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Abstract

Pre-trained language models (LMs) have be-
come ubiquitous in solving various natural lan-
guage processing (NLP) tasks. There has been
increasing interest in what knowledge these
LMs contain and how we can extract that
knowledge, treating LMs as knowledge bases
(KBs). While there has been much work on
probing LMs in the general domain, there has
been little attention to whether these power-
ful LMs can be used as domain-specific KBs.
To this end, we create the BIOLAMA bench-
mark, which is comprised of 49K biomedical
factual knowledge triples for probing biomedi-
cal LMs. We find that biomedical LMs with re-
cently proposed probing methods can achieve
up to 18.51% Acc@5 on retrieving biomedi-
cal knowledge. Although this seems promis-
ing given the task difficulty, our detailed analy-
ses reveal that most predictions are highly cor-
related with prompt templates without any sub-
jects, hence producing similar results on each
relation and hindering their capabilities to be
used as domain-specific KBs. We hope that
BIOLAMA can serve as a challenging bench-
mark for biomedical factual probing.1

1 Introduction

Recent success in natural language processing can
be largely attributed to powerful pre-trained lan-
guage models (LMs) that learn contextualized rep-
resentations of words from large amounts of un-
structured corpora (Peters et al., 2018; Devlin et al.,
2019). There have been recent works in probing
how much knowledge these LMs contain in their
parameters (Petroni et al., 2019) and how to effec-
tively extract such knowledge. (Shin et al., 2020;
Jiang et al., 2020b; Zhong et al., 2021).

1https://github.com/dmis-lab/BioLAMA
†Corresponding authors.
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Figure 1: Comparison of LAMA (Petroni et al., 2019)
and BIOLAMA. (a) LAMA tests general knowledge
of LMs. (b) BIOLAMA tests expert-level biomedical
knowledge of LMs such as a treatment for a disease.

While factual probing of LMs has attracted much
attention from researchers, a more practical appli-
cation would be to leverage the power of domain-
specific LMs (Beltagy et al., 2019; Lee et al., 2020)
as domain knowledge bases (KBs). Unlike recent
works that probe general domain knowledge, we
ask whether it is also possible to retrieve expert
knowledge from LMs. Specifically, we tune our
focus on factual knowledge probing for the biomed-
ical domain as shown in Figure 1.

To inspect the potential utility of LMs as biomed-
ical KBs, we create and release the Biomedical
LAnguage Model Analysis (BIOLAMA) probe.
BIOLAMA consists of 49K biomedical factual
triples whose relations have been manually curated
from three different knowledge sources: the Com-
parative Toxicogenomics Database (CTD), the Uni-
fied Medical Language System (UMLS), and Wiki-
data. While our biomedical factual triples are in-
herently more difficult to probe (see Table 1 for
examples), BIOLAMA also poses technical chal-
lenges such as multi-token object decoding.

Initial probing results on BIOLAMA show that
the best performing LM achieves up to 7.28%
Acc@1 and 18.51% Acc@5, and outperforms an in-
formation extraction (IE) baseline (Lee et al., 2016).
Although this result seems promising, we find that
their output distributions are largely biased to a

https://github.com/dmis-lab/BioLAMA
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Relation Name Manual Prompt Object Answer

LAMA

# Relations: 41 # Entity Types: 25∗ # Triples: 41k Sources: Wikidata

place of birth Dante was born in [Y]. Florence
place of death Adolphe Adam died in [Y]. Paris
official language The official language of Mauritius is [Y]. English

BIOLAMA

# Relations: 36 # Entity Types: 12 # Triples: 49K Sources: CTD, UMLS, Wikidata

medical condition treated Amantadine has effects on [Y]. Parkinson’s disease, ...
symptoms Hepatitis has symptoms such as [Y]. abdominal pain, ...
affects binding Nicotine binds to [Y]. CHRNA4, CHRNB2, ...

Table 1: Comparison of LAMA (T-REx) and BIOLAMA with their statistics. For each dataset, we also show the
examples of relations and their corresponding manual prompts and answers. The underlined entities are subjects
and [Y] refers to the object to be predicted. ∗: obtained from Cao et al. (2021).

small number of entities in each relation. Along
this line, we use two metrics, prompt bias (Cao
et al., 2021) and synonym variance, to investigate
the behavior of LMs as KBs. Our analysis shows
that while LMs seem to be more aware of syn-
onyms than the IE baseline, they output highly bi-
ased predictions given the prompt template of each
relation. Our result calls for better LMs and prob-
ing methods that can retrieve rich but still useful
biomedical entities.

2 BIOLAMA

In this section, we detail the construction of BI-
OLAMA including the data curation process and
pre-processing steps. Statistics and examples of
BIOLAMA are shown in Table 1 along with those
from LAMA (Petroni et al., 2019).

2.1 Knowledge Sources

CTD The CTD2 is a public biomedical database
on relationships and interactions between biomed-
ical entities such as diseases, chemicals, and
genes (Davis et al., 2020). It provides both man-
ually curated and automatically inferred triples in
English, and we only use the manually curated
triples for a better quality of our dataset. We use
the April 1st, 2021 version of the CTD.

UMLS The UMLS Metathesaurus3 is a large-
scale database that provides information regarding
various concepts and vocabularies in the biomed-
ical domain (Bodenreider, 2004). We use the
2020AB version of the UMLS. The UMLS pro-
vides entity names in various languages and we use
the ones in English.

2http://ctdbase.org/
3https://www.nlm.nih.gov/research/umls/

Dataset Obj in Sbj (%) # Object Subwords

LAMA 12.81 1.00
LAMA-UHN 0.00 1.00
X-FACTR 6.35 3.07
BIOLAMA 0.00 4.52

Table 2: Comparison of probing benchmarks: ratio of
subjects with objects as substrings, and the average sub-
word numbers of object entities. We compare these two
aspects of BIOLAMA to LAMA, LAMA-UHN (Po-
erner et al., 2020) and X-FACTR (Jiang et al., 2020a).

Wikidata Wikidata4 is a public KB with items
across various domains. Following the previous
works (Turki et al., 2019; Waagmeester et al.,
2020), we retrieve biomedical entities and relations
using SPARQL queries. We use the dump of the
January 25th, 2021 version. Similar to the UMLS,
we use entity names in English.

2.2 Data Pre-processing

From our initial factual triples from the knowledge
sources above, we apply several pre-processing
steps to further improve the quality of BIOLAMA.
First, considering the trade-off between the cover-
age and difficulty of probing, we restrict the lengths
of entities to be ≤10 subwords, which covers 90%
of the entities.5 Note that LAMA only contains
single-token objects, which makes the task eas-
ier, but less practical. Following Poerner et al.
(2020), we also discard easy triples where objects
are substrings of the paired subjects (e.g., “iron
deficiency”-“iron”), which prevents trivial solu-
tions using the surface forms of the subjects. For
each relation, we split samples into training, devel-
opment, and test sets with a 40:10:50 ratio. The
training set is provided for learning or finding good

4https://wikidata.org
5Based on the BERT-base-cased tokenizer.

http://ctdbase.org/
https://www.nlm.nih.gov/research/umls/
https://wikidata.org
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Source IE BERT BioBERT Bio-LM
Manual Opti. Manual Opti. Maual Opti.

CTD (11.13%) 5.06 / 12.15 0.06 / 1.20 3.56 / 6.97 0.42 / 3.25 4.82 / 9.74 1.77 / 7.30 2.99 / 10.19
UMLS (9.67%) 3.53 / 6.99 0.82 / 1.99 1.44 / 3.65 1.16 / 3.82 5.08 / 13.28 3.44 / 8.88 8.25 / 20.19
Wikidata (5.76%) 7.03 / 15.55 1.16 / 6.04 3.29 / 8.13 3.67 / 11.20 4.21 / 12.91 11.97 / 25.92 10.60 / 25.15

Average 5.21 / 11.56 0.86 / 3.08 2.76 / 6.25 1.75 / 6.09 4.70 / 11.98 5.72 / 14.03 7.28 / 18.51

Table 3: Main experimental results on BIOLAMA. We report Acc@1/Acc@5 of each model including the macro
average across three different knowledge sources. We also report ratios of the majority objects in each knowledge
source (averaged over its relations) in the parentheses. Highest and second-highest scores are boldfaced and
underlined, respectively. Manual: manual prompt. Opti.: OptiPrompt. The results of OptiPrompt are the mean of
5 runs with different seeds. See Appendix E for the performance on each relation.

prompts for each relation. More details on pre-
processing steps are available in Appendix A.

After the pre-processing, we are able to obtain
22K triples with 15 relations from the CTD, 21.2K
triples with 16 relations from the UMLS, and 5.8K
triples with 5 relations from Wikidata (see Ap-
pendix B for the detailed statistics). In Table 2,
we compare various probing benchmarks with BI-
OLAMA. By design, BIOLAMA has no objects
that are substrings of their subjects and object enti-
ties are much longer on average, which makes our
benchmark challenging but much more practical.

Evaluation Metric We use top-k accuracy
(Acc@k), which is 1 if any of the top k object en-
tities are included in the annotated object list, and
is 0 otherwise. We use both Acc@1 and Acc@5
since most biomedical entities are related to multi-
ple biomedical entities (i.e., N-to-M relations).

3 Experiment

3.1 Models
Information Extraction Many biomedical NLP
tools rely on automated IE systems that can pro-
vide relevant entities or articles given a query. In
this work, we use the Biomedical Entity Search
Tool (BEST) (Lee et al., 2016)6 as an IE system
and compare it with LM-based probing methods.
BEST incorporates biomedical entities when build-
ing their search index over PubMed, a large-scale
biomedical corpus, and returns biomedical enti-
ties given a keyword-based query. To fully make
use of BEST, we create AND queries using a sub-
ject entity and a lemmatized relation name (e.g.,
“(meclozine) AND (medical condition treat)”), and
use retrieved entities as its predictions.

Language Models We use one general-domain
LM and two biomedical LMs: BERT (Devlin

6https://best.korea.ac.kr/

et al., 2019), BioBERT (Lee et al., 2020),7 and
Bio-LM (Lewis et al., 2020).8 BioBERT and Bio-
LM are both pre-trained over PubMed. While
Bio-LM also uses a custom vocabulary learned
from PubMed, BioBERT uses the same vocabulary
as BERT, which enables the continual learning of
BioBERT initialized from BERT.

3.2 Probing Methods
Prompts We use a fill-in-the-blank cloze state-
ment (i.e., a “prompt”) for probing and choose
two different methods of prompt generation:
manual prompts (Petroni et al., 2019) and Op-
tiPrompt (Zhong et al., 2021). For each relation,
we first create manual prompts with domain ex-
perts (Appendix C). On the other hand, OptiPrompt
automatically learns continuous embeddings that
can better extract factual knowledge for each rela-
tion, which are trained with our training examples.
Following Zhong et al. (2021), we initialize the
continuous embeddings with the embeddings of
manual prompts, which worked consistently better
than random initialization in our experiments.

Multi-token Object Decoding Since the major-
ity of entities in BIOLAMA are made up of multi-
ple tokens, we implement a multi-token decoding
strategy following Jiang et al. (2020a). Among
their decoding methods, we use the confidence-
based method which produced the best results. The
confidence-based method greedily decodes output
tokens sorted by the maximum logit in each token
position. Note that we do not restrict our output
spaces by any pre-defined sets of biomedical en-
tities since we are more interested in how accu-
rately the LMs contain biomedical knowledge in

7Since existing checkpoints of BioBERT do not con-
tain LM heads for probing, we pre-train another BioBERT
(biobert-base-cased-v1.2), which is the same as the
previous version of BioBERT but with an LM head.

8RoBERTa-base-PM-Voc

https://best.korea.ac.kr/
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Relation ID Subject Top 5 Predictions

UMLS - UR254
(27.71 / 38.41)

[X] has symptoms such as [Y].

Pituicytoma headache, headaches, pain, bone pain, pain and bleeding
Intravascular fasciitis pain, pain and swelling, swelling and pain, swelling, edema
Microfollicular adenoma headache, epistaxis, pruritus, itching, flushing
Parosteal Osteosarcoma pain, bone pain, pain and swelling, swelling and pain, pain and bleeding

CTD - CG4
(8.42 / 20.59)

[X] results in increased activity of [Y] protein.

Dieldrin ESR1, NR1I2, NR3C1, CASP1, PPARÎ³
isofenphos ESR1, NR1I2, PPARÎ³, CYP1A2, CDKN1A1
Dithiothreitol ESR1, NR1I2, NR3C1, NR1I1, CASP1
Indigo Carmine ESR1, NR1I2, CYP1A2, NR3C1, CASP1

Wikidata - P2176
(20.14 / 39.57)

The standard treatment for patients with [X] is a drug such as [Y].

Haverhill fever doxycycline, ciprofloxacin, penicillin, erythromycin, azithromycin
influenza zanamivir, interferon, peramivir, oseltamivir or peramivir, doxycycline
cryptosporidiosis amphotericin B, praziquantel, itraconazole, albendazole, fluconazole
tremor pilocarpine, baclofen, botulinum toxin, diazepam, clonazepam

Table 4: Top 5 predictions of Bio-LM (w/ OptiPrompt) given each prompt and different subjects. For each relation,
we also report its Acc@1/Acc@5. Correct predictions are in boldface. For more examples, see Appendix F.

an unconstrained setting.9 See Appendix D for the
implementation details of our decoding method.

3.3 Main Results
Experimental results on BIOLAMA are summa-
rized in Table 3. First, BioBERT and Bio-LM
are both able to retrieve factual information bet-
ter than BERT, which demonstrates the effective-
ness of domain-specific pre-training. Also, Bio-
LM shows consistently better performance than
BioBERT (BERT < BioBERT < Bio-LM). We be-
lieve that this may be attributed to the custom vo-
cabulary of Bio-LM learned from a biomedical
corpus. Using OptiPrompt also shows consistent
improvement over manual prompts in all LMs. No-
tably, the IE system is able to achieve the best
performance on the CTD relations, but performs
worse than BioBERT and Bio-LM on the UMLS
and Wikidata relations.

While we are able to achieve 18.51% Acc@5
with Bio-LM (w/ OptiPrompt) on average, note that
the average Acc@1s on the CTD and UMLS rela-
tions are lower than majority voting (e.g., 9.67%
(majority) vs. 8.25% Acc@1 (Bio-LM) in UMLS),
which shows the difficulty of accurately extracting
biomedical facts from these models.

4 LMs are Not Biomedical KBs, Yet

In this section, we thoroughly inspect the predic-
tions of Bio-LM (w/ OptiPrompt) and quantita-

9Using a pre-defined set of object entities removes the
necessity of using complicated decoding strategies and will
possibly improve the probing accuracy as well, which we
leave as future work.

tively characterize the behavior of each model.
Our analyses suggest that we might need stronger
biomedical LMs and probing methods to make use
of these LMs as domain-specific knowledge bases.

4.1 Predictions

In Table 4, we present two correct and two incor-
rect predictions for three different relations where
Bio-LM (w/ OptiPrompt) achieves high accuracy.
One aspect that stands out is that predictions tend
to be highly biased towards a few objects (e.g.,
“headache”, “pain”, or “ESR1”). Motivated by this
observation, we further measure two metrics that
can characterize the behavior of each model in de-
tail: prompt bias and synonym variance.

4.2 How Biomedical LMs Predict

Prompt Bias To serve as accurate KBs, LMs
must make appropriate object entity predictions
given the input subject entity. Cao et al. (2021)
quantified prompt biases by measuring how insen-
sitive LMs are to input subjects. For each relation,
we first obtain the probability histogram of each
unique object entity being a top-1 prediction when
the subject is given. For example, if one relation
has 100 test samples and “pain” appears 20 times as
its top-1 prediction, the probability mass of “pain”
becomes 20%. At the same time, we calculate the
probability distribution over unique object entities
when the subject is masked out (see Figure 2). For
instance, a model might assign 30% to “pain” even
when the subject is masked out from the prompt.
Prompt bias is the Pearson’s correlation coefficient
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Figure 2: Examples of inputs for measuring prompt
bias and synonym variance. We use a [MASK] token
for the subject when measuring prompt bias, and re-
place each subject into their synonyms when measuring
synonym variance.

between these two distributions, which indicates
how biased the model is to a prompt. A lower
prompt bias means that a model is giving less bi-
ased predictions for each relation (i.e., prompt).

Synonym Variance Biomedical entities often
have a number of synonyms, which are often lever-
aged for modeling biomedical entity representa-
tions (Sung et al., 2020). Hence, it is important that
predictions over our factual triples do not change
when the input subject is replaced by its synonyms.
To assess this aspect, we propose a metric called
synonym variance, which measures how much each
prediction changes when the subject is replaced
with its synonyms (see Figure 2). We create 10
copies of our datasets by replacing the subjects with
one of their synonyms chosen randomly. Synonym
variance is the standard deviation of Acc@5 cal-
culated from these new test sets. Lower synonym
variance means that a model is giving more consis-
tent predictions even with different synonyms.

Results Figure 3 shows the results of prompt bi-
ases in four different models. Compared to the
IE system, the LMs have relatively higher correla-
tions (over 0.6) meaning that their predictions are
more biased towards the prompts. On the other
hand, in Figure 4, LMs show relatively lower stan-
dard deviations over variations of synonyms than
the IE system does. While this can be interpreted
that the LMs are more robust to synonym variations,
it might also be the result of strong biases in LMs
on their prompts. For example, while BERT has
the smallest synonym variance, it has the largest
prompt bias, meaning that it is not a synonym-
aware model, but just a highly biased model.

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Prompt Bias

IE

BERT

BioBERT

Bio-LM

Figure 3: Prompt bias of each model. Low prompt
bias means that a model is less biased on each
prompt. See §4.2 for more details of the metric.

0 1 2 3 4 5 6
Synonym Variance

IE

BERT

BioBERT

Bio-LM

Figure 4: Synonym variance of each model. Low
synonym variance means that a model gives consis-
tent predictions when the subjects are changed to
synonyms. See §4.2 for more details of the metric.

5 Conclusion

In this work, we explore the possibility of using
LMs as biomedical KBs. To this end, we release BI-
OLAMA as a probing benchmark to measure how
much biomedical knowledge can be extracted from
LMs. While biomedical LMs can extract useful
facts to some extent, our analysis shows that this
is largely due to their predictions being biased to-
wards certain prompts. In future work, we plan
to overcome the underlying challenges in BIO-
LAMA and improve the probing accuracy of LMs.
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Ethical Considerations

The aim of factual probing is to verify how much
knowledge can be retrieved from language models
pre-trained using large amoung of corpora. Due to
a lack of data for factual probing in the biomedical
domain, we collected data from widely used knowl-
edge sources: the CTD, the UMLS, and Wikidata.
Although these data have undergone inspection by
domain experts, biomedical knowledge is continu-
ously growing and therefore we cannot guarantee
that this biomedical knowledge is absolute. Fur-
thermore, without careful inspection, outputs of
these LMs should not be considered as a means
of drug recommendation or any other medical ac-
tivity. We caution future researchers when using
BIOLAMA to keep this caveat in mind.
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Vrandečić, Diptanshu Das, and Helmi Hamdi. 2019.
Wikidata: A large-scale collaborative ontological
medical database. Journal of biomedical informat-
ics, 99:103292.

Andra Waagmeester, Gregory Stupp, Sebastian
Burgstaller-Muehlbacher, Benjamin M Good,
Malachi Griffith, Obi L Griffith, Kristina Hanspers,
Henning Hermjakob, Toby S Hudson, Kevin Hy-
biske, et al. 2020. Science forum: Wikidata as
a knowledge graph for the life sciences. Elife,
9:e52614.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5017–5033, Online. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.acl-main.335
https://doi.org/10.18653/v1/2020.acl-main.335
https://doi.org/10.1016/j.jbi.2019.103292
https://doi.org/10.1016/j.jbi.2019.103292
https://doi.org/10.7554/eLife.52614
https://doi.org/10.7554/eLife.52614
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398


4730

A Pre-processing of BIOLAMA

After applying basic pre-processing steps in §2,
we aggregate samples with the same subject and
relation, which makes each sample contain multi-
ple object answers (e.g., subj=“COVID-19”, rela-
tion=“symptoms of”, obj={headache, cough, fever,
. . . }). We also set the maximun number of triples in
each relation as 2,000 while removing relations hav-
ing less than 500 triples, which are mostly less use-
ful to extract (e.g., “affects methylation” in CTD)
or too complicated (e.g., “positive therapeutic pre-
dictor” in Wikidata) according to our manual in-
spection with domain experts. For the UMLS, out
of 974 relations, we select 16 relations that are con-
sidered to be the most important by domain experts.
To mitigate the class imbalance problem in object
entities, we also undersample highly frequent ob-
ject entities to be as frequent as the fifth frequent
object entity in each relation.

B Statistics of BIOLAMA

The CTD split has a total of 22,017 samples, the
UMLS split a total of 21,164, and the Wikidata split
a total of 5,855 samples. This sums up to a total
of 49,036 samples. Table 5 displays the number of
samples in each train/dev/test split of each relation.

C Manual Prompts

We create multiple manual prompts with the help
of domain experts’ insight on each relation in BI-
OLAMA and select the best performing prompts
on the development set. Selected prompts for the
relations are listed in Table 6.

D Implementation Details

For confidence-based decoding (Jiang et al.,
2020a), we use the open-source code provided by
the authors10 and make slight changes for BIO-
LAMA. We set the beam size to 5 to get the top 5
predictions and the number of masks to 10. We also
set the iteration method to “None” as additional it-
eration did not help to increase the performance.

For OptiPrompt (Zhong et al., 2021), we modify
the open-source code provided by the authors11 to
allow training over the multi-token objects. We
set the learning rate to 3e-3 and the mini-batch
size to 16. We train OptiPrompt for 10 epochs and
select the best checkpoint based on Acc@1 on the

10https://github.com/jzbjyb/X-FACTR
11https://github.com/princeton-nlp/OptiPrompt

development set. It takes 3 hours to test all samples
with manual prompts and 8 hours to train and test
with OptiPrompt using 1 Titan X (12GB) GPU.

E Result on Each Relation

In addition to the averaged performances presented
in Table 3, we present Acc@1 and Acc@5 on each
relation in Table 7.

F More Prediction Examples

We provide more examples on 8 relations where
Bio-LM (w/ OptiPrompt) achieves decent top-1
accuracy in Table 8.

https://github.com/jzbjyb/X-FACTR
https://github.com/princeton-nlp/OptiPrompt
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Relation ID Relation Name Subject Object Train Dev Test

CTD

CD1 therapeutic chemical disease 756 189 945
CD2 marker/mechanism chemical disease 723 181 905
CG1 decreases expression chemical protein 550 137 688
CG17 increases expression chemical mRNA 740 186 926
CG18 increases expression chemical protein 680 170 851
CG2 decreases activity chemical protein 718 179 898
CG21 increases phosphorylation chemical protein 206 51 258
CG4 increases activity chemical protein 541 135 677
CG6 decreases expression chemical mRNA 648 163 811
CG9 affects binding chemical protein 352 89 441
CP1 decreases chemical phenotype 504 127 631
CP2 increases chemical phenotype 591 148 739
CP3 affects chemical phenotype 360 90 451
GD1 marker/mechanism gene disease 728 182 911
GP1 association gene pathway 704 176 881

UMLS

UR116 clinically associated with disease disease 668 167 835
UR124 may treat disease chemical 463 116 580
UR173 causative agent of disease vertebrate 512 128 640
UR180 is finding of disease disease body substance 346 87 434
UR211 biological process involves gene product gene function 650 162 813
UR214 cause of disease disease 459 115 574
UR221 gene mapped to disease disease gene 241 61 302
UR254 may be finding of disease disease symptom 672 169 841
UR256 may be molecular abnormality of disease disease genetic aberrant 244 62 306
UR44 may be prevented by chemical disease 452 113 566
UR45 may be treated by chemical disease 772 193 965
UR48 physiologic effect of chemical disease 700 176 876
UR49 mechanism of action of chemical function 615 154 769
UR50 therapeutic class of chemical type 663 166 829
UR588 process involves gene gene disease 621 156 777
UR625 disease has associated gene gene disease 381 96 477

Wikidata

P2175 medical condition treated chemical disease 621 155 777
P2176 drug used for treatment disease chemical 448 112 561
P2293 Genetic association gene disease 678 170 849
P4044 therapeutic area chemical disease 304 76 380
P780 symptoms disease symptom 289 73 362

Total 19,600 4,910 24,526

Table 5: Detailed statistics of BioLAMA for each relation.
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Relation ID Relation Name Manual Prompt

CTD

CD1 therapeutic [X] prevents diseases such as [Y].
CD2 marker/mechanism [X] exposure is associated with significant increases in diseases such as [Y].
CG1 decreases expression [X] treatment decreases the levels of [Y] expression.
CG17 increases expression [X] treatment increases the levels of [Y] expression.
CG18 increases expression [X] upregulates [Y] protein.
CG2 decreases activity [X] results in decreased activity of [Y] protein.
CG21 increases phosphorylation [X] results in increased phosphorylation of [Y] protein.
CG4 increases activity [X] results in increased activity of [Y] protein.
CG6 decreases expression [X] treatment decreases the levels of [Y] expression.
CG9 affects binding [X] binds to [Y] protein.
CP1 decreases [X] analog results in decreased phenotypes such as [Y].
CP2 increases [X] induces phenotypes such as [Y].
CP3 affects [X] affects phenotypes such as [Y].
GD1 marker/mechanism Gene [X] is associated with diseases such as [Y].
GP1 association Gene [X] is associated with pathways such as [Y].

UMLS

UR116 clinically associated with [X] is clinically associated with [Y].
UR124 may treat The most widely used drug for preventing [X] is [Y].
UR148 due to [X] induces [Y].
UR173 causative agent of [X] is caused by [Y].
UR180 is finding of disease [Y] is finding of disease [X].
UR196 has contraindicated class [X] and [Y] has a drug-drug interaction.
UR211 biological process involves gene product [X] involves [Y].
UR214 cause of [Y] causes [X].
UR221 gene mapped to disease [X] has a genetic association with [Y].
UR254 may be finding of disease [X] has symptoms such as [Y].
UR256 may be molecular abnormality of disease [Y] has a genetic association with [X].
UR44 may be prevented by [X] treats [Y].
UR45 may be treated by [X] treats [Y].
UR48 physiologic effect of [X] results in [Y].
UR49 mechanism of action of [X] has a mechanism of action of [Y].
UR50 therapeutic class of [X] is a therapeutic class of [Y].
UR588 process involves gene [X] involves [Y] process.
UR625 disease has associated gene [X] has a genetic association with [Y].
UR97 contraindicated with disease [X] has contraindicated drugs such as [Y].

Wikidata

P2175 medical condition treated [X] has effects on diseases such as [Y].
P2176 drug used for treatment The standard treatment for patients with [X] is a drug such as [Y].
P2293 genetic association Gene [X] has a genetic association with diseases such as [Y].
P4044 therapeutic area [X] cures diseases such as [Y].
P780 symptoms [X] has symptoms such as [Y].

Table 6: Manual prompts used in our experiments. Each prompt is created by domain experts.
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Relation ID Relation Name IE BioBERT Bio-LM
Manual Opti. Manual Opti.

CTD

CD1 therapeutic 14.29/22.33 3.28/10.16 6.45/16.15 7.20/15.45 7.79/15.51
CD2 marker/mechanism 3.87/6.41 3.28/6.19 9.81/23.60 4.64/9.06 6.56/13.44
CG1 decreases expression 0.15/0.15 0.00/0.00 0.32/0.81 1.16/4.94 4.59/7.99
CG18 increases expression 6.70/19.86 0.00/0.71 0.00/0.19 0.94/8.58 1.46/7.52
CG2 decreases activity 8.58/19.49 0.00/0.00 4.81/8.29 0.67/2.90 4.08/13.41
CG21 increases phosphorylation 5.04/20.54 0.00/2.71 14.73/18.14 0.00/13.95 0.00/15.19
CG4 increases activity 7.83/20.83 0.00/0.00 0.83/2.69 0.00/0.89 8.42/20.59
CG9 affects binding 10.88/23.13 0.00/0.00 0.23/0.27 0.91/7.94 1.50/5.85
CP1 decreases 0.00/0.00 0.00/0.00 6.37/19.33 0.00/1.27 2.35/12.11
CP2 increases 0.00/0.00 0.00/0.14 10.66/18.38 0.00/0.81 0.00/0.14
CP3 affects 0.00/0.00 0.00/0.00 0.00/1.51 0.00/0.22 0.00/0.22
GD1 marker/mechanism 4.17/8.01 0.33/11.64 0.00/1.67 2.20/8.34 1.43/7.36
GP1 association 1.59/2.04 0.00/17.14 16.69/31.67 4.43/21.11 4.00/18.55

UMLS

UR116 clinically associated with 6.35/19.28 0.84/4.07 7.90/18.08 2.64/11.02 6.13/14.87
UR124 may treat 20.52/42.24 1.03/4.31 1.76/4.10 10.69/25.35 8.79/22.76
UR173 causative agent of 0.31/0.31 1.41/4.84 9.81/30.62 4.53/15.63 9.84/27.78
UR180 is finding of disease 0.00/0.23 0.00/0.00 8.57/29.72 0.00/0.00 9.63/15.30
UR211 biological process involves gene product 0.00/0.00 0.49/1.85 12.35/24.08 0.00/0.25 9.30/31.86
UR214 cause of 1.74/2.44 0.00/1.92 3.83/7.80 1.05/7.32 3.94/11.88
UR221 gene mapped to disease 0.00/0.00 0.00/0.00 0.00/0.00 0.00/1.66 14.44/30.27
UR254 may be finding of disease 0.00/0.00 10.94/24.26 17.50/37.10 27.71/38.41 27.71/38.41
UR256 may be molecular abnormality of disease 0.00/0.33 0.00/0.00 0.00/0.00 0.00/0.00 10.85/19.02
UR44 may be prevented by 6.89/13.43 1.77/5.65 2.12/7.28 1.24/7.95 8.83/20.71
UR45 may be treated by 17.10/26.22 1.76/5.80 0.70/4.85 1.76/13.26 8.73/20.39
UR48 physiologic effect of 0.00/0.00 0.00/0.00 3.06/7.47 0.00/0.00 1.12/6.03
UR49 mechanism of action of 0.00/0.00 0.00/0.00 0.13/1.14 0.00/0.00 1.17/3.64
UR50 therapeutic class of 0.00/0.00 0.12/2.05 7.17/14.14 3.50/10.25 6.73/21.98
UR588 process involves gene 0.00/0.00 0.13/1.93 4.66/22.47 0.00/1.93 2.60/29.73
UR625 disease has associated gene 3.56/7.34 0.00/4.40 1.72/3.61 1.89/9.02 2.26/8.39

Wikidata

P2175 medical condition treated 2.45/7.34 0.64/5.92 3.19/11.04 9.40/21.11 9.47/24.94
P2176 drug used for treatment 22.82/47.24 1.07/4.10 0.78/9.20 22.46/39.75 20.14/39.57
P2293 genetic association 9.07/16.61 0.00/7.77 1.04/4.38 2.24/11.43 2.90/9.21
P4044 therapeutic area 0.26/0.79 4.74/9.21 4.21/8.53 9.47/19.47 7.53/18.58
P780 symptoms 0.55/5.80 11.88/29.01 11.82/31.38 16.30/37.85 12.98/33.43

Table 7: Performance on each relation. Acc@1 and Acc@5 are reported. Best performances are in boldface.
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Relation ID Subject Top 5 Predictions

CTD - CD1
(7.79 / 15.51)

[X] prevents diseases such as [Y].

Nitric Oxide Hypertension, Multiple Sclerosis, Cardiac, Pulmonary, Cardiovascular
Triamterene Hypertension, Epilepsy, Diabetes, Cardiac, Myocardial
SH-6 compound Epilepsy, Cancer, Liver, Malignant, Inf
quizartinib Cancer, Liver, Hypertension, Leukemia, Sarcoma

CTD - CD2
(6.56 / 13.44)

[X] exposure is associated with significant increases in diseases such as [Y].

Normetanephrine Hypertension, Cancer, Asthma, Hepatitis, Diabetes
Vitamin K 1 Hypertension, Hepatitis, Cancer, Diabetes, Anemia
lomefloxacin Hypertension, Hepatitis, Cancer, Asthma, Diabetes
cefditoren Hypertension, Hepatitis, Diabetes, Cancer, Asthma

UMLS - UR173
(9.84 / 27.78)

[X] is caused by [Y] .

Meningococcal rash Meningococcus, Streptococcus, Meningococci, Streptococcus pyogenes, Bacteria
Macular syphilide Bacteria, Virus, T. pallidum, Treponema pallidum, Legionella
Braxy Bacteria, Virus, Bacterial, Agents, Toxin
Blister with infection Virus, Adenovirus, Viral, Rotavirus, Enterovirus

UMLS - UR211
(9.30 / 31.86)

[X] involves [Y] .

Protein Kinase C Signaling, Signal, Signal Processing, Apoptosis, Transcription
Guanylate Cyclase Signaling, Transcription, Cell Signaling, Calcium Signaling, Signal Processing
HLA Complex Transcription, Immune, Immune Response, Signal Processing, Infection
gephyrin signaling, Channel Regulation, Receptor Signaling, Signal Processing, . . .

UMLS - UR221
(14.44 / 30.27)

[X] has a genetic association with [Y] .

DICER1 syndrome DICER1 gene, DICER, DICER gene, DICER1, DIC gene
Cervical Wilms Tumor WT1 gene, WT1, RET gene, PTEN gene, RET
Gangliosidosis GM1 GM1 gene, GM1, GM gene, gene, GGM1 gene
BALT lymphoma BCL2 gene, ALT gene, BALT gene, ALK gene, ALK

UMLS - UR256
(10.85 / 19.02)

[Y] has a genetic association with [X] .

carcinosarcoma of lung TP53 Gene Inactivation, TP53 Inactivation, RAS, TP53 gene mutation, EGFR
Liver carcinoma TP53 Gene Inactivation, TP53 Inactivation, KRAS Inactivation, KIT, RET
Classical Glioblastoma TP53 Inactivation, TP53 Gene Inactivation, EGFR, RET, MYC Gene Amplification
Intratubular Seminoma TP53 Inactivation, ERG, TP53 Gene Inactivation, KIT, KIT Inactivation

Wikidata - P2175
(9.47 / 24.94)

[X] has effects on diseases such as [Y].

amoxapine depression, obsessive compulsive disorder, schizoaffective disorder, anxiety, . . .
sofosbuvir chronic hepatitis C, HIV, AIDS, HCV, hepatitis C virus
duvelisib AIDS, HIV, cancer, breast cancer, chronic obstructive pulmonary disease
arsenic trioxide AIDS, diabetes, cancer, tuberculosis, chronic obstructive pulmonary disease

Wikidata - P780
(12.98 / 33.43)

[X] has symptoms such as [Y].

legionnaires’ disease fever, pneumonia, fever and cough, cough and fever, cough
Bocavirus infection fever, conjunctivitis, jaundice, diarrhea, pneumonia
pulmonary tuberculosis hemoptysis, haemoptysis, dyspnea, cough, chest pain
parenchymatous neurosyphilis headache, fever, headache and fever, fever and headache, meningitis

Table 8: Top 5 predictions of Bio-LM (w/ OptiPrompt) given each prompt and different subjects. For each relation,
we also report its Acc@1/Acc@5. Correct predictions are in boldface.


