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Abstract
Recent state-of-the-art approaches in open-
domain dialogue include training end-to-end
deep-learning models to learn various conver-
sational features like emotional content of re-
sponse, symbolic transitions of dialogue con-
texts in a knowledge graph and persona of
the agent and the user, among others. While
neural models have shown reasonable results,
modelling the cognitive processes that humans
use when conversing with each other may im-
prove the agent’s quality of responses. A
key element of natural conversation is to tai-
lor one’s response such that it accounts for
concepts that the speaker and listener may
or may not know and the contextual rele-
vance of all prior concepts used in conversa-
tion. We show that a rich representation and
explicit modeling of these psychological pro-
cesses can improve predictions made by ex-
isting neural network models. In this work,
we propose a novel probabilistic approach us-
ing Markov Random Fields (MRF) to aug-
ment existing deep-learning methods for im-
proved next utterance prediction. Using hu-
man and automatic evaluations, we show that
our augmentation approach significantly im-
proves the performance of existing state-of-
the-art retrieval models for open-domain con-
versational agents.

1 Introduction

With advances in deep learning, the natural lan-
guage understanding community has seen a re-
cent proliferation of open-domain dialogue systems
such as See et al. (2019); Kulikov et al. (2019);
Roller et al. (2021) as well as competitions such as
the Amazon Alexa Prize (Khatri et al., 2018) and
ConvAI (Burtsev et al., 2018; Dinan et al., 2019).
Existing approaches can be classified into two main
categories: generative models and retrieval models.
While the former produce responses from a genera-
tive language model (Serban et al., 2016), retrieval
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models aim to select the best response from a set
of candidate responses given a conversation history.
This paper focuses on retrieval-based models.

Most of the prior work in retrieval-based mod-
els has focused on training end-to-end models us-
ing different architectures (eg. Key-Value Memory
Networks (Miller et al., 2016), gated self-attention
(Zhang et al., 2018b), poly-encoder (Humeau et al.,
2019) on specific datasets to statistically learn vari-
ous conversational features like emotional content
of response (Rashkin et al., 2019), symbolic tran-
sitions of dialogue contexts in a knowledge graph
(Moon et al., 2019) and even the persona of the
agent and the user (Zhang et al., 2018a)). In natural
conversations, while humans often view each other
as cognitive agents, we observe that prior work has
not focused on the cognitive processes that humans
use when conversing with each other. We posit that
explicitly modeling these cognitive processes and
using these models alongside existing statistical
approaches can improve state-of-the-art.

In conversational inference, the cognitive theory
of mutual knowledge proposes that speakers and
listeners maintain mental models of the knowledge
and beliefs they share with each other to find com-
mon ground for communication (Gibbs Jr, 1987;
Thomas, 1986). It follows that in a two-person con-
versation, each speaker maintains both (i) a model
of their partner’s knowledge and (ii) a model of
the knowledge they have communicated to their
partner. These models provide information about
their mutual knowledge and help in deciding the
next utterance. Further, as the conversation contin-
ues, each speaker updates their mental model as
they gain new information from and provide new
information to their partner. Consider the following
example of a conversation between two speakers:

SP 1: Did you see the Avenger’s movie? (U1)
SP 2: Yes, I loved Thor’s character in it. (U2)
SP 1: Do you like superhero movies? (U3)
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In U1, Speaker 1 offers “Avengers" and “Movie" as
context for the conversation. Speaker 2 observes
that Speaker 1 knows about “Avengers", so they
must also know the related concept “Thor". Con-
sequently, Speaker 2 offers “Thor" as context with
U2. Now, from U1 and U2, Speaker 1 infers that
the concept "superhero movies" has the highest
“mutual knowledge" and says U3.

Along with mutual knowledge, humans also ac-
count for contextual relevance of concepts, as con-
versation flows from one topic to another. That is,
even though a concept may be familiar to both peo-
ple at one point during the conversation, it may not
remain relevant when they discuss another topic.

While the theory of mutual knowledge forms the
basis of grounding in conversation and contextual
relevance plays a vital role in conversations, to
the best of our knowledge, there hasn’t been an
attempt to explicitly model these processes. Based
on these theories, we propose a novel probabilistic
approach using Markov Random Fields (MRF) to
model mutual knowledge and contextual relevance.
We augment existing deep-learning methods with
our model for improved next utterance prediction.
In this paper, we refer to deep-learning models as
base models and to our algorithm as MRF-Chat.

Our primary contribution is an algorithm (MRF-
Chat) to augment existing statistical deep-learning
methods to improve the performance of conversa-
tional agents. MRF-Chat is model agnostic, easy
to implement and independent of the base model.
Our augmentation approach achieves strong results
on human and automatic evaluations in predictions
made by state-of-the-art models on two widely used
datasets (PersonaChat and BlendedSkillTalk).

2 Related Work

Key-Value Memory Network (Persona-Chat
dataset). Persona-Chat (Zhang et al., 2018a) is
a crowd-sourced dataset of conversations where
each speaker responds based on a given persona.
After the dataset was collected, the authors trained
and evaluated several models on the corpus. At
the start of each conversation, the chosen model
was conditioned on either the user’s persona, the
agent’s persona, both personas, or neither. The
best performing model was a Key-Value Memory
Network (KV-Mem) (Miller et al., 2016) that uses
attention over the dialogue history and personas to
choose the best response.

Poly-encoder (ConvAI2 dataset). The Con-

vAI2 dataset is based on Persona-Chat and involves
conversations between pairs of human speakers
who are each given a persona, with the goal of
getting to know one another. Recently, Humeau
et al. (2019) introduced Poly-encoder architectures
which use self-attention to learn context features at
a global rather than token level. They showed that
Poly-encoders are more accurate than Bi-encoders
and faster (at test time) than Cross-encoders.

Knowledge prediction from Partial Informa-
tion. For an algorithm to compute mutual knowl-
edge, a person’s knowledge of related concepts
from partial information must be inferred. If a per-
son talks about "Avengers", the algorithm should
infer the probability of them also knowing "super-
hero". We build upon our prior work (Grover et al.,
2019) where we experimentally validated a model
for predicting children’s vocabulary from partial in-
formation of their existing knowledge. The model
made assumptions based on the psycholinguistic
theory of semantic learning which states that hu-
mans learn new words by forming semantic as-
sociations with words they already know. More
specifically, the model was based on the following
assumption: if it is observed that a child knows a
given word, the child must have learned it by form-
ing semantic associations with words they already
knew. Thus, it is likely that if a child knows a given
word, they also know words semantically related to
it. The steps for model construction are as follows:

• Build Semantic Network: Nodes of the net-
work represent words. Edges represent rela-
tionships between words. Make pairwise com-
parisons between n nodes in O(n2) and add
an edge between two nodes if the cosine sim-
ilarity between their word embeddings (Pen-
nington et al., 2014) is above a threshold ε.

• Construct corresponding MRF: Nodes of
the MRF represent the probability of knowing
concepts and the pairwise potential functions
represent how each node influences its neigh-
bors (further explained in Section 4).

• Inference: Use existing knowledge (words)
as evidence and perform inference on MRF to
find conditional marginal probabilities of all
the nodes in the graph.

Thus, we can find the probability of a person know-
ing any target concept given their knowledge about
some concepts.
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3 Preliminaries

A Markov Random Field (MRF) is an undirected
graphical model of a joint distribution, specified by
a graph G = (V,E) and a set of random variables
X = {X1, X2, X3...Xn} corresponding to ver-
tices V = {v1, v2, v3...vn}. An edge eij between
nodes Xi and Xj captures dependencies between
nodes. These dependencies are represented by po-
tential functions φ(x). Potential functions may be
defined over pairs or cliques of nodes. When they
are defined for pairs of nodes, the MRF is called a
pairwise MRF. When φc(xc) > 0, the probability
distribution can also be expressed by a correspond-
ing Gibbs field. For a given MRF:

P (X1, X2...Xn) =
1

Z

∏
C

φc(xc) (1)

Z =
∑

x

∏
C

φc(xc) (2)

φc(xc) = e−E(xc) (3)

where C is the set of all maximal cliques, φc(xc)
is the potential function for clique c, E(xc) is the
energy function for clique c, and Z is the partition
function. A configuration with higher energy will
have lower probability and vice-versa.

Inference on MRF gives marginal probabilities
of each node. While exact inference on MRFs is
computationally intractable, approximate inference
algorithms such as Belief Propagation and Markov
Chain Monte Carlo are often used in practice. In
this paper, we use sum-product belief propagation.

4 MRF-Chat

We consider the setting where a user and conver-
sational agent take turns interacting. We wish to
incorporate the following features for the agent.

• P1: The agent should account for mutual
knowledge. The agent should select a re-
sponse utterance (from a set of candidate ut-
terances) such that both the agent and the user
maximally know about the concepts used in
those utterances (common ground).

• P2: The agent should account for contextual
relevance of concepts used in the conversation
at any given time. That is, the agent should
appropriately discount the mutual knowledge
of a concept if it is not relevant to the current
conversation (even if it was relevant earlier).

More formally, for a prior agent utterance Uagent

and a prior user utterance Uuser, a set of candidate
response utterances Ucandidates and a base model
B, we are interested in selecting a response ut-
terance Uresponse ∈ Ucandidates (nomenclature in-
cluded in appendix A) for the agent such that it
satisfies P1 and P2. We now discuss the steps to
incorporate P1 and P2 separately and then discuss
a method to combine them to generate a response.

4.1 P1: Mutual Knowledge
We define mutual knowledge of a concept as the
probability that both the agent and user know the
concept, given the concepts they have used in their
respective utterances.

4.1.1 Concept Extraction
Utterance Concepts. The first step in processing
utterances is to extract relevant concepts. For
example, given the utterance "I love pets", the
concepts "love" and "pets" should be identified.
For concept extraction, we use Yake (Campos
et al., 2020), which is an open-source keyword
extraction tool that provides state-of-the-art per-
formance. Given an utterance, Yake returns a
list of keywords, each with a corresponding rel-
evance score r(c) ∈ [0, 1] for concept c (since Yake
scores closer to 0 indicate higher relevance, we use
r
(c)
yake = 1− r(c) instead). Thus, using the concept

extraction module, we obtain set of extracted con-
cepts (i)Cuser

utterance fromUuser, (ii)Cagent
utterance from

Uagent, (iii) Ccandidates
utterance from Ucandidates. Further,

Cutterance = Cagent
utterance∪Cuser

utterance∪Ccandidates
utterance .

We note that there exist many strategies to gener-
ate the set Ucandidates and any reasonable strategy
is suitable. Since our task is to improve a base
model with MRF-Chat, in our experiments we use
top k responses from the base model to form our
candidate set. This is done for computational ef-
ficiency in running our experiments. Increasing
the value of k allows for more candidates to be
considered, but at the cost of increased latency.

Related Concepts. A common measure of se-
mantic distance between two words is the cosine
distance between their word embeddings. We de-
fine two words with vector representations v1 and
v2 to be semantically related if cos(v1, v2) ≥ ε.
For each concept in Cutterance, we find semanti-
cally related concepts in the common crawl vocab-
ulary to obtain the set of related concepts Crelated.
Let the set of all concepts C = Cutterance ∪
Crelated. Since these concepts are used to build
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Figure 1: MRF-Chat pipeline for next utterance prediction.

a semantic graph (explained below) and represent
real-world knowledge, we exclude very frequent
words such as "yes", "me", "what", etc.

4.1.2 Concepts to Semantic Network
The core component of MRF-Chat is a seman-
tic graph, where the nodes represent individual
concepts and edges represent semantic relation-
ships between them. Similar to Grover et al.
(2019) (see section 2), we build a semantic net-
work Gsemantics = (Vsemantics, Esemantics) from
C by making pairwise comparisons1 between word
embeddings of all concepts in C.

From Gsemantics = (Vsemantics, Esemantics),
we construct a corresponding factor graph Gmrf =
(X,F,Emrf ) where X represents variable nodes
corresponding to nodes in Gsemantics, F are the
factor nodes and Emrf are the edges. The factors
are set to the same potential functions as (Grover
et al., 2019) to capture the assumptions of the psy-
cholinguistic theory of semantic learning (see Sec-
tion 2).

φ(Xi, Xj) =

[
e−(1−s(wi,wj)) e−s(wi,wj)

e−s(wi,wj) e−(1−s(wi,wj))

]
(4)

where s(wi, wj) is the cosine distance between
the word embeddings corresponding to wi and wj .
For some concept c, X(c) is a Bernoulli random
variable that represents the probability of the user
(or agent) knowing a particular concept.

4.1.3 Inference
Let Xuser

utterance contain random variables corre-
sponding to the concepts Cuser

utterance andXagent
utterance

contain random variables corresponding to the con-
ceptsCagent

utterance. Further, letX(c)
user andX(c)

agent rep-

1We optimize this O(n2) operation by caching previously
computed distances and only computing new concepts’ scores.

resent the probability of the user and agent knowing
a given concept c respectively. We first perform
inference on Gmrf using variables in Xuser

utterance

as evidence (since the user used these concepts in
their utterance, we can be sure they know these con-
cepts). This gives the conditional marginal prob-
ability of the user knowing any given concept in
the graph. That is, for any concept c, we have
P (X

(c)
user|Xuser

utterance). Similarly, we perform infer-
ence on Gmrf using variables in Xagent

utterance as evi-
dence to obtain P (X

(c)
agent|X

agent
utterance). We wish

to find P (X
(c)
user, X

(c)
agent|Xuser

utterance, X
agent
utterance).

Since the agent’s and user’s knowledge of a con-
cept are independent (i.e, they generate utterances
based on their own knowledge in a given agent-user
utterance pair), X(c)

user ⊥⊥ X
(c)
agent. Further, X(c)

user

is independent of all variables in Xagent
utterance and

X
(c)
agent is independent of all variables inXuser

utterance.
Thus, we have the joint distribution,

P (X(c)
user, X

(c)
agent|Xuser

utterance, X
agent
utterance) =

P (X(c)
user|Xuser

utterance)P (X
(c)
agent|X

agent
utterance) (5)

We now define a Bernoulli random variable
X

(c)
mutual, representing the probability that both the

user and agent know c (Mutual knowledge).

4.2 P2: Contextual Relevance
As an agent and user converse, each concept’s rel-
evance varies with time. For example, if the user
and agent discuss "superheroes" initially but then
talk about their desserts, the contextual relevance
of "superheroes" decreases with time (number of
turns). To capture this notion of relevance in time,
we define contextual relevance of a concept as a
mixture of distributions of all previous X(c)

mutual

from the MRF where the weight for each distribu-
tion is exponentially decayed with every turn of the
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conversation2. Let mutual knowledge of concept
c after the ith turn-pair be X(c)(i)

mutual and let R(c)
n

be a random variable representing the contextual
relevance of c after the nth turn. Then,

P (R(c)
n ) =

1

Z

n∑
i=1

λn−iP (X
(c)(i)
mutual) (6)

where Z is the normalizing constant and λ ∈
[0, 1] is the rate of decay. A higher λ lowers the
rate of decay and results in weighting prior mutual
knowledge more heavily. While mutual knowledge
is computed each turn-pair after performing infer-
ence on the MRF, prior relevance of concepts is
taken into account through contextual relevance.

4.3 Next Utterance Probabilities

Given contextual relevance of each concept, we
want to find the probability of each candidate utter-
ance u ∈ Ucandidates being a salient next utterance.

4.3.1 Effective Concept Scores
For a given candidate response with extracted con-
cepts, it is not only essential to reward the presence
of concepts that are believed to be shared knowl-
edge between the agent and user, but also to penal-
ize the presence of those that are believed to not be
shared. Likewise, concepts that are believed to be
neutral, i.e. neither more nor less relevant than all
other concepts, should have no effect.

For each concept c with contextual relevance
R

(c)
n in the nth turn, we find the expected contex-

tual relevance E[R
(c)
n ]. We also find the mean ex-

pected contextual relevance, µ of all concepts in C
(or nodes Vsemantics). The effective concept score
S
(c)
n for concept c in the nth turn is then:

S(c)
n = E[R(c)

n ]− µ (7)

4.3.2 Utterance Score
Given a candidate utterance u ∈ Ucandidates in
the nth turn, a set of concepts c1, c2, c3...cm, effec-
tive concept scores S(c1)

n , S
(c2)
n , ..., S

(cm)
n and yake

scores r(c1)yake, r
(c2)
yake, ..., r

(cm)
yake, the final score for the

utterance uscore is given by:

uscore =
1

m

m∑
i=1

r
(ci)
yakeS

(c(i))
n (8)

2We index from the 0th turn, with the agent starting the
conversation. The first inference occurs after the first turn pair.

The score of an utterance is the average effec-
tive concept score weighted by each concept’s rel-
evance in the utterance. Given scores for each
utterance, we find the probability of an utterance
being the next utterance according to MRF-Chat
by applying softmax normalization to the scores.

4.4 Augmenting with MRF-Chat
We wish to estimate the probability of a response u
being the next salient utterance and have two sep-
arate models, MRF-Chat (as described previously
in this section) and Base model (deep-learning
model) that estimate this probability. Thus, we
have P (u|MRF − Chat) and P (u|Base) and
want to find P (u|MRF − Chat,Base). Assum-
ing the two models to be conditionally independent,
the bayes optimal method to combine the distribu-
tions is given by (Bailer-Jones and Smith, 2011)
and has been used to solve other problems in ma-
chine learning (Grover et al., 2019; Griffith et al.,
2013; Littman et al., 2002):

P (u|MRF -Chat,Base) ∝
P (u|MRF -Chat)P (u|Base) (9)

The independence assumption is reasonable be-
cause: for a given utterance u, MRF-Chat does
not depend upon the Base model to compute the
probability of it being the next utterance (see ap-
pendix B). The final response is the utterance with
the maximum posterior.

5 Experiments

For our experiments, we compare the performance
of state-of-the-art models in 2 settings: (i) base
models augmented with MRF-Chat (Base+MRF)
and (ii) base models alone (Base)3.

Baseline Models. We used Poly-encoders and
KV-Mem as the current state-of-the-art baselines.
Humeau et al. (2019) show that poly-encoders
outperform bi-encoders and all models submitted
to the ConvAI2 competition including Transfer-
Transfo (Wolf et al., 2019), obtaining new state-
of-the-art. Additionally, poly-encoders are based
on BERT pretraining. Hence, we believe that poly-
encoders provide not only a reasonable but also
a challenging baseline to improve upon. Further,

3To convert each model’s output to a probability distribu-
tion over the candidates, we apply softmax before combining
with MRF-Chat.
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Key-Value Memory Networks are a common stan-
dard baseline used in prior work.

Datasets. (i) KV Memory: pre-trained on
Persona-Chat (10,907 dialogues) and evaluated on
Persona-Chat validation (1000 dialogues) and test
(968 dialogues) sets. (ii) Poly-encoder: pre-trained
on the ConvAI2 dataset and evaluated on valida-
tion (1,009 conversations) and test sets (980 conver-
sations) from the BlendedSkillTalk dataset (BST)
(Smith et al., 2020). We do not use the ConvAI2
test set because it is not publicly available, and the
validation set alone does not have enough conver-
sations to statistically evaluate our model. BST has
twice as many conversations for evaluation and was
specifically collected to evaluate models on their
ability to be engaging, knowledgeable and empa-
thetic as opposed to a single metric that previous
datasets targeted. We believe this dataset provides
an independent and robust test bed to evaluate our
model’s performance.

Multi-turn conversations. For each conversa-
tion in the dataset, we used the first 4 turns as
context, processing each utterance as described in
Section 4 to update marginal probabilities and con-
textual relevance after each turn-pair. We then pro-
duced a response to follow as the next utterance
using both, the base model+MRF-Chat and the base
model alone. We repeated the same experiments
using the first 6 turns as context to evaluate our
model with increasing conversation length.

Sensitivity to λ. We also repeat this response se-
lection process for each value of λ ∈ {0, 0.3, 0.6}
(λ = 0 means that only the most recent user-agent
utterance pair is used, ignoring previous turns). We
exclude conversations in which MRF-Chat and the
base model select the same response.

Hyperparameters. We used top K = 10 candi-
date responses from the base model. For building
the semantic network, we used pre-trained com-
mon crawl GloVe word embeddings (300 dimen-
sional) (Pennington et al., 2014) with a threshold
ε ≥ 0.6 for adding an edge between nodes, only
considering the 100,000 most common words. To
exclude frequent words, we use word frequencies
from the SUBTLEX-US database (Brysbaert and
New, 2009), excluding words with a Zipf value of
greater than 5.75 based on empirical observation.

Runtime considerations. In each turn, graph
augmentation runs in O(N2 +NR) where N is the
number of new and related concepts in the current
turn and R is the number of prior related concepts.

There is also an added cost for performing infer-
ence. However, in our experiments, we found this
runtime to be computationally acceptable and suit-
able for deployment in real-time systems.

5.1 Evaluation Methods

Human Evaluation. We ran crowdsourcing tasks
on Amazon Mechanical Turk. For each conversa-
tion, workers compared responses from the base
model with MRF-Chat against the base model
alone. If two values of λ produce the same re-
sponse for a conversation, the response is rated
only once to avoid redundancy. Inspired by Acute-
Eval (Li et al., 2019), we chose questions with the
highest inter-rater reliability. Workers were asked
which response is better, based on the conversa-
tion, and which is more on-topic. For both, we a
use four-point scale of "Response 1 is much bet-
ter", "Response 1 is slightly better", "Response 2
is slightly better", and "Response 2 is much better"
(see appendix C, figure 2). To determine signifi-
cance, we perform a binomial test on the human
ratings assuming both models perform equally well
as the null hypothesis.

Automatic Evaluation. For automatic evalua-
tion, we construct candidate sets with a ratio of
1:19 between correct and incorrect responses for
each conversation (as done in the ConvAI2 compe-
tition (Dinan et al., 2019) and Humeau et al. (2019);
Zhang et al. (2018a)). We report Hits@1 and Mean
Reciprocal Rank(MRR) for Base+MRF-Chat and
the base model alone for all values of λ and vary-
ing conversation lengths. Since we claim that
MRF-Chat improves predictions of state-of-the-
art, we present results on all conversations where
Base+MRF-Chat gives a different next utterance
response from Base alone.

5.2 Results

5.2.1 Human Evaluation
KV Memory. Tables 1 and 2 show a compari-
son of KV Memory+MRF-Chat with KV Memory
alone across different values of λ. We find that
KV Memory+MRF-Chat outperforms KV Mem-
ory on both the questions with statistical signifi-
cance. That is, human annotators believe that KV
Memory+MRF-Chat produced better and more on-
topic responses (p < 0.05), for both lengths of
multi-turn conversations across all values of λ.

Since λ is a hyperparameter in our model for-
mulation, it is important to investigate our models
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Q1: Better Response Q2: More On-Topic

λ value
KV-Mem

+MRF
KV-Mem p-value

KV-Mem
+MRF

KV-Mem p-value
Different

Responses

λ = 0 335 220 < .0001∗∗∗∗ 334 217 < .0001∗∗∗∗ 57.3%
λ = 0.3 370 279 .000206∗∗∗ 368 276 .000168∗∗∗ 67.04%
λ = 0.6 364 278 .000397∗∗∗ 362 276 .000382∗∗∗ 66.39%

Table 1: KV Memory+MRF-Chat outperforms KV Memory alone for all values of λ at conversation length=4.

Q1: Better Response Q2: More On-Topic

λ value
KV-Mem

+MRF
KV-Mem p-value

KV-Mem
+MRF

KV-Mem p-value
Different

Responses

λ = 0 342 283 .0102∗ 342 280 .00723∗∗ 64.56%
λ = 0.3 341 282 .0101∗ 347 278 .00326∗∗ 64.55%
λ = 0.6 356 274 .000625∗∗∗ 356 273 .000539∗∗∗ 65.35%

Table 2: KV Memory+MRF-Chat outperforms KV Memory alone for all values of λ at conversation length=6.

Q1: Better Response Q2: More On-Topic

λ value
Poly

+MRF
Poly p-value

Poly
+MRF

Poly p-value
Different

Responses

λ = 0 119 86 .0127∗ 119 86 .0127∗ 10.51%
λ = 0.3 102 91 .236 99 93 .359 9.89%
λ = 0.6 104 90 .175 102 91 .236 9.95%

Table 3: Poly+MRF-Chat outperforms Poly-encoder alone for all values of λ at conversation length=4.

Q1: Better Response Q2: More On-Topic

λ value
Poly

+MRF
Poly p-value

Poly
+MRF

Poly p-value
Different

Responses

λ = 0 144 120 .0785 146 116 .0366∗ 14.03%
λ = 0.3 141 110 .0291∗ 137 112 .0641 13.34%
λ = 0.6 115 124 .302 117 120 .448 12.7%

Table 4: Poly-encoder+MRF-Chat outperforms Poly-encoder alone for λ ∈ (0.0, 0.3) at conversation length=6.

performance across different values of λ. For a con-
versation length of 4, we see an increase in p-value
with an increase in λ. This observation is counter-
intuitive since a higher value of λ means that we
weigh the context of previous turns more heavily.
We hypothesize that this effect is an artifact of
shorter conversations. That is, it may be better to
respond by only taking the last agent-user utter-
ances into account when the conversation length is
only 4 turns. Results on conversation length of 6 ut-
terances (3 turns) support this hypothesis where we
see a reversal of this trend. That is, with increase

in the value of λ, we see a decrease in p-value for
both the questions. Thus, for longer conversations,
a higher value of λ might be preferred.

Poly-encoder human evaluation. Tables
3 and 4 show a similar comparison of Poly-
encoder+MRF-Chat with Poly-encoder alone. For
conversations with length of 4 utterances, the aug-
mented Poly-encoder performs better than Poly-
encoder alone across different values of λ on both
questions. Further, we find that the results for
λ = 0 are statistically significant. This result fur-
ther supports our aforementioned hypothesis. How-
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Hits@1 MRR

Conv. Length λ KV-Mem+MRF KV-Mem KV-Mem+MRF KV-Mem

4 0 0.239 0.067 0.402 0.264
4 0.3 0.246 0.067 0.402 0.262
4 0.6 0.237 0.064 0.397 0.26
6 0 0.228 0.085 0.391 0.271
6 0.3 0.226 0.086 0.389 0.271
6 0.6 0.23 0.083 0.390 0.267

Table 5: KV-Memory+MRF-Chat outperforms KV-Memory alone in automatic evaluation.

Hits@1 MRR

Conv. Length λ Poly+MRF Poly Poly+MRF Poly

4 0 0.306 0.153 0.533 0.437
4 0.3 0.321 0.115 0.537 0.41
4 0.6 0.342 0.118 0.533 0.418
6 0 0.295 0.125 0.492 0.391
6 0.3 0.317 0.122 0.513 0.398
6 0.6 0.302 0.139 0.51 0.41

Table 6: Poly-encoder+MRF-Chat outperforms Poly-encoder alone in automatic evaluation.

ever, since the p-values for λ = 0.3 and λ = 0.6
are higher, the subsequent trend is not clear. These
results suggest that the choice of λ also depends
on the type of conversations the agent is having
with the user. While subjects in the Persona-Chat
data collection were instructed to have conversa-
tions to get to know each other, subjects for BST
were guided towards having a mix of engaging,
knowledgeable and empathetic conversations.

For conversations with length of 6 utterances (3
turns), we see that Poly-encoder+MRF-Chat per-
forms better than Poly-encoder alone for λ = 0.0
and λ = 0.3 (Table 4). Between the two values of
λ, we find that the augmented model significantly
outperforms the baseline model in selecting better
responses when λ increases (Q1, λ = 0.3) and
in producing more on-topic responses when λ is
smaller (Q2, λ = 0.0). This result suggests that a
better response may not always be exactly about
the topic of discussion. Instead, the augmented
model may introduce more semantically related
and relevant concepts when λ = 0.3, making the
responses better overall but less on-topic.

We also find that the augmented Poly-encoder
performs slightly worse at λ = 0.6 suggesting
that λ may be too high for a conversation length
of 6 on this dataset. We gain valuable insight for

real-world applications: as the conversation length
increases, λ should gradually increase for optimal
performance. Further, the rate of increase depends
on the type of conversation. We leave optimal
tuning of λ as a learned parameter as future work.

5.2.2 Automatic Evaluation
Tables 5 and 6 show that both KV-Memory+MRF-
Chat and Poly-encoder+MRF-Chat outperform KV-
Memory and Poly-encoder alone on Hits@1 and
MRR metrics (for all given values of λ and for
both conversation history lengths of 4 and 6). The
mean improvement ∆ on Hits@1 for KV-Memory
is 0.159 and for poly-encoders is 0.186 (across
all considered λ and conversation lengths). The
mean ∆ for MRR for KV-Memory is 0.13 and for
poly-encoders is 0.109. Further, we see that our
algorithm’s performance is robust to the choice
of λ and conversation length in automatic metrics.
This difference in sensitivity to λ can be attributed
to the fact that human judgements may have low
correlation with automatic evaluation metrics (Liu
et al., 2016). However, both human and automatic
evaluations show significant improvements when
the base model is augmented with MRF-Chat.

Utterance Length and number of concepts.
Tables 7 and 8 show that KV-Mem augmented

with MRF-Chat produces shorter responses with
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Utterance Length # of Concepts

λ KV+MRF KV KV+MRF KV

0 12.51 13.55 3.90 4.51
0.3 12.50 13.51 3.88 4.51
0.6 12.51 13.55 3.89 4.51

Table 7: Comparison of Mean utterance length and
mean extracted concepts between KV-Memory+MRF-
Chat and KV-Memory alone for conversation length=4

Utterance Length # of Concepts

λ Poly+MRF Poly Poly+MRF Poly

0 12.68 12.54 3.93 3.34
0.3 12.84 12.56 3.97 3.37
0.6 13.03 12.64 3.97 3.37

Table 8: Comparison of Mean utterance length and
mean extracted concepts between Poly-encoder+MRF-
Chat and Poly-encoder alone for conversation length=4

fewer concepts while Poly-encoder augmented
with MRF-Chat produces longer utterances with
more concepts. We also see from human and au-
tomatic evaluations that augmenting base models
with MRF-Chat improves the model’s quality of re-
sponses. Since the goal of MRF-Chat is to select re-
sponses with more relevant concepts, it follows that
the choice of concepts used is more important than
the total number of concepts. These results align
with our claim that modelling mutual knowledge
and contextual relevance improves performance of
state-of-the-art models by selecting utterances with
the most relevant concepts.

5.2.3 Success and Failure Cases
As demonstrated through human evaluations, MRF-
Chat produced more on-topic responses than the
base models alone. Two examples can be found in
appendix C in figure 3. In both examples, MRF-
Chat chooses an on-topic response when the base
model’s choice is not well aligned with the conver-
sation, serving as a method for preventing off-topic
responses when better candidates are present.

While our evaluations found that MRF-Chat
chose more on-topic responses than the base mod-
els alone, this is not always desirable when the
conversational partner is attempting to change the
topic of conversation (as seen in appendix C, figure
3). We leave the task of guiding conversational
topics over time to future work.

6 Conclusion

In this work, we approach open-domain dialogue
through a new lens of modelling cognitive behav-
ior with probabilistic methods. We present a novel
algorithm, MRF-Chat to improve performance of
retrieval-based deep-learning models without re-
quiring the collection of new datasets or retraining.
Our method is model agnostic, easy-to-implement
and independent of the base model. Using hu-
man evaluations, we present statistically signifi-
cant results showing that responses produced by
base models augmented with MRF-Chat were rated
as better and more on-topic by human annotators
when compared to those produced by base mod-
els alone. Further, using automatic metrics, we
show that base+MRF outperforms base alone (KV-
Mem/Poly-encoder) on Hits@1 and MRR metrics
for all considered values of λ across different con-
versation lengths. Finally, we provide a detailed
analysis of the algorithm’s sensitivity to the hyper-
parameter λ and suggest future avenues of research.

Acknowledgements

This work was supported by the IITP grant funded
by the Korea government(MSIT) (No.2020-0-
00842, Development of Cloud Robot Intelligence
for Continual Adaptation to User Reactions in Real
Service Environments) and by the National Sci-
ence Foundation under Grant No. DRL-1734443.
We would like to thank Pedro Colon-Hernandez,
Sooyeon Jeong, Sharifa Alghowinem, Sam Spauld-
ing and reviewers for their valuable feedback on
this work.

References
C Bailer-Jones and Kester Smith. 2011. Combining

probabilities. Data Processing and Analysis Consor-
tium (DPAS).

Marc Brysbaert and Boris New. 2009. Moving beyond
kucera and francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for american
english. Behavior research methods, 41:977–90.

Mikhail Burtsev, Varvara Logacheva, Valentin Malykh,
Iulian Vlad Serban, Ryan Lowe, Shrimai Prabhu-
moye, Alan W Black, Alexander Rudnicky, and
Yoshua Bengio. 2018. The first conversational in-
telligence challenge. In The NIPS’17 Competition:
Building Intelligent Systems, pages 25–46. Springer.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020.

https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.3758/BRM.41.4.977


4934

Yake! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257–289.

Emily Dinan, Varvara Logacheva, Valentin Ma-
lykh, Alexander Miller, Kurt Shuster, Jack Ur-
banek, Douwe Kiela, Arthur Szlam, Iulian Serban,
Ryan Lowe, Shrimai Prabhumoye, Alan W Black,
Alexander Rudnicky, Jason Williams, Joelle Pineau,
Mikhail Burtsev, and Jason Weston. 2019. The sec-
ond conversational intelligence challenge (convai2).

Raymond W Gibbs Jr. 1987. Mutual knowledge and
the psychology of conversational inference. Journal
of pragmatics, 11(5):561–588.

Shane Griffith, Kaushik Subramanian, Jonathan Scholz,
Charles L Isbell, and Andrea L Thomaz. 2013. Pol-
icy shaping: Integrating human feedback with rein-
forcement learning. Advances in neural information
processing systems, 26:2625–2633.

Ishaan Grover, Hae Won Park, and Cynthia Breazeal.
2019. A semantics-based model for predicting chil-
dren’s vocabulary. In IJCAI, pages 1358–1365.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Poly-encoders: Trans-
former architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv
preprint arXiv:1905.01969.

Chandra Khatri, Anu Venkatesh, Behnam Hedayatnia,
Raefer Gabriel, Ashwin Ram, and Rohit Prasad.
2018. Alexa prize—state of the art in conversational
ai. AI Magazine, 39(3):40–55.

Ilia Kulikov, Alexander Miller, Kyunghyun Cho, and
Jason Weston. 2019. Importance of search and eval-
uation strategies in neural dialogue modeling. In
INLG’19, pages 76–87.

Margaret Li, Jason Weston, and Stephen Roller. 2019.
Acute-eval: Improved dialogue evaluation with opti-
mized questions and multi-turn comparisons. arXiv
preprint arXiv:1909.03087.

Michael L Littman, Greg A Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134:23–55.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In EMNLP’16.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In EMNLP’16.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. Opendialkg: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. In 57th Annual Mtg of ACL.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP’14.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In ACL.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, J. Xu, Myle Ott, Kurt
Shuster, Eric Michael Smith, Y.-Lan Boureau, and
J. Weston. 2021. Recipes for building an open-
domain chatbot. In EACL.

A. See, Stephen Roller, Douwe Kiela, and J. Weston.
2019. What makes a good conversation? how
controllable attributes affect human judgments. In
NAACL.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hierar-
chical neural network models. In AAAI’16.

Eric Michael Smith, Mary Williamson, Kurt Shuster,
J. Weston, and Y-Lan Boureau. 2020. Can you put it
all together: Evaluating conversational agents’ abil-
ity to blend skills. In ACL.

Gordon P Thomas. 1986. Mutual knowledge: A the-
oretical basis for analyzing audience. College En-
glish, 48(6):580–594.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Saizheng Zhang, Emily Dinan, Jack Urbanek,
Arthur D. Szlam, Douwe Kiela, and J. Weston.
2018a. Personalizing dialogue agents: I have a dog,
do you have pets too? In ACL.

Zhuosheng Zhang, Jiangtong Li, P. Zhu, Zhao Hai, and
Gongshen Liu. 2018b. Modeling multi-turn conver-
sation with deep utterance aggregation. In COLING.

https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.1016/j.ins.2019.09.013
http://arxiv.org/abs/1902.00098
http://arxiv.org/abs/1902.00098
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


4935

A Nomenclature
B Base Model
Uuser Utterance from a user
Uagent Utterance from an agent
Ucandidates Set of candidate utterances
Cuser
utterance Set of extracted concepts from user utterance

Cagent
utterance Set of extracted concepts from agent utterance

Ccandidates
utterance Set of extracted concepts from all candidate utterances

Cutterance Set of all extracted concepts from user, agent and candidate utterances
Crelated Set of all related concepts from Cutterance

C Set of all concepts (related and from utterances)
Gsemantics Semantic Network
Gmrf Factor graph corresponding to Semantic Network
X Random Vector of variable nodes in factor graph
F Factor nodes in factor graph
s(wi, wj) The cosine distance between word embeddings corresponding to wi and wj

X(c) Bernoulli random variable representing probability of the user/agent knowing a concept c
Xuser

utterance Random vector containing variables that correspond to concepts from user utterance
Xagent

utterance Random vector containing variables that correspond to concepts from agent utterance
X

(c)
user Probability of the user knowing a given concept c

X
(c)
agent Probability of the agent knowing a given concept c

X
(c)
mutual Probability that both the user and agent know c

X
(c)(i)
mutual Mutual knowledge of concept c in the ith turn

R
(c)
n Random variable representing the contextual relevance of c after the nth

λ Hyperparameter of MRF-Chat. Rate of weight decay in Eq. 6.
S
(c)
n Effective concept score of concept c in the nth turn
r
(c)
yake 1− score returned by yake for a given concept in an utterance.
uscore Score for an utterance computed by MRF-chat

B Eq. 9

Here, we derive Eq. 9 following (Bailer-Jones and Smith, 2011):

P (u|MRF − Chat,Base) =
P (MRF − Chat,Base|u)P (u)

P (MRF − chat,Base)
(10)

Here, we assume MRF − chat and B to be conditionally independent given u. For a given utterance
u, MRF-chat and base model compute their probabilities independent of each other. So,

P (MRF − Chat,Base|u) = P (MRF − chat|u)P (Base|u) (11)

It follows:

P (u|MRF − chat,Base) =
P (MRF − Chat|u)P (Base|u)P (u)

P (MRF − chat,Base)

=
P (MRF − Chat)P (Base)

P (MRF − chat,Base)
× P (u|MRF − Chat)P (u|Base)

P (u)

∝ P (u|MRF − Chat)P (u|Base) (12)

C Additional Figures
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Figure 2: The Human Evaluation Setup on Mechanical Turk

Figure 3: Example responses from Base+MRF-Chat and Base only


