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Abstract

For over thirty years, researchers have devel-
oped and analyzed methods for latent tree in-
duction as an approach for unsupervised syn-
tactic parsing. Nonetheless, modern systems
still do not perform well enough compared to
their supervised counterparts to have any prac-
tical use as structural annotation of text. In
this work, we present a technique that uses
distant supervision in the form of span con-
straints (i.e. phrase bracketing) to improve per-
formance in unsupervised constituency pars-
ing. Using a relatively small number of span
constraints we can substantially improve the
output from DIORA, an already competitive
unsupervised parsing system. Compared with
full parse tree annotation, span constraints can
be acquired with minimal effort, such as with
a lexicon derived from Wikipedia, to find ex-
act text matches. Our experiments show span
constraints based on entities improves con-
stituency parsing on English WSJ Penn Tree-
bank by more than 5 F1. Furthermore, our
method extends to any domain where span con-
straints are easily attainable, and as a case
study we demonstrate its effectiveness by pars-
ing biomedical text from the CRAFT dataset.

1 Introduction

Syntactic parse trees are helpful for various down-
stream tasks such as speech recognition (Moore
et al., 1995), machine translation (Akoury et al.,
2019), paraphrase generation (Iyyer et al., 2018),
semantic parsing (Xu et al., 2020), and informa-
tion extraction (Naradowsky, 2014). While super-
vised syntactic parsers are state-of-the-art models
for creating these parse trees, their performance
does not transfer well across domains. Moreover,
new syntactic annotations are prohibitively expen-
sive; the original Penn Treebank required eight
years of annotation (Taylor et al., 2003), and ex-
panding PTB annotation to a new domain can be
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Figure 1: An example sentence and parsing to illustrate
distant supervision via span constraints. Top: The un-
supervised parser predicts a parse tree, but due to nat-
ural ambiguity in the text the prediction crosses with a
known constraint. Bottom: By incorporating the span
constraint, the prediction improves and, as a result, re-
covers the ground truth parse tree. In our experiments,
we both inject span constraints directly into parse tree
decoding and separately use the constraints only for dis-
tant supervision at training time. We find the latter ap-
proach is typically more effective.

a large endeavor. For example, the 20k sentences
of biomedical treebanking in the CRAFT corpus
required 80 annotator hours per week for 2.5 years,
include 6 months for annotator training (Verspoor
et al., 2011). However, although many domains
and many languages lack full treebanks, they do
often have access to other annotated resources such
as NER, whose spans might provide some partial
syntactic supervision. We explore whether unsu-
pervised parsing methods can be enhanced with
distant supervision from such spans to enable the
types of benefits afforded by supervised syntactic
parsers without the need for expensive syntactic
annotations.

We aim to “bridge the gap” between supervised
and unsupervised parsing with distant supervision
through span constraints. These span constraints in-
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dicate that a certain sequence of words in a sentence
form a constituent span in its parse tree, and we
obtain these partial ground-truths without explicit
user annotation. We take inspiration from previous
work incorporating distant supervision into parsing
(Haghighi and Klein, 2006; Finkel and Manning,
2009; Ganchev et al., 2010; Cao et al., 2020), and
design a novel fully neural system that improves a
competitive neural unsupervised parser (DIORA;
Drozdov et al. 2019) using span constraints defined
on a portion of the training data. In the large ma-
jority of cases, the number of spans constraints per
sentence is much lower than that specified by a full
parse tree. We find that entity spans are effective
as constraints, and can readily be acquired from
existing data or derived from a gazetteer.

In our experiments, we use DIORA as our base-
line and improve upon it by injecting these span
constraints as a source of distant supervision. We
introduce a new method for training DIORA that
leverages the structured SVM loss often used in
supervised constituency parsing (Stern et al., 2017;
Kitaev and Klein, 2018), but only depends on par-
tial structure. We refer to this method as partially
structured SVM (PS-SVM). Our experiments indi-
cate PS-SVM improves upon unsupervised parsing
performance as the model adjusts its prediction to
incorporate span constraints (depicted in Figure 1).
Using ground-truth entities from Ontonotes (Prad-
han et al., 2012) as constraints, we achieve more
than 5 F1 improvement over DIORA when pars-
ing English WSJ Penn Treebank (Marcus et al.,
1993). Using automatically extracted span con-
straints from an entity-based lexicon (i.e. gazetteer)
is an easy alternative to ground truth annotation
and gives 2 F1 improvement over DIORA. Impor-
tantly, training DIORA with PS-SVM is more effec-
tive than simply injecting available constraints into
parse tree decoding at test time. We also conduct
experiments with different types of span constraints.
Our detailed analysis shows that entity-based con-
straints are similarly useful as the same number of
ground truth NP constituent constraints. Finally,
we show that DIORA and PS-SVM are helpful for
parsing biomedical text, a domain where full parse
tree annotation is particularly expensive.

2 Background: DIORA

The Deep Inside-Outside Recursive Autoencoder
(DIORA; Drozdov et al., 2019) is an extension of
tree recursive neural networks (TreeRNN) that does

not require pre-defined tree structure. It depends
on the two primitives Compose : R2D ! RD and
Score : R2D ! R1. DIORA is bi-directional —
the inside pass builds phrase vectors and the outside
pass builds context vectors. DIORA is trained by
predicting words from their context vectors, and
has been effective as an unsupervised parser by
extracting parse trees from the values computed
during the inside pass.

Inside-Outside Typically, a TreeRNN would fol-
low a parse tree to continually compose words or
phrases until the entire sentence is represented as a
vector, but this requires knowing the tree structure
or using some trivial structure such as a balanced
binary tree. Instead of using a single structure,
DIORA encodes all possible binary trees using
a soft-weighting determined by the output of the
score function. There are a combinatorial num-
ber of valid parse trees for a given sentence — it
would be infeasible to encode each of them sepa-
rately. Instead, DIORA decomposes the problem
of representing all valid parse trees by encoding
all subtrees over a span into a single phrase vector.
For example, each phrase vector is computed in the
inside pass according to the following equations:
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where 1j<k is an indicator function that is 1 when
the sibling span is on the right, and 0 otherwise
(see Figure 2 in Drozdov et al., 2020 for a helpful
visualization of the inside and outside pass).
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Training DIORA is trained end-to-end directly
from raw text and without any parse tree supervi-
sion. In our work, we use the same reconstruction
objective as in Drozdov et al. (2019). For a sen-
tence x, we optimize the probability of the i-th
word xi using its context (x�i):

Jrec = �
1

|x|

|x|�1X

i=0

logP (xi|x�i) ,

where P (.) is computed use a softmax layer over a
fixed vocab with the outside vector (houti,i ) as input.

Parsing DIORA has primarily been used as an
unsupervised parser. This requires defining a new
primitive TreeScore : S(y) =

P
i,j,k2y s

in
i,j,k. A

tree y can be extracted from DIORA by solving the
search problem that can be done efficiently with the
CKY algorithm (Kasami, 1965; Younger, 1967):

CKY (x) = argmax
y

S(y)

3 Injecting Span Constraints to DIORA

In this section, we present a method to improve
parsing performance by training DIORA such that
trees extracted through CKY are more likely to
contain known span constraints.

3.1 Test-time injection: Constrained CKY

One option to improve upon CKY is to simply find
span constraints and then use a constrained version
of CKY (CCKY):

CCKY (x, z) = argmax
y

⇥
S(y) + ✏ · g(y, z)

⇤
,

where z is a set of known span constraints for x,
g(y, z) measures how well the span constraints are
satisfied in y, i.e. g(y, z) =

P|z|�1
i=0 1(zi 2 y), and

✏ is an importance weight for the span constraint to
guarantee the highest scoring trees are the ones that
satisfy the most constraints.1 Using CCKY rather
than CKY typically gives a small boost to parsing
performance, but has several downsides described
in the remainder of this subsection.

1To save space, we exclude ✏ hereafter.

Can overfit to constraints DIORA learns to as-
sign weights to the trees that are most helpful for
word prediction. For this reason, it is logical to use
the weights to find the highest scoring tree. With
CCKY, we can find the highest scoring tree that
also satisfies the constraints, but this tree could be
very different from the original output. Ideally, we
would like a method that can incorporate span con-
straints in a productive way that is not detrimental
to the rest of the structure.

Only benefits sentences with constraints If we
are dependent on constraints for CCKY, then only
sentences that have said constraints will receive any
benefit. Ideally, we would like an approach where
even sentences without constraints could receive
some improvement.

Constraints are required at test time If we are
dependent on constraints for CCKY, then we need
to find constraints for every sentence at test time.
Ideally, we would like an approach where con-
straints are only needed at the time of training.

Noisy constraints Occasionally a constraint dis-
agrees with a comparable constituency parse tree.
In these cases, we would like to have an approach
where the model can choose to include only the
most beneficial constraints.

3.2 Distant Supervision:
Partially Structured SVM

To address the weaknesses of CCKY we present
a new training method for DIORA called Partially
Structured SVM (PS-SVM).2 This is a training ob-
jective that can incorporate constraints during train-
ing to improve parsing and addresses the aforemen-
tioned weaknesses of constrained CKY. PS-SVM
follows these steps:

1. Find a negative tree (y�), such as the highest
scoring tree predicted by the model:
y
�  CKY (x).

2. Find a positive tree (y+), such as the highest
scoring tree that satisfies known constraints:
y
+  CCKY (x, z).

3. Use the structured SVM with fixed margin to
learn to include constraints in the output:
JPS = ↵ ·max(0, 1 + S(y�)� S(y+)).

2PS-SVM can be loosely thought of as an application-
specific instantiation of Structural SVM with Latent Variables
(Yu and Joachims, 2009).
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Loss ↵ y
�

y
+

NCBL 1 argmaxy S(y) argmaxy[S(y) + g(y, z)]
MIN DIFFERENCE 1 argmaxy S(y) argmaxy[S(y) + g(y, z) + g(y, y�)]
RESCALE g(y+, y�) argmaxy S(y) argmaxy[S(y) + g(y, z)]
STRUCTURED RAMP 1 argmaxy[S(y)� g(y, z)] argmaxy[S(y) + g(y, z)]

Table 1: Multiple variants of the Partially Structured SVM (PS-SVM) loss, JPS = ↵ ·max(0, 1+S(y�)�S(y+)),
where z denotes constraint spans and g(y, z) =

P|z|�1
i=0 1(zi 2 y).

3.3 Variants of Partially Structured SVM
The most straightforward application of PS-SVM
assigns y

+ to be the highest scoring tree that
also incorporates known constraints, and we call
this NAIVE CONSTRAINT-BASED LEARNING
(NCBL). The shortcoming of NCBL are similar
to CCKY, y+ may be drastically different from
the initial prediction y

� and the model may overfit
to the constraints. With this in mind, an alternative
to NCBL is to find y

+ that is high scoring, satisfies
the constraints, and has the minimal number of
differences with respect to y

�. We refer to this
approach as MIN DIFFERENCE.

The MIN DIFFERENCE approach gives substan-
tial weight to the initial prediction y

�, which may
be helpful for avoiding overfitting to the constraints,
but simultaneously is very restrictive on the region
of positive trees. In other constraint-based objec-
tives for structured prediction, such as gradient-
based inference (Lee et al., 2019), the agreement
with constraints is incorporated as a scaling penalty
to the gradient step size rather than explicitly re-
stricting the search space of positive examples. In-
spired by this, we define another alternative to
NCBL called RESCALE that scales the step size
based on the difference between y

+ and y
�. If the

structures are very different, then only use a small
step size in order to both prevent overfitting to the
constraints and allow for sufficient exploration.

For margin-based learning, for stable optimiza-
tion a technique known as loss-augmented infer-
ence assigns y� to the be the highest scoring and
most offending example with respect to the ground
truth. When a full structure is not available to as-
sign y

+, then an alternative option is to use the
highest scoring prediction that satisfies the pro-
vided partial structure. This approach is called
STRUCTURED RAMP loss (Chapelle et al., 2009;
Gimpel and Smith, 2012; Shi et al., 2021).

In Table 1 we define the 4 variants of PS-SVM.
Variants that do not use loss-augmented inference
have gradient 0 when y

� contains all constraints.

4 Experimental Setup

In this section, we provide details on data pre-
processing, running experiments, and evaluating
model predictions. In addition, code to reproduce
our experiments and the model checkpoints are
available on Github.3

4.1 Training Data and Pre-processing
We train our system in various settings to verify the
effectiveness of PS-SVM with span constraints. In
all cases, we require access to a text corpus with
span constraints.4

Ontonotes (CoNLL 2012; Pradhan et al. 2012)
consists of ground truth named entity and con-
stituency parse tree labels. In our main experiment
(see Table 2), we use the 57, 757 ground truth enti-
ties from training data as span constraints.

WSJ Penn Treebank (Marcus et al., 1993) con-
sists of ground truth constituency parse tree la-
bels. It is an often-used benchmark for both su-
pervised and unsupervised constituency parsing in
English. We also derive synthetic constraints using
the ground truth constituents from this data.

MedMentions (Mohan and Li, 2019) is a collec-
tions of Pubmed abstracts that have been annotated
with UMLS concepts. This is helpful as training
data for the biomedical domain. For training we
only use the raw text to assist with domain adapta-
tion. We tokenize the text using scispacy.

The Colorado Richly Annotated Full Text
(CRAFT) (Cohen et al., 2017) consists of
biomedical journal articles that have been anno-
tated with both entity and constituency parse labels.
We use CRAFT both for training (with 18, 448 en-
tity spans) and evaluation of our model’s perfor-
mance in the biomedical domain. We sample 3k
sentences of training data to use for validation.

3https://github.com/iesl/distantly-supervised-diora
4Appendix A.1 provides further details about constraints.

https://github.com/iesl/distantly-supervised-diora
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4.1.1 Automatically extracted constraints
We experiment with two settings where span con-
straints are automatically extracted from the train-
ing corpus using dictionary lookup in a lexicon.
These settings simulate a real world setting where
full parse tree annotation is not available, but partial
span constraints are readily available.

PMI Constraints We use the phrases defined in
the vocab from Mikolov et al. (2013) as a lexi-
con, treating exact matches found in Ontonotes as
constraints. The phrases are learned through word
statistics by applying pointwise mutual informa-
tion (PMI) to find relevant bi-grams, then replacing
these bi-grams with a new special token represent-
ing the phrase — applied multiple times this tech-
nique is used to find arbitrarily long phrases.

Gazetteer We use a list of 1.5 million entity
names automatically extracted from Wikipedia
(Ratinov and Roth, 2009), which has been effec-
tive for supervised entity-centric tasks with both
log-linear and neural models (Liu et al., 2019a).
We derive constraints by finding exact matches in
the Ontonotes corpus that are in the gazetteer. A
lexicon containing entity names is often called a
gazetteer.

4.2 Training Details
In all cases, we initialize our model’s parameters
from pre-trained DIORA (Drozdov et al., 2019).
We then continue training using a combination of
the reconstruction and PS-SVM loss. Given sen-
tence x and constraints z, the instance loss is:

J(x, z) = Jrec(x) + JPS(x, z)

For the newswire domain, we train for a maxi-
mum of 40 epochs on Ontonotes using 6 random
seeds and use grid search, taking the best model in
each setting according to parsing F1 on the PTB
validation set. For biomedical text, since it is a shift
in domain from the DIORA pre-training, we first
train for 20 epochs using a concatenation of Med-
Mentions and CRAFT data with only the recon-
struction loss5 (called DIORAft for “fine-tune”).
Then, we train for 40 epochs like previously men-
tioned, using performance on a subset of 3k random
sentences from the CRAFT training data for early
stopping. Hyperparameters are in Appendix A.2.

5The training jointly with MedMentions and CRAFT is a
special case of “intermediate fine-tuning” (Phang et al., 2018).

F1

General Purpose
Ordered Neuron† (Shen et al., 2019) 48.1 ±1.0

Compound PCFG† (Kim et al., 2019a) 55.2 ±2.5

DIORA‡ (Drozdov et al., 2019) 56.8
S-DIORA† (Drozdov et al., 2020) 57.6 ±3.2

Constituency Tests
RoBERTa† (Cao et al., 2020) 62.8 ±1.6

DIORA Span Constraints
+CCKY 57.5
+PS-SVMNCBL 60.4 ±0.1

+PS-SVMMINDIFF 59.0 ±0.8

+PS-SVMRESCALE 61.2 ±0.6

+PS-SVMSTRUCTURE RAMP 59.9 ±1.0

Table 2: Parsing F1 on PTB. The average F1 across
random seeds is measured on the test set, and the stan-
dard deviation is shown as subscript when applicable.
†: Indicates that standard deviation is the approximate
lower bound derived from the mean, max, and number
of random seeds. ‡: Indicates no average performance
available, so the max is reported.

4.3 Evaluation
In all cases, we report Parsing F1 aggregated at
the sentence level — F1 is computed separately for
each sentence then averaged across the dataset. To
be consistent with prior work, punctuation is re-
moved prior to evaluation6 and F1 is computed us-
ing the eval script provided by Shen et al. (2018).7,8

In tables 2, 3, and 4 we average performance across
random seeds and report the standard deviation.

Baselines In Table 2, we compare parsing F1
with four general purpose unsupervised parsing
models that are trained directly from raw text. We
also compare with Cao et al. (2020) that uses
a small amount of supervision to generate con-
stituency tests used for training — their model has
substantially more parameters than our other base-
lines and is based on RoBERTa (Liu et al., 2019b).

6In general, it is less important that subtrees associated
with punctuation match the Penn Treebank guideline (Bies
et al., 1995) than if the model makes consistent decision with
respect to these cases. For this reason, omitting punctuation
for evaluation gives a more reliable judgement when parsing
is unsupervised.

7This script ignores trivial spans, and we use the version
provided in https://github.com/harvardnlp/compound-pcfg.

8We were not able to reproduce the results from the con-
current work Shi et al. (2021), which does not share their parse
tree output and uses a slightly different evaluation.

https://github.com/harvardnlp/compound-pcfg
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5 Results and Discussion

In our experiments and analysis we aim to address
several research questions about incorporating span
constraints for the task of unsupervised parsing.

5.1 Is Constrained CKY sufficient?
A natural idea is to constrain the output of DIORA
to contain any span constraints (§3.1). We expect
this type of hard constraint to be ineffective for var-
ious reasons: 1) The model is not trained to include
constraints, so any predictions that forces their in-
clusion are inherently noisy; 2) Similar to (1), some
constraints are not informative and may be in dis-
agreement with the desired downstream task and
the model’s reconstruction loss; and 3) Constraints
are required at test time and only sentences with
constraints can benefit.

We address these weaknesses by training our
model to include the span constraints in its out-
put using PS-SVM. This can be considered a soft
way to include the constraints, but has other bene-
fits including the following: 1) The model implic-
itly learns to ignore constraints that are not useful;
2) Constraints are not necessary at test time; and
3) The model improves performance even on sen-
tences that did not have constraints.

The effectiveness of our approach is visible in
Table 2 where we use ground truth entity bound-
aries as constraints. CCKY slightly improves upon
DIORA, but our PS-SVM approach has a more
substantial impact. We experiment with four vari-
ants of PS-SVM (described in §3.3) — RESCALE
is most effective, and throughout this text this is the
variant of PS-SVM used unless otherwise specified.

5.2 Real world example with low effort
constraint collection

Our previous experiments indicate that span con-
straints are an effective way to improve unsuper-
vised parsing. How can we leverage this method
to improve unsupervised parsing in a real world
setting? We explore two methods for easily finding
span constraints (see Table 3).

We find that PMI is effective as a lexicon, but not
as much as the gazetteer. PMI provides more con-
straints than the gazetteer, but the constraints dis-
agree more frequently with the ground truth struc-
ture and a smaller percentage of spans align exactly
with the ground truth. The gazetteer approach is
better than using CCKY with ground truth entity
spans, despite using less than half as many con-

WSJ Constraints
F1 EM C n

z Rpre
train Rpost

train Rpost
test

DIORA 56.8 ; ; ; ; ; ;

+Entity 61.9 96.3 1.9 58,075 79.3 98.9 96.4

+PMI 57.8 43.9 7.4 31,965 75.3 94.4 90.0
+Gazetteer 58.8 51.3 5.0 22,354 80.2 97.0 93.4

Table 3: Parsing F1 on PTB. The max F1 across ran-
dom seeds is measured on the test set. The correspond-
ing span recall is shown on the Ontonotes train and
test data before (Rpre) and after (Rpost) training. The
first row shows DIORA performance. Following rows
show performance using distant supervision. EM: Ex-
act Match (percent of span constraints that are also
constituents); C: Crossing (percent of span constraints
that cross a constituent); n

z: Number of span con-
straints. The constraint-based metrics are not applica-
ble to DIORA and marked with ;.

straints that only align exactly with the ground
truth nearly half the time. We use gazetteer in only
the most naive way via exact string matching, so
we suspect that a more sophisticated yet still high
precision approach (e.g. approximate string match)
would have more hits and provide more benefit.

For both PMI and Gazetteer, we found that
NCBL gave the best performance.

5.3 Impact on consistent convergence
We find that using constraints with PS-SVM con-
siderably decreases the variance on performance
compared with previous baselines.9 This is not
surprising given that latent tree learning (i.e. un-
supervised parsing) can converge to many equally
viable parsing strategies. By using constraints, we
are guiding optimization to converge to a point
more aligned with the desired downstream task.

5.4 Are entity spans sufficient as constraints?

Given that DIORA already captures a large percent-
age of span constraints represented by entities, it
is somewhat surprising that including them gives
any F1 improvement. That being said, it is diffi-
cult to know a priori which span constraints are
most beneficial and how much improvement to ex-
pect. To help understand the benefits of different
types of span constraints, we derived synthetic con-
straints using the most frequent constituent types

9Although, most previous work does not explicitly report
the standard deviation (STDEV), we can use the mean, max,
and number of trials to compute the lower bound on STDEV.
This yields 2.5 (Compound PCFG), 3.2 (S-DIORA), and 1.6
(RoBERTa). In contrast, our best setting has STDEV 0.6.
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(a) Span Constraint Count. (b) Initial Span Recall.

(c) Parsing F1. (d) Parsing F1 (restricted).

Figure 2: Various statistics when using 1 or 2 con-
stituent types as span constraints on the WSJ training
and validation data. (a): The count of each span con-
straint in the training data (in thousands). (b): The
percent of span constraints captured (i.e. span recall)
in the validation data. (c): Parsing F1 on the validation
data when using the span constraints with PS-SVM. (d):
Parsing F1 on the validation data when using PS-SVM,
although span constraints have been restricted to match
the frequency and nesting behavior of entities.

from ground truth parse trees in Ontonotes (see Fig-
ure 2). The constraints extracted this way look very
different from the entity constraints in that they
often are nested and in general are much more fre-
quent. To make a more fair comparison we prevent
nesting and downsample to match the frequency of
the entity constraints (see Figure 2d).

From these experiments, we can see NP or VP
combined with other constraints usually lead to
the best parsing performance (Figure 2c). This is
the case even if DIORA had relatively low span
recall on a different constraint type (Figure 2b). A
reasonable hypothesis is that simply having more
constraints leads to better performance, which mir-
rors the result that the settings with the most con-
straints perform better overall (Figure 2a). When
filtered to match the shape and frequency of en-
tity constraints, we see that performance based on
NP constraints is nearly the same as with entities
(Figure 2d). This suggests that entity spans are
effective as constraints with respect to other types
of constraints, but that in general we should aim to
gather as many constraints as possible.

CRAFT Constraints
F1 Rtrain Rtest

UB 85.4 82.8 79.2

DIORA 50.7 47.4 44.8
DIORAft 55.8 72.4 65.9

+CCKY 56.2 99.0 98.6
+PS-SVM 56.8 91.1 85.3

Table 4: Parsing F1 and Span Recall on CRAFT. The
max F1 across random seeds is measured on the test
set. DIORAft: Fine-tuned on word prediction to assist
domain transfer. UB: The upper bound on performance
measured by binarizing the ground truth tree.

5.5 Case Study: Parsing Biomedical Text
The most impactful domain for our method would
be unsupervised parsing in a domain where full
constituency tree annotation is very expensive, and
span constraints are relatively easy to acquire. For
this reason, we run experiments using the CRAFT
corpus (Verspoor et al., 2011), which contains text
from biomedical research. The results are summa-
rized in Tables 4 and 5.

5.5.1 Domain Adaptation: Fine-tuning
through Word Prediction

Although CRAFT and PTB are both in English, the
text in biomedical research is considerably different
compared with text in the newswire domain. When
we evaluate the pre-trained DIORA model on the
CRAFT test set, we find it achieves 50.7 F1. By
simply fine-tuning the DIORA model on biomed-
ical research text using only the word-prediction
objective (Jrec) we can improve this performance
to 55.8 F1 (+5.1 F1; DIORAft in Table 4). This
observation accentuates a beneficial property about
unsupervised parsing models like DIORA: for do-
main adaptation, simply continue training on data
from the target domain, which is possible because
the word-prediction objective does not require label
collection, unlike supervised models.

5.5.2 Incorporating Span Constraints
We use the ground truth entity annotation in the
CRAFT training data as a source of distant super-
vision and continue training DIORA using the PS-
SVM objective. By incorporating span constraints
this way, we see that parsing performance on the
test set improves from 55.8! 56.8 (+1 F1).

For CRAFT, we used grid search over a small
set of hyperparameters including loss variants and
found that STRUCTURED RAMP performed best.
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DIORA +CCKY +PS-SVM
n n

z F1 Rz F1 Rz F1 Rz

CAPTION 1857 1579 55.7 67.6 56.0 98.3 56.0 86.1
HEADING 1149 201 72.0 59.2 72.8 96.5 73.5 83.1
TITLE 29 31 51.4 58.1 53.8 96.8 55.4 71.0
CIT 3 0 40.0 ; 40.0 ; 40.0 ;
S-IMP 1 0 36.8 ; 36.8 ; 31.6 ;

S 5872 5140 53.9 65.9 54.2 98.8 54.9 85.4
NP 136 34 37.1 41.2 40.6 100.0 44.1 52.9
FRAG 39 52 49.3 71.2 49.0 100.0 51.8 84.6
SINV 6 7 50.7 42.9 47.9 85.7 46.3 57.1
SBARQ 5 1 49.5 100.0 49.5 100.0 55.1 100.0
SQ 2 1 28.0 100.0 28.0 100.0 32.9 100.0

Table 5: Parsing F1 on CRAFT test set from the best
model bucketed by the sentence’s top-most constituent
type. n: Count of sentences. nz: Count of constraints.
Rz: Recall on constraints. ;: Indicates no constraints.

Performance by Sentence Type In Table 5 we
report parsing results bucketed by sentence-type de-
termined by the top-most constituent label. In gen-
eral, across almost all sentence types, simply con-
straining the DIORA output to incorporate known
spans boosts F1 performance. Training with the
PS-SVM objective usually improves F1 further, al-
though the amount depends on the sentence type.

Challenging NP-type Sentences We observe es-
pecially low span-recall for sentences with NP as
the top-most constituent (Table 5). These are short
sentences that exhibit domain-specific structure.
Here is a typical sentence and ground truth parse
for that case:

((HIF - 1↵) KO) - ((skeletal - muscle)
(HIF - 1↵) knockout mouse)

Various properties of the above sentence make it
difficult to parse. For instance, the sentence con-
struction lacks syntactic cues and there is no verb
in the sentence. There is also substantial ambiguity
with respect to hyphenation, and the second hyphen
is acting as a colon. These properties make it diffi-
cult to capture the spans (skeletal - muscle) or the
second (HIF - 1↵) despite being constraints.

5.5.3 Parsing of PTB vs. CRAFT
As mentioned in §5.5.1, there is considerable dif-
ference in the text between PTB and CRAFT. It
follows that there would be a difference in diffi-
culty when parsing these two types of data. After
running the parser from Kitaev and Klein (2018) on
each dataset, it appears CRAFT is more difficult to
parse than PTB. For CRAFT, the unlabeled parsing
F1 is 81.3 and the span recall for entities is 37.6.
For PTB, the unlabeled parsing F1 is 95.

6 Related Work

Learning from Partially Labeled Corpora
Pereira and Schabes (1992) modify the inside-
outside algorithm to respect span constraints. Simi-
lar methods have been explored for training CRFs
(Culotta and McCallum, 2004; Bellare and Mc-
Callum, 2007). Rather than modify the weight
assignment in DIORA, which is inspired by the
inside-outside algorithm, we supervise the tree pre-
dicted from the inside-pass.

Concurrent work to ours in distant supervision
trains RoBERTa for constituency parsing using an-
swer spans from question-answering datasets and
wikipedia hyperlinks (Shi et al., 2021). Although
effective, their approach depends entirely on the
set of constraints. In contrast, PS-SVM enhances
DIORA, which is a model that outputs a parse tree
without any supervision.

The span constraints in this work are derived
from external resources, and do not necessarily
match the parse tree. Constraints may conflict with
the parse, which is why CCKY can be less than
100 span recall in Table 4. This approach to model
training is often called “distant supervision” (Mintz
et al., 2009; Shi et al., 2021). In contrast, “partial
supervision” implies gold partial labels are avail-
able, which we explore as synthetic data (§5.4), but
in general do not make this assumption.

Joint Supervision An implicit way to incor-
porate constraints is through multi-task learning
(MTL; Caruana, 1997). Even when relations be-
tween the tasks are not modeled explicitly, MTL
has shown promise throughout a range of text pro-
cessing tasks with neural models (Collobert and
Weston, 2008; Swayamdipta et al., 2018; Kuncoro
et al., 2020). Preliminary experiments with joint
NER did not improving parsing results. This is
in-line with DIORA’s relative weakness in repre-
senting fine-grained entity types. Modifications of
DIORA to improve its semantic representation may
prove to make joint NER more viable.

Constraint Injection Methods There exists a
rich literature in constraint injection (Ganchev
et al., 2010; Chang et al., 2012) . Both methods
are based on Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977) where the constraint
is injected in the E-step of calculating the posterior
distribution (Samdani et al., 2012). Another line
of work focuses injecting constraint in the M-step
(Lee et al., 2019; Mehta et al., 2018) by reflecting
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the degree of constraint satisfaction of prediction as
the weight of the gradient. Our approach is similar
to Chang et al. (2012) as we select the highest scor-
ing output that satisfies constraints and learn from
it. PS-SVMRESCALE is based on Lee et al. (2019).

The aforementioned constraint injection meth-
ods were usually used as an added loss to the su-
pervised loss function. In this work, we show that
the distant supervision through constraint injection
is beneficial for unsupervised setting as well.

Structural SVM with Latent Variables The
PS-SVM loss we introduce in this work can be
loosely thought of as an application-specific instan-
tiation of Structural SVM with Latent Variables (Yu
and Joachims, 2009). Various works have extended
Structural SVM with Latent Variables to incorpo-
rate constraints for tasks such as sequence label-
ing (Yu, 2012) and co-reference resolution (Chang
et al., 2013), although none we have seen focus on
unsupervised constituency parsing. Perhaps a more
clear distinction is that Yu and Joachims (2009)
focuses on latent variables within supervised tasks,
and PS-SVM is meant to improve convergence of
an unsupervised learning algorithm (i.e., DIORA).

Additional Related Work In Appendix A.3 we
list additional work in unsupervised parsing not
already mentioned.

7 Conclusion

In this work, we present a method for enhancing
DIORA with distant supervision from span con-
straints. We call this approach Partially Structured
SVM (PS-SVM). We find that span constraints
based on entities are effective at improving parsing
performance of DIORA on English newswire data
(+5.1 F1 using ground truth entities, or +2 F1 us-
ing a gazetteer). Furthermore, we show PS-SVM
is also effective in the domain of biomedical text
(+1 F1 using ground truth entities). Our detailed
analysis shows that entities are effective as span
constraints, giving equivalent benefit as a similar
amount of NP-based constraints. We hope our find-
ings will help “bridge the gap” between supervised
and unsupervised parsing.

Broader Impact

We hope our work will increase the availability
of parse tree annotation for low-resource domains,
generated in an unsupervised manner. Compared
with full parse tree annotation, span constraints can

be acquired at reduced cost or even automatically
extracted.

The gazetteer used in our experiments is auto-
matically extracted from Wikipedia, and our exper-
iments are only for English, which is the language
with by far the most Wikipedia entries. Although,
similarly sized gazetteers may be difficult to attain
in other languages, Mikheev et al. (1999) point
out larger gazetteers do not necessarily boost per-
formance, and gazetteers have already proven ef-
fective in low-resource domains (Rijhwani et al.,
2020). In any case, we use gazetteers in the most
naive way by finding exact text matches. When ex-
tending our approach to other languages, an entity
recognition model may be a suitable replacement
for the gazetteer.

Acknowledgements

We are grateful to our colleagues at UMass NLP
and the anonymous reviewers for feedback on
drafts of this work. This work was supported in part
by the Center for Intelligent Information Retrieval,
in part by the Chan Zuckerberg Initiative, in part
by the IBM Research AI through the AI Horizons
Network, and in part by the National Science Foun-
dation (NSF) grant numbers DMR-1534431, IIS-
1514053, CNS-0958392, and IIS-1955567. Any
opinions, findings and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect those of the
sponsor.

References
Nader Akoury, Kalpesh Krishna, and Mohit Iyyer.

2019. Syntactically supervised transformers for
faster neural machine translation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1269–1281, Florence,
Italy. Association for Computational Linguistics.

Kedar Bellare and Andrew McCallum. 2007. Learn-
ing extractors from unlabeled text using relevant
databases. In Proceedings of the 2007 AAAI Work-
shop on information integration on the web.

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995.
Bracketing guidelines for Treebank II style Penn
Treebank project. Technical report, Department of
Linguistics, University of Pennsylvania.

Eric Brill, David Magerman, Mitchell Marcus, and
Beatrice Santorini. 1990. Deducing linguistic struc-
ture from the statistics of large corpora. In Speech

https://doi.org/10.18653/v1/P19-1122
https://doi.org/10.18653/v1/P19-1122
https://www.aclweb.org/anthology/H90-1055
https://www.aclweb.org/anthology/H90-1055


4827

and Natural Language: Proceedings of a Work-
shop Held at Hidden Valley, Pennsylvania, June 24-
27,1990.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-
pervised parsing via constituency tests. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4798–4808, Online. Association for Computational
Linguistics.

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. Technical report, Dept. of Com-
puter Science, Brown University.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Kai-Wei Chang, Rajhans Samdani, and Dan Roth.
2013. A constrained latent variable model for coref-
erence resolution. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 601–612, Seattle, Washington,
USA. Association for Computational Linguistics.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured learning with constrained conditional
models. Machine learning, 88(3):399–431.

Olivier Chapelle, Chuong B., Choon Teo, Quoc Le, and
Alex Smola. 2009. Tighter bounds for structured es-
timation. In Advances in Neural Information Pro-
cessing Systems, volume 21. Curran Associates, Inc.

Alexander Clark. 2001. Unsupervised induction of
stochastic context-free grammars using distribu-
tional clustering. In CoNLL.

Kevin Bretonnel Cohen, Karin Verspoor, Karën Fort,
Christopher Funk, Michael Bada, Martha Palmer,
and Lawrence Hunter. 2017. The colorado richly an-
notated full text (CRAFT) corpus: Multi-model an-
notation in the biomedical domain. In Handbook of
Linguistic Annotation, page 1379 – 1394. Springer.

Ronan Collobert and J. Weston. 2008. A unified archi-
tecture for natural language processing: deep neural
networks with multitask learning. In ICML ’08.

Aron Culotta and Andrew McCallum. 2004. Confi-
dence estimation for information extraction. In Pro-
ceedings of HLT-NAACL 2004: Short Papers, pages
109–112, Boston, Massachusetts, USA. Association
for Computational Linguistics.

A. Dempster, N. Laird, and D. Rubin. 1977. Maxi-
mum likelihood from incomplete data via the EM
- algorithm plus discussions on the paper. Journal of
the Royal Statistical Society: Series B (Methodolog-
ical).

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen,
Tim O’Gorman, Mohit Iyyer, and Andrew McCal-
lum. 2020. Unsupervised parsing with S-DIORA:

Single tree encoding for deep inside-outside recur-
sive autoencoders. In Empirical Methods in Natural
Language Processing (EMNLP).

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive autoencoders. In NAACL-HLT.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Hu-
man Language Technologies: Conference of the
North American Chapter of the Association of Com-
putational Linguistics, Proceedings, May 31 - June
5, 2009, Boulder, Colorado, USA, pages 326–334.
The Association for Computational Linguistics.

Kuzman Ganchev, João Graça, Jennifer Gillenwater,
and B. Taskar. 2010. Posterior regularization for
structured latent variable models. J. Mach. Learn.
Res., 11:2001–2049.

Kevin Gimpel and Noah A. Smith. 2012. Structured
ramp loss minimization for machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 221–231, Montréal, Canada. Association for
Computational Linguistics.

Aria Haghighi and Dan Klein. 2006. Prototype-driven
grammar induction. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman.
2018. Grammar induction with neural language
models: An unusual replication. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 371–373, Brussels, Belgium. Association for
Computational Linguistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller,
William Schuler, and Lane Schwartz. 2018. Unsu-
pervised Grammar Induction with Depth-bounded
PCFG. Transactions of the Association for Compu-
tational Linguistics, 6:211–224.

T. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Tech-
nical Report AFCRL-65-758, Air Force Cambridge
Research Laboratory, Bedford, MA†.

https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://aclanthology.org/D13-1057
https://aclanthology.org/D13-1057
https://proceedings.neurips.cc/paper/2008/file/6bc24fc1ab650b25b4114e93a98f1eba-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/6bc24fc1ab650b25b4114e93a98f1eba-Paper.pdf
https://www.aclweb.org/anthology/N04-4028
https://www.aclweb.org/anthology/N04-4028
https://www.aclweb.org/anthology/N09-1037/
https://www.aclweb.org/anthology/N12-1023
https://www.aclweb.org/anthology/N12-1023
https://doi.org/10.18653/v1/W18-5452
https://doi.org/10.18653/v1/W18-5452
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.1162/tacl_a_00016


4828

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In ACL.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019b. Unsu-
pervised recurrent neural network grammars. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1105–1117,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Association for
Computational Linguistic (ACL).

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 478–485,
Barcelona, Spain.

Dan Klein and Christopher D. Manning. 2001. Natu-
ral language grammar induction using a constituent-
context model. In NeurIPS.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. Transactions
of the Association for Computational Linguistics,
8:776–794.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael L.
Wick, Jean-Baptiste Tristan, and Jaime G. Carbonell.
2019. Gradient-based inference for networks with
output constraints. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 4147–4154.
AAAI Press.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019a.
Towards improving neural named entity recognition
with gazetteers. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5301–5307, Florence, Italy. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Michael Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Stephen Mayhew, Snigdha Chaturvedi, Chen-Tse Tsai,
and Dan Roth. 2019. Named entity recognition
with partially annotated training data. In Proceed-
ings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), pages 645–655,
Hong Kong, China. Association for Computational
Linguistics.

Sanket Vaibhav Mehta, Jay Yoon Lee, and Jaime Car-
bonell. 2018. Towards semi-supervised learning for
deep semantic role labeling. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4958–4963, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Andrei Mikheev, Marc Moens, and Claire Grover. 1999.
Named entity recognition without gazetteers. In
Ninth Conference of the European Chapter of the
Association for Computational Linguistics, pages 1–
8, Bergen, Norway. Association for Computational
Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NeurIPS.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003–1011, Suntec, Singapore. Association
for Computational Linguistics.

Sunil Mohan and Donghui Li. 2019. Medmentions: A
large biomedical corpus annotated with UMLS con-
cepts. In Automated Knowledge Base Construction
(AKBC).

Robert Moore, Douglas Appelt, John Dowding,
J. Mark Gawron, and Douglas Moran. 1995. Com-
bining linguistic and statistical knowledge sources
in natural-language processing for atis. In Proceed-
ings of the January 1995 ARPA Spoken Language
Systems Technology Workshop.

Jason Naradowsky. 2014. Learning with Joint Infer-
ence and Latent Linguistic Structure in Graphical
Models. Ph.D. thesis, University of Massachusetts
Amherst.

Vlad Niculae and Andre Martins. 2020. LP-
SparseMAP: Differentiable relaxed optimization for
sparse structured prediction. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Re-
search, pages 7348–7359. PMLR.

https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.1609/aaai.v33i01.33014147
https://doi.org/10.1609/aaai.v33i01.33014147
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/K19-1060
https://doi.org/10.18653/v1/K19-1060
https://doi.org/10.18653/v1/D18-1538
https://doi.org/10.18653/v1/D18-1538
https://aclanthology.org/E99-1001
https://aclanthology.org/P09-1113
https://aclanthology.org/P09-1113
http://proceedings.mlr.press/v119/niculae20a.html
http://proceedings.mlr.press/v119/niculae20a.html
http://proceedings.mlr.press/v119/niculae20a.html


4829

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In 30th Annual Meeting of the Association for
Computational Linguistics, pages 128–135, Newark,
Delaware, USA. Association for Computational Lin-
guistics.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. ArXiv,
abs/1811.01088.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 1077–1086, Portland, Oregon,
USA. Association for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning - Proceedings of the Shared Task:
Modeling Multilingual Unrestricted Coreference in
OntoNotes, EMNLP-CoNLL 2012, July 13, 2012,
Jeju Island, Korea, pages 1–40. ACL.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Shruti Rijhwani, Shuyan Zhou, Graham Neubig, and
Jaime Carbonell. 2020. Soft gazetteers for low-
resource named entity recognition. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8118–8123, On-
line. Association for Computational Linguistics.

Rajhans Samdani, Ming-Wei Chang, and Dan Roth.
2012. Unified expectation maximization. In
NAACL-HLT.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon. In ICLR.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
International Conference on Learning Representa-
tions (ICLR).

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. 2019. Visually grounded neural syntax ac-
quisition. In Association for Computational Linguis-
tics.
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A Appendix
A.1 Constraint Statistics
Here we report a detailed breakdown of span con-
straints and the associated constituent types. Com-
pared with Shi et al. (2021), span constraints based
on entities are less diverse with respect to con-
stituent type. In future work, we plan to use their
data combined with DIORA and PS-SVM training.
Also, we hypothesize that RoBERTa would be ef-
fective as a data augmentation to easily find new
constraints.

Ontonotes CRAFT
NER Gazetter PMI NER

Exact match 96.3 51.3 43.9 57.4
Conflict 1.9 5.0 7.4 12.0

NP 9.2 1.7 1.9 4.0
VP 0.0 0.0 0.0 0.0
S 0.1 0.0 0.0 0.0
ADVP 7.5 0.0 1.5 0.2
ADJP 3.1 0.8 2.2 3.3
SBAR 0.0 0.0 0.0 0.0
NML 21.6 11.6 14.9 17.9
QP 46.6 0.0 0.0 0.0
PP 0.1 0.0 0.0 0.0
Total 3.1 1.2 1.7 4.0

Number of sentences 115,811 18,951
Number of ground truth spans 1,878,737 361,394
Span/sentences 0.50 0.19 0.28 0.77

Table 6: Statistics of different type constraints in
Ontonotes. The top part shows how each constraint
type agree with the ground truth parsing. The mid-
dle shows the percentages of each constituency spans
found in constraint spans. The bottom part shows the
total number of sentences and constraint spans per sen-
tence.

A.2 Hyperparameters
We run a small grid search with multiple random
seeds. The following search parameters are fixed
for all experiments.

Model Dimension: 400

Optimization Algorithm: Adam
Hardware: 1x1080ti
Training Time: O(24h)

Also, we search over the 4 variants of PS-SVM
(§3.3) when incorporating constraints. We mention
the best performing variant of PS-SVM where it
is relevant. The best performing setting for each
hyperparameter is underlined.

A.2.1 Newswire
For newswire experiments, we train with Ontonotes
and validate with PTB.

Learning Rate: 2�3
, 1�3

Max Training Length: 40

Batch Size: 32

Max Epochs: 40

Stopping Criteria: Validation F1
No. of Random Seeds: 6

Using RESCALE gave the best result with ground
truth entity-based constraints, and NCBL gave the
best result for PMI and gazetteer-based constraints.

A.2.2 Biomedical Text
First, to assist with domain adaptation, we train us-
ing a concatenation of CRAFT and MedMentions
(DIORAft). We sample 3k sentences from CRAFT
training data to use for validation.

Learning Rate: 2�3

Max Training Length: 30

Batch Size: 32

Max Epochs: 20

Stopping Criteria: Validation F1
No. of Random Seeds: 1

Then we incorporate constraints and train only with
CRAFT, using the same sample for validation.

Learning Rate: 2�3
, 1�3

, 5�4
, 1�4

Max Training Length: 40

Batch Size: 4, 8, 32

Max Epochs: 40

Stopping Criteria: Validation F1
No. of Random Seeds: 3

Using STRUCTURED RAMP gave the best result.

A.2.3 Other Details
We report validation and test performance where
applicable. All of our model output are shared
in our github repo for further analysis. Training
with PS-SVM uses the same parameters as standard
DIORA training — the supervision is directly on
the scores computed for the inside-pass and does
not require any new parameters.
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A.2.4 Use of Validation Data
Shi et al. (2019) point out that validation sets can
disproportionally skew performance of unsuper-
vised parsing systems. We re-did early stopping
using 100 random sentences and found that the
best model remained the same in all cases. This is
consistent with the DIORA-related experiments in
Shi et al. (2019) that show DIORA performance is
robust when only a small number of samples are
used for model selection.

A.2.5 Why fine-tune?
To be resource efficient, we use the pre-trained
DIORA checkpoint from Drozdov et al. (2019) and
fine-tune it for parsing biomedical text. DIORA
was trained for 1M gradient updates on nearly 2M
sentences from NLI data, taking 3 days using 4x
GPUs. MedMentions has ⇠40k training sentences,
CRAFT has only ⇠40k, and our PS-SVM experi-
ments run in less than 1 day using a single GPU.

A.3 Additional Related Work
In the main text, we mention the most closely re-
lated work for training DIORA with our PS-SVM
objective. Here we cover other work not discussed.
Unsupervised parsing has a long and dense history,
and we hope this section provides context to the
state of the field, our contribution in this paper, and
can serve as a guide for the interested researcher.

History of unsupervised parsing over the last
thirty years As early as 1990, researcher were
using corpus statistics to induce grammar, not un-
like how our span constraints based on PMI are
derived (Brill et al., 1990) — at this point the
Penn Treebank was still in progress of being an-
notated. Other techniques focused on optimizing
sentence likelihood with probabilistic context-free
grammars, although with limited success (Lari and
Young, 1990; Carroll and Charniak, 1992; Pereira
and Schabes, 1992). Later work exploited the statis-
tics between phrases and their context (Clark, 2001;
Klein and Manning, 2001), but the most promising
practical progress in this line of work was not seen
until 15+ years later.

In the mid 2010s, many papers were published
about neural models for language that claimed to
induce tree-like structure, albeit none made strong
claims about unsupervised parsing. Williams et al.
(2018) analyzed these models and discovered a
negative result. Despite their tree-structured in-
ductive bias, when measured against ground truth

parse trees from the Penn Treebank these mod-
els did only slightly better than random and were
not competitive with earlier work grammar induc-
tion. Shortly after, Shen et al. (2018) developed
a neural language model with a tree-structured at-
tention pattern and Htut et al. (2018) demonstrated
its effectiveness at unsupervised parsing, the first
positive result for a neural model. In quick suc-
cession, more papers were published with improve
results and new neural architectures (Shen et al.,
2019; Drozdov et al., 2019; Kim et al., 2019a,b;
Cao et al., 2020, inter alia), some of which we in-
clude as baselines in Table 2. Perhaps one of the
more interesting work was improved performance
of unsupervised parsing with PCFG when param-
eterized as a neural model (Neural PCFG; Kim
et al., 2019a). These results suggest that the mod-
ern NLP machinery has made unsupervised parsing
more viable, yet it is still not clear which of the
newly ubiquitous tools (word vectors, contextual
language models, adaptive optimizers, etc.) makes
the biggest impact.

Variety of approaches to unsupervised parsing
The majority of the models in the work reported
above optimize statistics with respect to the train-
ing data (with Cao et al., 2020 as an exception),
but many techniques have been explored by now
towards the same end. Unsupervised constituency
parsing can be done in a variety ways including:
exploiting patterns between images and text (Shi
et al., 2019), exploiting patterns in parallel text
(Snyder et al., 2009), joint induction of dependency
and constituency (Klein and Manning, 2004), iter-
ative chunking (Ponvert et al., 2011), contrastive
learning (Smith and Eisner, 2005), and more.

Other constraint types In our work we focus on
span constraints, especially those based on entities
or automatically derived from a lexicon, and en-
courage those spans to be included in the model’s
prediction. Prior knowledge of language can be use-
ful in defining other types of structural constraints.
For instance, in Mayhew et al. (2019) the distribu-
tion of NER-related tokens is helpful to improve
performance for low-resource languages. Perhaps
more relevant, Jin et al. (2018) present a version
of PCFG with bounded recursion depth. Niculae
and Martins (2020) present a flexible optimization
framework for incorporating structural constraints
such as bounded recursion depth and demonstrate
strong results on synthetic data.


