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Abstract
Document-level entity-based extraction (EE),
aiming at extracting entity-centric informa-
tion such as entity roles and entity relations,
is key to automatic knowledge acquisition
from text corpora for various domains. Most
document-level EE systems build extractive
models, which struggle to model long-term
dependencies among entities at the document
level. To address this issue, we propose a
generative framework for two document-level
EE tasks: role-filler entity extraction (REE)
and relation extraction (RE). We first formu-
late them as a template generation problem,
allowing models to efficiently capture cross-
entity dependencies, exploit label semantics,
and avoid the exponential computation com-
plexity of identifying N-ary relations. A
novel cross-attention guided copy mechanism,
TOPK COPY, is incorporated into a pre-trained
sequence-to-sequence model to enhance the
capabilities of identifying key information in
the input document. Experiments done on the
MUC-4 and SCIREX dataset show new state-
of-the-art results on REE (+3.26%), binary RE
(+4.8%), and 4-ary RE (+2.7%) in F1 score 1.

1 Introduction

Document-level entity-based extraction (EE) are
tasks that extract entity-centric information, such
as entities and their relations, from unstructured
text across multiple sentences. With the rise of big
data in recent years, document-level EE is growing
in importance with applications such as understand-
ing clinical reports (Nye et al., 2020), extracting
document-level events (Huang and Peng, 2021),
and building knowledge graphs from journals (Wu
et al., 2020). In this work, we focus on two clas-
sic tasks of document-level EE: role-filler entity
extraction (REE) and relation extraction (RE).

Recent works on document-level EE usually build
1The source code is publicly available at https://

github.com/PlusLabNLP/TempGen
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We conducted experiments on the Stanford Natural Language
Inference ( SNLI ) dataset ... (39 sentences) ...  Our best score on
this task is 87.3 % accuracy. ... (20 sentences ) ... we adopt MAP
and MRR as the evaluation metrics for this task.
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Figure 1: A comparison between our approach and a
competitive extractive system, SCIREX-P (Jain et al.,
2020), on a relation extraction example from SCIREX.
The task is to extract entities and identify which entities
are related from the given scientific article. Due to the
long distances between entities, SCIREX-P struggles
to extract the right entity pair that has a relation, while
our approach correctly identifies them. This reflects our
method’s advantage in modeling long-term cross-entity
dependencies.

task-specific classifiers on top of large pre-trained
language models. For example, Du and Cardie
(2020a) builds a sequence tagging framework with
multi-granularity representations based on BERT
(Devlin et al., 2019) for role-filler entity extrac-
tion. Jain et al. (2020) builds a relation extrac-
tion pipeline upon SCIBERT (Beltagy et al., 2019).
However, there are a few drawbacks of this model
architecture. First, as the size of the document in-
creases, it becomes increasingly difficult for extrac-
tive methods to capture cross-entity dependencies
among entitiy types due to long distances between
entities, as shown in Figure 1. Additionally, dis-
criminative models have no information regarding
the semantics of the labels when classifying rela-
tions or entity types. Thus, it is unable to take
advantage of the label semantics embedded in the
pre-trained encoders.

Motivated by these challenges, we propose to for-
mulate REE and RE tasks as template genera-
tion. Due to the autoregressive nature of generative
setup, this formulation makes dependencies among

https://github.com/PlusLabNLP/TempGen
https://github.com/PlusLabNLP/TempGen
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the output entities easier to capture compared to
sequence tagging methods. Moreover, label names
are incorporated into the decoder targets for exploit-
ing label semantics not present in the extractive
counterparts. Furthermore, for tasks that involve
the identification of N -ary relations, this formula-
tion significantly alleviates the computational com-
plexity of comparing exponential combinations of
entities. A generative framework, Cross-attention
Guided Template Generation (TEMPGEN), that
incorporates a novel copy mechanism into a pre-
trained sequence-to-sequence model is proposed to
solve the template generation problem effectively.

Our contributions can be summarized as follows:

• We propose to formulate document-level EE
tasks as a template generation problem, which
allows our generative framework to effectively
capture cross-entity dependencies, better iden-
tify entities with label semantics, and avoid
the exponential computation complexity of
identifying N -ary relations.

• We devise a novel copy mechanism based on
cross-attention to enable our model to better
learn how to copy key information from the
input document.

• Our approach achieves state-of-the-art results
on MUC role-filler entity extraction task and
SCIREX relation extraction task, while being
data efficient compared to previous systems.

2 Tasks

This section gives an overview of the two
document-level EE tasks we tackled in this work:
role-filler entity extraction (REE) and relation ex-
traction (RE).

2.1 Role-filler Entity Extraction

The REE task aims to extract all entities involved
in events from the input article (Du et al., 2021).
It differs from the event template extraction task
introduced by the MUC-4 dataset (muc, 1992) in
that only one event template, as opposed to many,
is outputted for each input document. For docu-
ments associating with multiple event templates
(all events in MUC-4 are of ATTACK type), the
event templates are collapsed as one — systems
are required to identify all entities associate with
different events for each role type. An event tem-
plate consists of a set of pre-defined roles, and each

role is filled with zero to many entities, as shown
in Figure 2. An entity is characterized by a group
of mentions, which are spans of text in the input
document.

2.2 Relation Extraction

We focus on end-to-end document-level relation
extraction where systems first extract entities from
the input document and then identify the N -ary
non-typed relations among the extracted entities.
The SCIREX (Jain et al., 2020) dataset is the only
dataset that supports such end-to-end configura-
tions that we know of. Thus, we follow the def-
inition of document-level RE in SCIREX, which
contains binary and 4-ary relation annotation. A
binary relation contains two typed entities, and a 4-
ary relation contains four typed entities. An entity
is represented by a cluster of mentions, similar to
the REE task. Systems should first extract salient
entities of pre-defined types2. Then, binary and
4-ary relations among salient entities are identified.
A binary relation example is shown in Figure 2.

3 Proposed Methods

In this section, we first illustrate how the REE and
RE tasks can be framed as a template generation
problem. This formulation then allows us to cap-
ture cross-entity dependencies easily with our pro-
posed generative model, a pre-trained sequence-to-
sequence model integrated with a copy mechanism.

3.1 Template Generation Formulation

We frame the REE and RE tasks as template gen-
eration problem, as shown in Figure 2. A template
is composed of slot names and slot values. For
both tasks, slot names are entity types, and slot val-
ues are all entity mentions corresponding to such
entity types. Similar to previous works on REE
(Huang and Riloff, 2011; Du and Cardie, 2020a;
Du et al., 2021), we only generate one template
per document without differentiating which event
template each entity mention associates with. In
contrast, for RE, we generate multiple templates,
each corresponding to a relation. A binary relation
can be represented by a template of 2 slots, whereas
a 4-ary relation forms a 4-slot template. A relation
template consists of typed mentions of correspond-
ing salient entities. After transforming REE and
RE annotation to templates, each template can then

2Salient entities are entities needed to describe the results
of corresponding scientific article.
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Two U.S. mormon missionaries -- aged 19 and 21 -- were shot to death
last night by a group of terrorists from the Zarate Wilka Armed Forces of
Liberation (FAL). ... blew up the lines providing power to La Paz, ... the
U.S. citizens -- Todd Ray Wilson Burdenson and Jeffrey Brent Ball -- ....
they were killed with two bursts of machinegun fire. ...

Introduction: Natural language inference ( NLI ) is an important and
significant task in natural language processing ( NLP ) ...

Template Sequences:
<SOT><SOSN>PerpInd<EOSN><SOE>group of terroists<EOE>
<SOSN>PerpOrg<EOSN><SOE>Zarate Wilka Armed Forces of
Liberation<EOE>...<SOSN>Weapon<EOSN><SOE>
machinegun<EOE><EOT>

Template Sequences:
<SOT><SOSN>Task<EOSN><SOE>Natural Language Inference<EOE>
<SOSN>Method<EOSN><SOE>aESIM<EOE><EOT>
<SOT><SOSN>Material<EOSN><SOE>Quora<EOE>
<SOSN>Metric<EOSN><SOE>accuracy<EOE><EOT>

PerpInd group of terrorists

PerpOrg Zarate Wilka Armed Forces of Liberation

Target lines

Victim Toddy Ray Wilson Burderson

Weapon machinegun

Task Natural Language Inference

Method aESIM

Material Quora                                    

Metric accuracy

Role-filler Entity Extraction Relation Extraction

Method:  We ... denote the modified ESIM as aESIM...

Experiments: The accuracy ( ACC ) of each method is measured by the
commonly used precision score ... It also achieved 88.01 % on Quora ...
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Figure 2: An overview of how document-level EE tasks can be transformed into template generation tasks. Special
tags are defined as follows: <SOT>: start of template, <EOT>: end of template, <SOSN>: start of slot name,
<EOSN>: end of slot name, <SOE>: start of entity (slot value), <EOE>: end of entity.

be transformed into template sequences with spe-
cial tags delimiting templates, slot names, and slot
values.

Formally, a document of tokens D = {Di}ni=1

may correspond to a decoding target of zero to
many template sequences {Ti}li=1. A template
sequence Ti is characterized by multiple slot se-
quences {Si,j}mj=1,

Ti = <SOT> Si,1, ..., Si,m <EOT> .

A slot sequence Si,j is represented by slot names
and entities,

Si,j = <SOSN> L <EOSN> <SOE> D(ek)
1 ...D(ek)

n <EOE> .

where L is the slot name3, and D(ek)
1 , ...,D(ek)

n is
the token sequence that correspond to one mention
randomly sampled from entity ek. Special tokens,
such as <SOSN> and <EOSN>, are to indicate
whether a tag-enclosed string is a slot name or
an entity mention. In the first row of the REE
example from Figure 2, L would be PERPIND and
D(ek)

1 , ...,D(ek)
n are “group of terrorists”. Using

this formulation, scalability challenges of modeling
cross-entity dependencies is alleviated due to the
significantly reduced distances between entities in
template sequences.

3.2 Cross-attention Guided Template
Generation

The template generation problem can be broken
down into two sub-goals: (1) generating valid tem-

3Slot name corresponds to role in REE and entity type in
RE.

plate structures while capturing the dependencies
between the input document and decoder targets,
and (2) ensuring that salient mentions in the in-
put document are correctly identified and outputted
by the decoder. To achieve the first sub-goal, we
leverage BART (Lewis et al., 2020), a pre-trained
sequence-to-sequence model. The second sub-goal
is achieved using a novel copy mechanism incorpo-
rated into BART.

Seq2Seq Model for Template Generation
BART (Lewis et al., 2020) is a pre-trained
language model that combines bidirectional
and auto-regressive transformers. Pre-training
with multiple denoising objectives, BART has
demonstrated significant advantages in various
text generation tasks, especially on summarization
(Lewis et al., 2020)4. The template generation
problem much resembles summarization, except
that generated template sequences contain implicit
structures. With the various denoising pre-training
objectives, we believe that BART can capture
the implicit structure within template sequences,
effectively model the dependencies among
predicted entities, and produce rich semantics to
reason over between slot names and entities.

Cross-attention guided copy mechanism To
enhance BART’s capabilities to identify salient
mentions in the input documents, we incorporate
a copy mechanism based on cross-attention. As
cross-attentions often imply saliency of input to-

4We have considered the SOTA abstractive summarization
LM, PEGASUS (Zhang et al., 2019). Yet, the GPU memory
consumption is too high for us to test it.
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kens, a naive approach of computing copy distribu-
tions Pcopy at time step t over the input tokens is
taking the mean of the last decoder layer’s cross-
attention across all heads, as mentioned in Xu et al.
(2020),

αt,h = softmax(
(Wsst)

TWee√
dk

) (1)

Pcopy =

∑
h αt,h

|H| , (2)

where αt,h is the attention scores over input tokens
at decoding step t for head h. Ws and We are
the projection matrices for the encoder and the
decoder. st is the decoder hidden states at step t,
and e denotes the encoder hidden states.

However, recent studies have shown that attention
heads are not equally important, and that some
heads can be pruned out with a marginal decrease
in overall performance (Voita et al., 2019; Michel
et al., 2019). We hypothesize that the attention
probabilities produced by insignificant attention
heads may be noisy. Thus, computing copy dis-
tributions without these heads could improve the
model’s ability to infer the importance of each to-
ken in the input document. Motivated by this hy-
pothesis, we propose TOPK COPY, a copy mech-
anism where only the Top-k important attention
heads are used for computing copy distributions.
Consider the formulation of multi-head attention,
following the notation from Vaswani et al. (2017):

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (3)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ). (4)

WQ
i ,W

K
i ,W

V
i ∈ Rdmodel×d are the projection ma-

trices for computing attention. WO ∈ Rhdv×dmodel

is the matrix that allows interaction between dif-
ferent attention heads, where h is the number of
heads. To determine the importance of each at-
tention head, we first transform WO to dimension
h× dv × dmodel (Equation (5)), and then sum over
the last two dimensions of WO (Equation (6)),

WO ∈ Rhdv×dmodel →WO ∈ Rh×dv×dmodel (5)

scorei =
∑
j,k

|WO
i,j,k|. (6)

where scorei denotes the significance score for
head i. We take the attention heads with Top-
k highest significance scores in the last cross-
attention layer, and use the mean of the attention

probabilities outputted by these heads as the copy
distribution as shown in equations 7 and 8,

K = Top-k(score) (7)

Pcopy =

∑
h∈K αt,h

k
. (8)

Objective function. The final probability Pfinal
of a word wt is a weighted sum of vocabulary dis-
tribution computed by BART Pvocab and copy dis-
tribution Pcopy,

Pfinal(wt) = pgenPvocab(wt) + (1− pgen)Pcopy(wt). (9)

where pgen ∈ [0, 1] is the generation probability
computed by passing the dot product of the mean
encoder hidden state e =

∑n
i=0 ei
n and decoder hid-

den state st at time step t through the sigmoid func-
tion σ,

pgen = σ(e · st) (10)

Using the final probability distribution Pfinal, we
can then compute the loss function as the average
negative log likelihood of the target word yt over
all timesteps, following See et al. (2017),

L =
1

T

T∑
t=0

− logPfinal(yt). (11)

4 Experimental Setup

4.1 Dataset and Evaluation Metric
Experiments are conducted on two English datasets:
MUC-4 (1992) for the role-filler entity extraction
task and SciREX (Jain et al., 2020) for the bi-
nary and 4-ary end-to-end relation extraction tasks.
MUC-4 contains 1700 documents, with on average
about 400 tokens per document. Documents are
annotated with zero to multiple event templates.
As per Du et al. (2021)’s pre-processing, we have
a 13:2:2 split on the documents for train, devel-
opment, and test, respectively. We evaluate the
REE task on this dataset using the entity-level met-
ric, CEAF-REE (Du et al., 2021). The metric
aligns predicted entities with gold entities using
Kuhn–Munkres algorithm (Kuhn, 1955; Munkres,
1957), where a predicted entity is considered cor-
rect if and only if its corresponding mentions are a
subset of the aligned gold entity’s mentions.



5261

REE Binary RE 4-ary RE

Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NST (Du and Cardie, 2020a) 56.82 48.92 52.58 - - - - - -
TANL (Paolini et al., 2021) 64.89 47.75 55.02 0.74 0.67 0.62 0.00 0.00 0.00
GRIT (Du et al., 2021) 64.19 47.36 54.50 - - - - - -
DYGIE++ (Wadden et al., 2019) 57.04 46.77 51.40 2.9 12.8 3.8 - - -
SCIREX-P (Jain et al., 2020) - - - 6.5 41.1 9.6 0.7 17.3 0.8

TEMPGEN 68.55 49.90 57.76 17.11 13.56 14.47∗ 3.19 4.26 3.55∗

Table 1: Performance comparison on role-filler entity extraction, binary and 4-ary relation extraction tasks. TANL
results are re-implemented and evaluated by ourselves. TEMPGEN outperforms all previous systems on REE,
binary RE, and 4-ary RE. Statistical significance over previous best systems computed using the paired bootstrap
procedure (Berg-Kirkpatrick et al., 2012) is indicated with ∗(p < .01).

The SCIREX dataset5 consists of scientific articles,
with entity, coreference, and relation annotations.
With an average token count of about 5700, the
articles are significantly longer than the documents
in MUC-4. We use the pre-processed data from
Jain et al. (2020), which contains 306 documents
for training, 66 for validation, and 66 for testing. In
contrast to conventional relation extraction datasets,
such as ACE05, relations are not typed in SCIREX.
Hence, the official SCIREX evaluator (Jain et al.,
2020) only considers the correctness of predicted
entities and entity types6 in each relation. Pre-
dicted entities are aligned with gold entities based
on mention overlap. When the entities are aligned,
predicted relations are aligned with gold relations
accordingly. A predicted relation is correct if and
only if both the associated entities and the entity
types match the aligned gold relation.

4.2 Baselines

We compare our method with the following com-
petitive baseline systems.

NST (Du and Cardie, 2020a) builds multi-
granularity representations on documents, and uti-
lizes gate mechanism to fuse representations of
different granularity.

TANL (Paolini et al., 2021) augments sequential la-
bels with input sentences, allowing it to be applied
to various structured prediction tasks7.

GRIT (Du et al., 2021) shares transformer param-
eters between the encoder and the pointer network
decoder, and is the SOTA system for the REE task

5https://github.com/allenai/SciREX
6There are 4 entity types: MATERIAL, METRIC, TASK,

and METHOD.
7Since the source code of TANL has not been released

by the time we conducted experiments, we re-implemented
it by closely following the method described in Paolini et al.
(2021).

on the MUC dataset.

DYGIE++ (Wadden et al., 2019) is a span-based
multi-task IE framework jointly trained on relation
extraction, named entity recognition, and corefer-
ence resolution.

SCIREX-P (Jain et al., 2020) is the SOTA frame-
work for end-to-end binary and 4-ary relation ex-
traction on SCIREX. The pipeline is composed
of 4 components: mention identification, mention
clustering, salient entity cluster identification, and
relation classification.

In terms of the pre-trained language models used,
BERT-BASE (Devlin et al., 2019) is used for NST,
DYGIE++, and GRIT. SCIREX-P is fine-tuned
on SCIBERT (Beltagy et al., 2019). We replace T5
(Raffel et al., 2020) with BART-BASE for TANL
for a fair comparison with our method.

4.3 Implementation details
The proposed models are optimized using AdamW
(Loshchilov and Hutter, 2019) with learning rate
5e-5 and weight decay 1e-5. We used grid search
to find the best k for TOPK COPY and found that
k = 10 yields the best overall performance across
REE and RE. The maximum input sequence length
for RE and REE are 1024 and 512, respectively.
During inference time, all generative models used
beam search with a beam width of 4.

5 Results and Analysis

5.1 Main Results
Table 1 summarizes the main results on role-filler
entity extraction, binary, and 4-ary relation extrac-
tion. TEMPGEN establishes new state-of-the-art
scores on all three tasks, outperforming the pre-
vious best models by an absolute F1 of 3.26%,
4.8%, and 2.7%. The improvements demonstrate
the effectiveness of our approach in formulating
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Model REE Binary RE 4-ary RE

TEMPGEN 57.76 14.47 3.55
→ NAIVE COPY 56.45 11.22 1.42
→ SAGCopy 54.47 11.17 1.41
w/o TOPK COPY 55.76 12.63 3.00
numeric slot name 56.31 8.22 0.85

Table 2: Ablation study on removing and replacing dif-
ferent components of TEMPGEN.

document-level EE tasks into template generation
tasks. Although TEMPGEN scores the highest F1
across all three tasks, SCIREX-P does achieve
the highest recall on both RE tasks. This can be
explained by the fact that our model can only en-
code the first 1024 sub-tokens of each SCIREX
document, which is merely 17% of the average sub-
token count per document. This makes it challeng-
ing for TEMPGEN to identify relations that lie in
the latter 83% of each document. In the future, we
can extend BART’s positional embedding matrix
to enable TEMPGEN to encode longer documents.
Additionally, we set the maximum input sequence
length to 512 for TEMPGEN for fairer comparisons
with SCIREX-P. We obtain F1 scores of 11.94%
and 2.18% on binary and 4-ary relation extraction,
respectively. This confirms the advantage of our
model on the relation extraction tasks.

While TANL performs worse than our model on
REE, it is still able to achieve a higher score than
GRIT. This suggests that augmenting decoding tar-
gets with label names provides useful semantics,
whereas adding input documents to decoding tar-
gets may not yield better results in the REE task.
We also observe that TANL scores extremely low
on both RE tasks, where 58% of the binary relations
and 26 % of the 4-ary relations in the decoding tar-
gets are filtered out due to exceeding maximum
sequence length of BART. Out of the remaining
relations, 57% of the binary relations and 78% of
the 4-ary relations have at least one entity removed
in the decoding targets due to its long distance from
the first-appearing entity8, suggesting that TANL’s
poor performance on RE tasks is due to scarcity of
gold labels. This reflects that TANL is ill-suited for
document-level EE tasks.

We observe extremely low performances across all
systems on both tasks of SCIREX, even though
TEMPGEN outperforms the baseline systems sig-
nificantly. This is mainly caused by the charac-
teristics of the SCIREX dataset. First, syntactic

8Please refer to Appendix B for more details.

......The police also stopped 8,000 cars in the search for assassins, who are
presumably members of the maoist terrorist organization shining path......

The dircote (counterterrorism divison) has identified one of the terrorists as
Gerardo Olivos Silva through a composite made from witness' reports.......

Generated PerpInd entity: terrorists

(a) Copy distribution produced by NAIVE COPY.

......The police also stopped 8,000 cars in the search for assassins, who are
presumably members of the maoist terrorist organization shining path......

The dircote (counterterrorism divison) has identified one of the terrorists as
Gerardo Olivos Silva through a composite made from witness' reports.......

Generated PerpInd entity: Gerardo Olivos Silva

(b) Copy distribution produced by TOPK COPY.

1e-2 5e-1

(c) The darker the color, the higher the probability.

Figure 3: TOPK COPY produces a more reli-
able copy distribution Pcopy than that com-
puted by NAIVE COPY in a MUC-4 example.
Given an input document and decoded tokens
“<s><SOT> <SOSN> PERPIND <EOSN> <SOE>”,
the gold PERPIND entity is “Gerado Olivos Silva”.
However, “terrorist” is assigned the highest copy
probability computed by NAIVE COPY, leading to
incorrect entity extracted. Conversely, TOPK COPY
assigns the highest Pcopy to the head token of the gold
entity, “Ger”, resulting in successful extraction of the
correct entity eventually.

characteristics specific to scientific journals, such
as algorithm blocks, result in the unusually long
sequences in the SCIREX dataset despite best pars-
ing efforts. Additionally, another feature frequently
seen in scientific journals is the use of table and
figure captions. Since captions are not included
as part of the input text, the number of accepted
relations decreases drastically.

5.2 Performance Analysis
Ablation Study We conducted ablation studies
by replacing the TOPK COPY module with other
copy mechanisms. NAIVE COPY refers to comput-
ing copy distributions with the attentions from all
cross-attention heads. SAGCopy (Xu et al., 2020)
utilizes encoder self-attention to compute central-
ity scores for measuring the saliency of each input
token. As shown in Table 2, we found that NAIVE

COPY leads to performance drop on all three tasks,
especially on binary and 4-ary relation extractions.
NAIVE COPY achieving scores even lower than
fine-tuning BART alone (i.e. w/o TOPK COPY )
reflects that copy mechanisms may mislead models
to copy incorrect input tokens. A qualitative ex-
ample of the difference between TOPK COPY and
NAIVE COPY demonstrated in Figure 3 validates
our hypothesis. Quantitatively, examining MUC-4
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(a) Role-filler entity extraction.
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(c) 4-ary relation extraction.

Figure 4: Effect of K. We compare the test set F1 score on MUC-4 REE, SCIREX binary and 4-ary RE tasks with
regard to different K. K = 0 is equivalent to removing TOPK COPY.

test set predictions, there are 79 cases where TOPK
COPY corrects the misguidance of Naive Copy,
while only 32 cases where new errors are intro-
duced by TOPK COPY. For both REE and RE,
adding SAGCopy leads to performance drop, sug-
gesting that the centrality scores of input tokens
may not be an ideal feature for these tasks.

We also experimented with replacing the original
slot names with numeric slot names (i.e. con-
verting PERPIND to <ROLE_1>, PERPORG to
<ROLE_2>, and etc). This conversion removes
the semantics of slot names in the decoding targets.
While little performance drop was observed on
the REE task, using numeric slot names resulted
in the worst performance on binary and 4-ary
relation extraction tasks, which could be a result
of strong slot dependencies in RE in comparison
with REE. In RE, slots are directly semantically
related to other slots in each template whereas slots
in REE are relatively independent. This shows
that slot name semantics are useful for template
generation tasks with strong slot dependencies
in each template. Finally, we conducted ablation
studies on different variations of templates as
decoding targets. Specifically, three variations
are tested on the REE task: (1) We merge entities
of the same role names into the same “slot”.
(e.g. transforming the decoding targets from
“<SOSN>PerpInd<EOSN> <SOE>Alice<EOE>
<SOSN>PerpInd<EOSN> <SOE>Bob<EOE>”
to “<SOSN>PerpInd<EOSN> <SOE>Alice; Bob
<EOE>”). (2) Based on (1), all slot names, such
as “PerpInd” and “PerpOrg”, are replaced with
the same special token “<ROLE>”. (3) We use
the same decoding targets as GRIT’s. These three
settings achieve test set F1 scores of 56.65, 54.16,
and 52.55, respectively. The results suggest that
differentiating entities with different entity types
helps improve the performance. Furthermore,
comparing with the results in Table 1, we found
that GRIT performs better than our system,
reflecting that a pointer network-based model,
which has with smaller search space than ours, is
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Figure 5: REE test set performance on MUC-4 with
regard to different amount of training data.

more advantageous when using the same decoding
targets.

Impact of the Amount of Training Data To
test the data efficiency of our approach, we com-
pared TEMPGEN and TEMPGEN - TOPK COPY

with GRIT on the REE task using different amount
of MUC training data. As seen in Figure 5, both
TEMPGEN and TEMPGEN - TOPK COPY outper-
form GRIT across all settings with a slightly larger
performance margin in low resource settings. This
indicates that our approach is more data-efficient
compared to the previous SOTA system on REE.

Impact of K Cross-attention Heads Figure 4
shows our model’s change in performance con-
ditioned on various values of K in the TOPK
COPY mechanism. Consistent with our results
in Section 5.1, we see that removing some of the
cross-attention heads (12 → 10) can lead to per-
formance gain due to the filtered noise brought
by unimportant attention heads. However, we no-
ticed a drop in performance across all three tasks
for lower values of K, suggesting that beneficial
cross-attention heads are removed. Interestingly,
performance drops immediately as K decreases be-
low 10, suggesting that only a small portion of the
cross-attention heads are unimportant. The trend is
consistent with Michel et al. (2019)’s results where
pruning cross-attention heads to a certain extent
can easily result in performance drop. Addition-
ally, the model with no copy mechanism (K = 0)
outperforms the model with few attention heads
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Miguel Soler Rodriguez, El Espectator's circulation manager and Martha
Luz Lopez, the correspondent's office administrator, were killed today
.... the main offices in Bogota of El Espectador, ..., were partially destroyed.

the main offices in
Bogota of El Espectador

Miguel Soler Rodriguez
Martha Luz Lopez

Victim Target

Gold

Ours

GRIT

Miguel Soler Rodriguez
Martha Luz Lopez El Espectador's office

Miguel Soler Rodriguez
Martha Luz LopezEl Espectador

Figure 6: An example showing how GRIT misidenti-
fies the VICTIM entities and TARGET entities, likely
due to the lack of role type semantics. Here, VICTIM
entities are the people attacked, and TARGET entities
are the objects compromised.

(K ∈ {2, 4, 6}), suggesting that the copy distri-
butions obtained from not sufficiently informative
cross-attentions can mislead the model.

5.3 Qualitative Analysis

The following qualitative analysis provides intu-
ition for our model’s ability to capture dependen-
cies across entities and utilize slot name semantics.

Cross-entity Dependencies To validate our ap-
proach’s capability to capture cross-entity de-
pendencies, we considered binary relations on
SCIREX where at least one of the associated enti-
ties is involved in multiple relations. The dependen-
cies among entities are better captured by the model
that predicts fewer unlikely relations. Comparing
the test set outputs of TEMPGEN and SCIREX-P,
we see that 13131 errors made by SCIREX-P are
corrected by our model, which only introduces 604
errors. This result demonstrates the strength of
TEMPGEN in modeling cross-entity dependencies.

Importance of Label Semantics Comparing the
test set predictions between TEMPGEN and GRIT
on the MUC-4 REE task, we see that our approach
better distinguishes confusing entities such as VIC-
TIM and TARGET entities. As shown in the example
in Figure 6, GRIT incorrectly predicts the two vic-
tims, “Miguel Soler Rodrigues” and “Martha Luz
Lopez”, as TARGET entities. It also misidentifies
“El Espectador”, a newspaper company, as a victim
of the attack. In contrast, TEMPGEN is able to rec-
ognize the roles of the two victims. Even though
it’s not an exact match, the predicted TARGET en-
tity had a correctly identified role type with similar
semantic meaning compared to the gold label.

0 10 20 30 40
Sec/ Doc

SciREX-P

TANL

TempGen

M
od
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Figure 7: Inference time comparison on the SCIREX
4-ary RE task.

6 Inference time comparison

As discussed earlier, TEMPGEN can significantly
reduce the exponential computational complexity
of document-level N-ary relation identification. To
illustrate this, we compared the inference time be-
tween TEMPGEN and two other systems, TANL
and SCIREX-P, on the SCIREX 4-ary RE task.
As shown in Figure 7, TEMPGEN drastically short-
ens the inference time by around 39 times com-
pared to SCIREX-P. TANL also runs much faster
than SCIREX-P, but is still around 4 times slower
than TEMPGEN. This is resulted from the fact that
TANL generates the entire input document in ad-
dition to entity and relation labels, which is much
longer than TEMPGEN’s generated sequences.

7 Number of Parameters

Figure 8 shows the number of parameters of differ-
ent models. GRIT, with the same size of BERT-
BASE, has the least number of parameters among all
models. DYGIE++ and SCIREX-P have slightly
more parameters than GRIT due to the additional
linear layers for constructing classifiers. The two
generative models, TANL and TEMPGEN, have the
most parameters, thanks to the larger vocab size
(30522→ 50265), larger positional embedding ma-
trix (512→ 1024), and cross-attention modules in
BART-BASE.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
#Parameters 1e8

BERT-Base
DyGIE++
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BART-Base

TANL
TempGen
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Figure 8: Number of parameters of different systems.

8 Related Works

In the following sections, we will first discuss a few
important works on the REE task and document-
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level RE task. Then, we will dive into a few works
that uses a similar sequence generative approach to
various document-level IE tasks.

8.1 Role-filler Entity Extraction
Document-level REE has been explored in recent
works using a variety of model architectures. Du
and Cardie (2020b) formulates the task as a se-
quence tagging problem, and trains layered classi-
fiers as sequence readers on multiple granularities.
In contrast, GRIT (Du et al., 2021) formulates the
problem as sequence generation, and employs a sin-
gle transformer layer whose parameters are shared
between encoder and decoder to enrich semantics
in the shared parameters. A pointer selection net-
work is used for the final layer of decoding.

8.2 Document-level Relation Extraction
Due to long-term dependencies that often span over
hundreds of tokens, capturing entity relations have
proven to be a challenging task. One approach was
constructing a document-level graph from sentence
encoding, then extracting entity relations from edge
representations in the graph (Christopoulou et al.,
2019). Other works such as Jia et al. (2019) layer
classifiers in a pipeline architecture to obtain hier-
archical representation of N -ary relations.

8.3 IE as Sequence Generation
Recently, there has been an increasing number of
works framing information extraction tasks as se-
quence generation problem. Zeng et al. (2018)
formed triple extraction as a sequence generation
task and adopted a RNN-based model with copy
mechanisms. To encourage the faithfullness of the
extracted triplets, Ye et al. (2021) designed a triplet
contrastive training objective. These works focus
on sentence-level triplet extraction, while our work
extracts role-filler entities and entity relations at the
document level. Li et al. (2021); Hsu et al. (2021)
formulates the document-level event argument ex-
traction task as a conditional generation problem
by providing event ontology. However, their work
cannot be applied to REE or RE due to the lack of
ontology for role-filler entities and relations. Du
et al. (2021) relied on a pointer-network-based de-
coder (Vinyals et al., 2015) to extract event role-
filler entities, and the parameters of BERT (Devlin
et al., 2019) is shared between the encoder and the
decoder. Nevertheless, their method cannot incor-
porate role labels, whereas our approach can take
advantage of the label semantics.

Paolini et al. (2021) uses a very similar genera-
tive approach, which constructs decoder targets
by inserting text markers and labels around entity
mentions in the input sentence. The key idea is that
augmenting the decoder targets with original input
sentence and labels provides stronger semantics to
the model. Unfortunately, modeling cross-entity
dependencies remains a challenge as entities are
further apart in their decoding targets. We instead
transform annotations into template sequences as
decoding targets, where distances between entities
are significantly shortened. Thus, our approach al-
leviates the scalability challenge of capturing cross-
entity dependencies at the scale of documents. Ad-
ditionally, our approach differs in that the length
of our decoder targets is significantly shorter, al-
lowing the non-truncated decoder targets to fit in
pre-trained language models. In contrast, for their
method, the gold decoder targets are guaranteed
to be longer than corresponding input document.
Since the length of input tokens are often greater
than the max sequence length of pre-trained lan-
guage models for document-level EE, a great por-
tion of the gold labels will be skipped using Paolini
et al. (2021)’s method.

9 Conclusion

We have proposed TEMPGEN, a framework that
frames document-level REE and RE tasks as a tem-
plate generation task. A copy mechanism that takes
the top-k important cross-attentions as copy distri-
butions is incorporated into BART for capturing
key information in the input document. Experimen-
tal results on MUC-4 and SCIREX showed that
TEMPGEN outperforms prior approaches on role-
filler entity extraction and end-to-end document-
level relation extraction tasks. Under different
amount of training data, TEMPGEN demonstrates
robustness across all settings, while being advanta-
geous in lower-resource regime.
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A REE Performance Breakdown

Table 3 demonstrates the per-role performance com-
parison between TEMPGEN and other baselines.
We observe that:

• TEMPGEN achieves the best precision across
all roles.

• Except for PERPIND, TEMPGEN obtain sub-
stantial improvement in F1 over other base-
lines.

• While TEMPGEN has higher precision over
GRIT in extracting PERPIND entities, it scores
slightly lower in recall, leading to worse F1
performance.

B TANL Decoding Target Formulation

In this section, we illustrate how we formulate the
TANL (Paolini et al., 2021) decoding targets for
REE and RE. The formulation for REE is simple
due to its similarity to the NER task. We produce
REE decoding targets exactly the same way as how
NER decoding targets are formed in Paolini et al.
(2021). Given the REE example in Figure 2, the
corresponding TANL decoding target is:

Two U.S. mormon missionaries – aged
19 and 21 – were shot to death last night
by [a group of terrorists| PerpInd] from
the [Zarate Wilka Armed Forces of Lib-
eration| PerpOrg] (FAL) ... blew up the
[lines| Target] providing power to La Paz,
... the U.S. citizens – [Todd Ray Wil-
son Burdenson| Victim] and Jeffrey Brent
Ball – ... they were killed with two bursts
of [machinegun| Weapon] fire ...

As for RE, we follow how Paolini et al. (2021)
handles nested entities and multiple relations, but
we made a small modification on decoding targets.
Since SCIREX does not contain relation type an-
notation, we use the related entities’ types as the
relation type in the decoding targets. With their for-
mulation, the decoding target is created by inserting
each relation annotation around the first-appearing
entity in the input document. Take the RE instance
in Figure 2 as an example. The corresponding
TANL decoding target would be:

Introduction: [Natural language infer-
ence | Task | Method = aESIM] (NLI)
is an important andsignificant task in nat-
ural language processing (NLP)...

Method: We ... denote the modified
ESIM as aESIM ...
Experiments: The [accuracy | Metric
| Material = Quora] (ACC) of each
method is measured by thecommonly
used precision score ... It also achieved
88.01 % on Quora ...

C Hardware and Software
configurations

All experiments are conducted on a CentOS Linux
7 (Core) machine with NVIDIA RTX 2080. We
use PyTorch 1.6.0 with CUDA 10.1 as the Deep
Learning framework and utilize Transformers 4.3.0
to load all pre-trained language models.

D Implementation Details

We conducted grid search to find the best learn-
ing rate over {1× 10−5, 3× 10−5, 5× 10−5, 7×
10−5, 9 × 10−5} using TEMPGEN w/o TOPK
COPY on the MUC-4 REE task. The best learning
rate, 5 × 10−5, is fixed for all other experiments.
Models are trained for 150 epochs for REE and bi-
nary RE experiments, and 50 epochs for 4-ary RE
experiments. To reproduce our results, please fol-
low the README.md file in https://github.
com/PlusLabNLP/TempGen. The weights of
the trained models are also included for reproduc-
tion purposes.

E Validation Performance

For all reported test set results in Table 1, the cor-
responding development set performance are listed
in Table 4.

https://github.com/PlusLabNLP/TempGen
https://github.com/PlusLabNLP/TempGen
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Model PERPIND PERPORG TARGET VICTIM WEAPON

DYGIE++ 48.39/ 32.61/ 43.32 56.00/ 34.15/ 42.42 53.49/ 50.74/ 52.08 60.00/ 66.32/ 63.00 57.14/ 53.33/ 55.17(Wadden et al., 2019)
GRIT 65.48/ 39.86/ 49.55 66.04/ 42.68/ 51.85 55.05/ 44.12 / 48.98 76.32/ 61.05/ 67.84 61.82/ 56.67 / 59.13(Du et al., 2021)

TEMPGEN 67.12/ 35.51/ 46.45 67.12/ 59.76/ 63.23 64.13/ 43.38/ 51.75 77.22/ 64.21/ 70.11 67.27/ 61.67/ 64.35

Table 3: Performance breakdown with regard to each role in CEAF-REE (Precision/ Recall /F1) on the MUC-4
REE task.

Role-filler Entity Extraction Binary Relation Extraction 4-ary Relation Extraction

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

TANL 58.42 46.74 51.93 3.12 2.11 2.39 0.00 0.00 0.00
TEMPGEN 61.34 46.11 52.64 22.04 19.24 19.60 1.38 2.77 1.85

Table 4: Corresponding development set performance of the reported test set results in Table 1.


