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Abstract

We address the sampling bias and outlier is-
sues in few-shot learning for event detection,
a subtask of information extraction. We pro-
pose to model the relations between training
tasks in episodic few-shot learning by intro-
ducing cross-task prototypes. We further pro-
pose to enforce prediction consistency among
classifiers across tasks to make the model more
robust to outliers. Our extensive experiment
shows a consistent improvement on three few-
shot learning datasets. The findings suggest
that our model is more robust when labeled
data of novel event types is limited. The source
code is available at http://github.com/
laiviet/fsl-proact.

1 Introduction

In Information Extraction, Event Detection (ED)
is an important task that aims to identify and
classify event triggers of predefined event types
in text (Walker et al., 2006). Event triggers are
words/phrases that most clearly indicate the occur-
rence of events. For example, an event detector
should recognize the word homicide in the fol-
lowing sentence as a trigger word of event type
life.die.death-caused-by-violent-events:

... the medical examiner believed the manner of
death was an accident rather than a homicide.

Typical ED systems follow a supervised learning
scheme that requires a large amount of labeled data
for each predefined event type (Ji and Grishman,
2008; Nguyen and Grishman, 2015; Chen et al.,
2015; Nguyen et al., 2021). Unfortunately, this
requirement is usually too costly to achieve in real
applications where novel event types emerge and
only a few examples are available (Huang et al.,
2018). As such, an ED model should be prepared
to extract triggers of novel event types (i.e., beyond
those provided in the training data) for which only
a few examples are provided. This learning schema
is known as Few-Shot Learning (FSL) for ED.

To emulate the learning from few examples in
ED, N -way K-shot episodic training is often used
to exploit existing datasets (Lai et al., 2020b; Deng
et al., 2020; Lai et al., 2020a, 2021). In each train-
ing iteration, a small subset (i.e. support set) of N
event types with K examples per type is sampled
from the training data. Unfortunately, the sample
size is so small (K ∈ [1, 10]) that the FSL models
might suffer from sample bias, thus hindering the
generalization to novel event types.

Prototypical network is a popular metric-based
few-shot learning model (Snell et al., 2017) that has
been explored for FSL ED (Lai et al., 2020b; Deng
et al., 2020). It introduces a prototype vector for
each event type by averaging the representations of
the instances of that type. A non-parametric classi-
fier then predicts the event type of a query instance
based on its distances from the prototypes (Snell
et al., 2017). Hence, an outlier in the support set
might significantly change the prototypes and flip
the label of the query instance. In addition, in ED, a
NULL class is introduced to represent non-eventive
mentions. This type covers every domains and ev-
ery surface form except the relevant event types.
Thus, this unbounded class might also present a
great source of outliers for the support set.

In this paper, we mitigate the effects of poor
sampling and outliers by modeling cross-task re-
lation. First, we propose to augment the support
data of the current task with those from prior tasks
that essentially helps increase the population of the
current support set. Therefore, it can mitigate the
sample bias in the support set. Second, the aver-
aging in prototypical network allows outliers to
contribute equally to the prototype representation.
We propose to use soft-attention to select the most
related data samples as well as reduce the contribu-
tion of the outliers to the prototype representation.
Third, a FSL model that is resistant to the outliers
should produce consistent predictions regardless of
support data. To implement this, we produce two
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prototypical-based classifiers from the two support
sets of the two tasks. After that, we enforce the
consistency of their predictions on query instances.

2 Model

Preliminary: In this paper, the event detection
problem is formulated as a N + 1-way K-shot
episodic few-shot learning problem (Vinyals et al.,
2016; Lai et al., 2020b). The model is given two
sets of data: a support set S of labeled data, and
a query set Q of unlabeled data. S consists of
(N +1)×K data points in which N is the number
of positive event types and K is the number of
samples per event type. The model is supposed to
predict the labels of the data in the query set based
on the observation of the novel event types given
in the support set. Formally, a FSL task with a
support set and a query set is defined as follows:

S = {(sji , a
j
i , y

j)|i ∈ [1,K]; j ∈ [0, N ]}
Q = {(sjq, ajq, yjq)|q ∈ [1, Q]; j ∈ [0, N ]}
T = (S,Q); Y = {yj |j ∈ [0, N ]}

where a data point (sji , a
j
i , y

j) denotes a sentence
sji with trigger candidate aji and event type yj .
Similar to prior studies in event detection, we add
y0 = NULL to represent non-eventive type.

During training, development, and testing, the
task T is sampled from three sets of data Dtrain,
Ddev, and Dtest whose sets of classes are Ytrain,
Ydev, and Ytest, respectively. These sets of classes
are mutually disjoint to ensure that the model ob-
serves no more than K examples from a novel
class.

A typical FSL model has two main modules:
an encoder and a few-shot classifier. An encoder,
denoted as φ, encodes an instance into a fixed-
dimension vector vji = φ(sji , a

j
i ) ∈ Ru where u is

the dimension of the representation vector. A few-
shot classifier classifies a query instance among
classes appearing in the support set. For instance,
in a prototypical network, a prototype vj is a class-
representative instance that is an average of all vec-
tors of the j-th class vj = 1

K

∑K
i=1 φ(s

j
i , a

j
i ).

Then the distance distribution of the query in-
stance q = {sq, aq, yq} (Snell et al., 2017) is:

P (q = yj ;S) = e−d(vq ,v
j)∑N

k=1 e
−d(vq ,vk)

(1)

The training minimizes the cross-entropy loss, de-

noted by Lce, over all query instances:

L1(S,Q) =
∑
q∈Q

Lce(yq, P (q;S)) (2)

Cross-task data augmentation: In conven-
tional episode training, two consecutive training
tasks T1 and T2 are not likely to share an identical
event type sets, Y1 6= Y2. We assume that our
training process has a memory to save the latest
samples of every event type used in prior tasks.
Using this memory, after a certain number of train-
ing iterations, for a new task T1, a second sample
T2 can always be sampled from the memory such
that Y2 = Y1. The expected value of delaying
iterations for 5-way on ACE dataset is 13 itera-
tions (stdev = 4) and RAM dataset is 98 iterations
(stdev = 24) based on 1M simulations.

Prototype Across Task We are given two tasks
T1 = (S1,Q1) and T2 = (S2,Q2) sampled with
the same set of event type Y . The prototypes are
induced from both tasks as follow:

Let ES
1 , E

S
2 , E

Q
1 , E

Q
2 be the representation

vectors of S1,S2,Q1,Q2, respectively, where
ES

1 , E
S
2 ∈ R(N+1)K×u and EQ

1 , E
Q
2 ∈

R(N+1)Q×u (returned by φ). Then, an attention
module, denoted by att, induces intermediate rep-
resentations for the support and query instances of
T1 via weighted sums of the support vectors of the
T2, and vice versa:
Ĥ

(·)
1 = att(E

(·)
1 , ES

2 ) =
1√
u

sm(E
(·)
1 (ES

2 )
T )ES

2

Ĥ
(·)
2 = att(E

(·)
2 , ES

1 ) =
1√
u

sm(E
(·)
2 (ES

1 )
T )ES

1

The final representations for both tasks are then
the sum of their original representations and the
cross-task representations: H(·) = E(·) + Ĥ(·).
Then, the prototypes for tasks T1 and T2 are com-
puted by averaging vectors of the same class from
HS1 and HS2 , respectively (Snell et al., 2017).

Cross Task Consistency The Cross Task Con-
sistency (CTC) further reduces the sample bias by
introducing prediction consistency between classi-
fiers generated from two tasks. Without loss of gen-
eration, we assume that one of the classifiers is im-
paired by the poor sampling. We employ the knowl-
edge distillation technique (Hinton et al., 2015) that
helps transfer knowledge from the stronger classi-
fier to the weaker one. This thus makes the model
more robust to the sample bias. We enforce the
cross task consistency by minimizing the differ-
ences between predicted label distributions from
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the classifiers of two tasks as follow:

L2 = KL(fS1(Q1), fS2(Q1))

+KL(fS1(Q2), fS2(Q2))
(3)

where fS is a prototypical classifier trained from
a support set S and KL denotes the Kull-
back–Leibler divergence.

Finally, to train the model, we minimize the total
loss (α is a hyper-parameter):

L = L1(S1,Q1) + L1(S2,Q2) + αL2 (4)

Testing: As the model does not have access to the
prior task of the novel class, the prototypes are com-
puted based on the vectors of the current task only.
Hence, the model turns into the original Prototyp-
ical Network (Snell et al., 2017). Our proposed
methods only appy to the training process, hence,
it provides a fair performance compared with prior
FSL ED models.

3 Experiment

Dataset: We evaluate the proposed model on three
event detection datasets. RAMS is a recently re-
leased large scale dataset; it provides 9124 human-
annotated event triggers for 139 event subtypes
(Ebner et al., 2020). ACE is a benchmark dataset
in event extraction with 33 event subtypes (Walker
et al., 2006). LR-KBP is a large scale event de-
tection dataset for FSL. It merges ACE-2005 and
TAC-KBP datasets and extends some event types
by automatically collecting data from Freebase and
Wikipedia (Deng et al., 2020). Since RAMS and
ACE datasets are designed for supervised learn-
ing, we need to resplit them for FSL training. We
use the exact training/development/testing split for
ACE as presented in a prior study (Lai et al., 2020b).
Following the same method, for RAMS, we merge
the original training/development and testing splits.
Then we discard 5 event subtypes whose number
of samples are not sufficient for sampling. Finally,
we use event types: (Artifact-Existence, Conflict,
Contact, Disaster, Government, Inspection, Manu-
facture, Movement) for training, (Justice, Life) for
development, and (Personnel, Transaction) for test-
ing. For the LR-KBP dataset, we follow the same
5-fold cross-validation procedure as (Deng et al.,
2020), then report the average performance. The
numbers of event subtypes for the development and
testing sets are set to 10 (Deng et al., 2020). The
details of the splits are presented in table 1.

Split RAMS ACE LR-KBP∗
#C #S #C #S #C #S

Train 95 5,340 18 2,865 72 6,732
Dev 17 1,934 11 1,227 10 561
Test 22 1,793 11 1,226 10 1,291

Table 1: Statistics of three datasets. #C and #S de-
note the number of classes and the number of samples,
respectively. ∗ The figures of one of the five folds.

FSL setting: We evaluate the model on 5+1-
way 5-shot and 10+1-way 10-shot FSL settings.
As it has been observed that training with more
classes helps improve the model performance, we
use 18+1 classes during training, while keeping
5+1 and 10+1 novel classes during testing.

Baseline: We consider three strong baselines for
FSL ED. Proto features a prototype for each novel
class and Euclidean distance function, presented
in equation 1 (Snell et al., 2017). InterIntra is
an extension of the prototypical network with two
auxiliary training signals. It minimizes the dis-
tances among data points of the same class and
maximizes the distances among prototypes (Lai
et al., 2020b). DMB-Proto extends the prototyp-
ical network in a way that the representation vec-
tor for each data point is induced by a dynamic
memory network running on the data of the same
class (Deng et al., 2020). Since the source code of
DMB-Proto is not published, we reimplement the
few-shot classifier with a dynamic memory module
(Xiong et al., 2016). We examine two state-of-the-
art BERT-based sentence encoders φ for ED, i.e.
BERTMLP (Yang et al., 2019) and BERTGCN (Lai
et al., 2020c).

Hyperparameters: In this paper, stochastic gra-
dient decent optimizer is used with learning rate
1e−4. The training/evaluation are set to 6,000 and
500 iterations respectively; the evaluation is done
after every 500 training iterations. The dimension
of the final representation is set to 512. We use
dropout rate of 0.5 to prevent overfitting. The co-
efficient of the cross-task consistency loss is set
to α = 10 based on the best development perfor-
mance (α ∈ {1, 10, 100, 1000}.

We evaluate our ED model using the micro F1-
score. The training and evaluation are done on
a single Nvidia GTX 2080Ti with 11GB of GPU
RAM. The training and evaluation take approxi-
mately 4 hours. We implement the model using
Pytorch version 1.6.0.

Result: Table 2 reports the F-scores on the de-
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Model
5+1-way 5-shot 10+1-way 10-shot

RAMS ACE LR-KBP RAMS ACE LR-KBP
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

B
E

R
T

M
L

P Proto 79.7 68.2 82.9 79.3 83.9 82.1 73.4 61.7 81.5 78.4 80.7 78.0
InterIntra 79.7 69.2 82.7 79.8 84.9 82.4 74.3 61.8 81.4 78.5 80.2 78.4
DMB-Proto 73.2 66.9 72.9 71.9 79.8 75.2 60.1 53.8 69.5 68.2 67.4 66.2
ProAcT 79.7 74.3 84.5 83.0 84.1 83.1 73.2 62.3 82.5 80.5 80.7 78.7

B
E

R
T

G
C

N Proto 82.0 71.0 83.5 82.1 87.2 84.8 72.4 60.7 83.3 80.4 83.2 80.0
InterIntra 81.3 72.4 82.8 82.3 87.1 85.0 73.7 61.9 83.0 80.7 82.8 80.5
DMB-Proto 54.9 47.2 61.4 60.9 70.8 63.3 54.3 43.0 69.4 69.7 65.8 60.4
ProAcT 82.1 75.7 86.7 84.7 88.7 87.3 73.6 62.9 83.7 81.9 85.4 83.1

Table 2: F1-score on development and test sets of models on RAMS, ACE and LR-KBP datasets on 5+1-way
5-shot and 10+1-way 10-shot settings

velopment and testing sets of the baselines and our
proposed model (called ProAcT) on three datasets.
There are two significant points from the table.
First, using the same sentence encoders, ProAcT
achieves the best performance on all three datasets
and settings. The improvement margins are in
range [1.0%-6.1%] on the 5-shot setting and [0.7%-
3.1%] on the 10-shot setting. Second, the F-score
margin between ProAcT and Proto decreases as the
shot number increases. This indicates that the pro-
posed model performs better when the number of
observed samples is small. As the number of shots
increases, the improvement gets saturated. This
finding is parallel with the fact that sample bias
is more likely when the number of shots is small.
Hence, our proposed method is more suitable to
event detection in few-shot learning schema, es-
pecially in the case where the number of shots is
limited.

Ablation study: Our proposed model involves
three factors: the cross-task data (data), the cross-
task attentive prototype (attention) and the cross-
task consistency (consistency). To analyze the ef-
ficiency of these modules, we incrementally elimi-
nate these modules from the full ProAcT model and
evaluate the remaining model on 5+1-way 5-shot
setting. If attention and loss are removed while
data remains, the model and setting become a pro-
totypical network with 5+1-way 10-shot setting dur-
ing the training. This model has the same amount
of support data that our model has during the train-
ing process. Note that the testing with novel classes
remains 5+1-way 5-shot setting for every model.
If the cross-task data is eliminated, the attentive
prototype and consistency loss are also removed
and the model and setting return to a prototypical

Model P R F
ProAcT (full model) 74.9 76.7 75.7
−attention 74.1 76.0 74.9
−consistency 73.3 75.7 74.4
−attention −consistency 72.5 74.5 73.4
−data (−attention −consistency) 69.9 72.4 71.0

Table 3: Ablation study of our proposed components
on 5+1 ways 5-shot setting on the RAMS dataset with
BERTGCN encoder. P, R, F denote precision, recall,
and f-score metrics.

network with 5+1-way 5-shot setting.
Table 3 reports the performance on 5+1-way 5-

shot FSL setting on RAMS with BERTGCN en-
coder. As shown in the table, removing any module
leads to a decrease between [0.8%-1.3%] in per-
formance. When both attention and consistency
are eliminated, the performance drops of 2.3%. A
further drop of 2.4% is seen if the cross-task data
is eliminated. These suggest that the improvement
originates from the use of cross-task data, the atten-
tion for prototype computation and the consistency
of cross-task predictions.

Analysis: To further analyze the efficiency of
our proposed method, we aim to discover which
classes benefit the most. To do that, we compute
two confusion matrices for ProAcT and Proto mod-
els on the test set of RAMS. We fix the random
seed to make sure the sampling during testing are
identical between two runs, hence ensuring that
the proportion of classes are identical. Figure 1
presents the difference of two confusion matrices
exhibited by the proposed model ProAct and the
prototypical network Proto. There are two major
observations from the figure. First, overall ProAcT
produces more accurate predictions than Proto, as
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shown on the diagonal. Second, ProAcT involves
remarkably more correct predictions for negative
examples than Proto. In the mean time, it generates
significantly lower number of errors in both false
positive and false negative related to the NULL
class, i.e. Other class in Figure 1, suggesting that
our proposed model effectively mitigates the effect
of noise introduced by the NULL class.

4 Related works

Prior studies in ED mainly follow the supervised
learning scheme. The early work focuses on feature
engineering with statistical models (Ahn, 2006; Ji
and Grishman, 2008; Liao and Grishman, 2010;
Hong et al., 2011). Recently, many deep learning
architectures have been explored for automatic fea-
ture learning (Nguyen and Grishman, 2015; Chen
et al., 2015; Nguyen et al., 2016; Feng et al., 2016;
Nguyen and Grishman, 2018; Lai et al., 2020c;
Veyseh et al., 2021). Some recent studies have also
introduced methods to extending ED to new event
types (Liao and Grishman, 2011; Huang and Riloff,
2012; Nguyen et al., 2016b,g; Chen et al., 2017;
Huang et al., 2018; Tong et al., 2020; Lai et al.,
2020b).

FSL has been extensively studied in computer
vision (Vinyals et al., 2016; Snell et al., 2017; Finn
et al., 2017; Lee et al., 2019; Fei et al., 2021). Re-
cent work has also considered FSL for tasks in
natural language processing (Han et al., 2018; Bao
et al., 2020). For ED, prior FSL work has mostly
relied on Prototypical network (Lai et al., 2020b;
Deng et al., 2020). However, these models do not
explore cross-task modeling as we do.

5 Conclusion

In this paper, we propose to exploit the relation-
ship between training tasks for few-shot learning
event detection. We compute prototypes based on
cross-task modeling and present a regularization to
enforce prediction consistency of classifiers across
tasks. The experiment results show that exploiting
cross-task relation can alleviate the poor sampling
and outliers in the support set for FSL in ED. In the
future, we will extend our method to other tasks in
information extraction such as named entity recog-
nition and argument extraction.
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Figure 1: The differences of confusion matrices between ProAcT and Proto models. On the main diagonal, a
positive value implies that ProAcT predicts more accurate than Proto, whereas on the rest of the matrix, a negative
value indicates that ProAcT creates less error than Proto. Visually, a green cell indicates that the prediction of
ProAcT is more accurate than those from Proto. Red cells suggests the cases where Proto is better than ProAcT.


