWP) 133
Treatment caused medical problems (TrCP) 526
Treatment administered medical problem (TrAP) 2617
Treatment was not administered because of medical problem (TrNAP) 174
Test reveal medical problem (TeRP) 3053
Test conducted to investigate medical problem (TeCP) 504
Medical problem indicates medical problems (PIP) 2203
No Relation (None) 19932

Table 2: Statistics of the relation extraction dataset from the 2010 i2b2/VA challenge

for this task. Their reported weighted F1 scores
are 0.747 and 0.782 respectively. But we did not
include them in table 3 because either the total
number of relations considered or the classification
granularity (number of relation classes) are differ-
ent from ours. To systematically investigate the ef-
fectiveness of different knowledge fusion methods,
we consider multiple baselines. To evaluate the ad-
vantages of text embeddings generated from BERT
over static embedding models (e.g. Word2Vec,
Doc2Vec), we include baselines with static embed-
dings as well. We train a Word2Vec (Mikolov et al.,
2013) and Doc2Vec (Le and Mikolov, 2014) model
using the MIMIC-III clinical corpus (Johnson et al.,
2016) plus the sentences in the i2b2 dataset. We
implemented the following baselines with static
text embeddings.

• (Word2Vec+biLSTM) : To generate sentence rep-
resentations, we use a bidirectional LSTM to
aggregate word embeddings in a sentences. This
sentence representation is fed into a fully con-
nected layer with ReLu activation and a linear
layer with softmax activation.

• KGE+Word2Vec+biLSTM: Here we concate-
nate pre-trained knowledge graph embed-
dings with sentence embeddings generated by
Word2Vec+biLSTM. These combined embed-
dings are used for classification.

• Doc2Vec : We use Doc2Vec generated sentence
representations for classification.

• KGE+Doc2Vec : We combine Doc2Vec sentence
presentations with pre-trained knowledge graph
embeddings for classification.

To show the impact of domain text, we consider a
baseline model where we use text embedding from
BERT trained on general domain text (BERT-EE).
We also consider a baseline where we only use

sentence representations from BERT (BERT). This
is to show the advantage of incorporating entity
embeddings.

4.4 Performance Evaluation

In this section, we evaluate the effectiveness of dif-
ferent methods in incorporating additional knowl-
edge into BERT. We use a 80%-20% train and test
split and report the average result over multiple
runs for each model. We calculate per class (9
class) and weighted F1 scores. The results of all
the models can be found in table 3.

Quality of Text embedding: To investigate
the quality of different types of sentence em-
bedding techniques, we first compare the results
from Word2Vec+biLSTM/Doc2Vec and BERT-
base. Here sentence embedding from BERT-base
(BERT) achieved significant improvement (3.96%
and 29.91% ) over sentence representations learned
from Word2Vec+biLSTM and Doc2Vec. Moreover,
entity informed text representation from BERT-
base (BERT-EE) achieved an impressive 24.57%
performance boost over a model that used only the
BERT sentence embedding (BERT).

Impact of domain text: To see the effect of
domain text, we use ClinicalBERT. Since entity-
informed text representation achieves high perfor-
mance, we continue to use that. Our result shows
that ClinicalBERT-EE improves the performance
by 0.97% over a general domain BERT-EE model.

Impact of UMLS knowledge: To demonstrate
the impact of additional UMLS knowledge, we
combine knowledge graph embeddings with both
static text embeddings and ClinicalBERT text em-
beddings. While combined with Word2Vec and
Doc2Vec embeddings, UMLS information results
in a 10.23% and a 15.81% performance gain over
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Model Name No Relation PIP TeCP TeRP TrAP TrCP TrIP TrNAP TrWP
9 Class

F1 Score

(Li et al., 2019) N/A 0.6333 0.6117 0.8444 0.7974 0.6213 0.6159 0.4227 0.4457 0.7434
(Hasan et al., 2020) 0.9275 0.7896 0.6437 0.8685 0.8057 0.6320 0.5000 0.4025 0.2262 0.8808

Word2Vec-biLSTM 0.8398 0.2924 0.2047 0.4536 0.5334 0.3298 0.1453 0.0621 0 0.6979
KGE-Word2Vec-biLSTM 0.8610 0.4554 0.4374 0.6939 0.64040 0.4604 0.4141 0.3537 0.0719 0.7693

Doc2Vec 0.8057 0.0362 0 0.0165 0.0299 0 0 0 0 0.5585
KGE-Doc2Vec 0.8277 0.0091 0 0.5434 0.2604 0.0689 0 0 0 0.6468

BERT 0.8529 0.3496 0.4508 0.4059 0.5487 0.5229 0.4827 0.6153 0.4878 0.7256
BERT-EE 0.94252 0.8005 0.6870 0.8940 0.8438 0.7109 0.7059 0.7288 0.5053 0.9039

ClinicalBERT-EE 0.9473 0.8085 0.7102 0.9045 0.8654 0.7559 0.6935 0.7469 0.5304 0.9127

ClinicalBERT-EE-KGE 0.9486 0.8149 0.7373 0.9058 0.8693 0.7671 0.7027 0.7945 0.51851 0.9162
ClinicalBERT-EE-MLP 0.9459 0.8209 0.7019 0.9008 0.8616 0.7823 0.7449 0.7177 0.5087 0.9124

ClinicalBERT-EE-RI-CT 0.9456 0.8277 0.7115 0.9003 0.8684 0.7745 0.7489 0.7490 0.4685 0.9133
ClinicalBERT-EE-RI-ST 0.9490 0.8270 0.7358 0.9146 0.8691 0.7980 0.7218 0.7955 0.4835 0.9181
ClinicalBERT-EE-RI-SG 0.9469 0.8290 0.7195 0.9018 0.8605 0.7740 0.7331 0.7404 0.5460 0.9140

ClinicalBERT-EE-ED-CT 0.9449 0.8205 0.7357 0.9074 0.8721 0.7081 0.7567 0.7415 0.6037 0.9137
ClinicalBERT-EE-ED-ST 0.9439 0.8128 0.7113 0.8994 0.8563 0.7692 0.7123 0.7536 0.5806 0.9107

ClinicalBERT-EE-KB 0.9473 0.8301 0.7429 0.9102 0.8792 0.7821 0.7435 0.8195 0.5094 0.9177
ClinicalBERT-EE-KB-MLM 0.9425 0.8211 0.6967 0.8947 0.8597 0.7112 0.7446 0.7491 0.5150 0.9078

Support 19932 2203 504 3053 2617 526 203 174 133 29345

Table 3: Overall System Performance

Word2Vec-biLSTM and Doc2Vec, ClinicalBERT-
EE-KGE (F1=0.9162) provides a 0.38% increase in
performance over ClinicalBERT-EE (F1=0.9127).
However, ClinicalBERT-EE-MLP (F1=0.9124) did
not perform as well. We hypothesize that im-
portant information is lost when the 128 dimen-
sional hidden layer vectors are used (versus the
700 dimensional knowledge graph embedding vec-
tors). Next, we try to inject knowledge graph in-
formation directly into BERT input. Out of the
three variations, ClinicalBERT-EE-RI-ST (with
semantic type information and relation indicator
in the second input) performed the best. This is
our overall best performing model, achieving an
F1-score of 0.9181. The relation indicator pre-
dicted by KGE may play an important role to boost
the performance. Adding domain knowledge pro-
vides 0.59% improvement over ClinicalBERT-EE.
From the results of ClinicalBERT-EE-ED-CT and
ClinicalBERT-EE-ED-ST we can see that concept
definitions and semantic type definitions did not
help much. We hypothesize that the entity em-
beddings learned from BERT or the concept em-
beddings from KGE may be more precise than
the embeddings learned from their text definitions.
Next, we move on to pretrain BERT with knowl-
edge graph information. Here we can see that
ClinicalBERT-EE-KB is our second-best perform-
ing model with an F1-score of 0.9177. Finally,
when we pre-train BERT with knowledge graphs
using a Masked Language Model objective, we see

that result (F1=0.9101) slightly went down com-
pared to ClinicalBERT-EE (F=0.9127). This in-
dicates that incorporating knowledge into BERT
using knowledge graph objective may be more ef-
ficient than injecting UMLS sentences with a lan-
guage model objective.

5 Conclusions

In this research, we have explored a wide range of
techniques to incorporate the bio-medical knowl-
edge base UMLS into BERT for clinical relation
extraction. Based on our results, we found that (a)
locating, extracting and adding entity embeddings
from BERT is highly effective for relation extrac-
tion (24.57% improvement); (b) general-domain
BERT with entity embedding achieved very high
performance for clinical relation extraction (0.9039
F1-score); (c) adding domain-specific information
such as domain text (in ClinicalBERT) or UMLSdo-
main knowledge (in ClinicalBERT-EE-RI-ST) only
results in moderate performance gain (0.97% in-
crease for adding domain text, an additional 0.59%
increase for adding UMLS and total 1.56% for
adding both); (d) the most effective method to fuse
UMLS knowledge into BERT is BERT itself. The
best performing model ClinicalBERT-EE-RI-ST,
transforms a corresponding triplet inferred from
UMLS into a natural language sentence, which is
added as the second sentence to BERT.
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