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Abstract

Although many studies use the LIWC lexicon
to show the existence of verbal leakage cues in
lie detection datasets, none mention how ver-
bal leakage cues are influenced by means of
data collection, or the impact thereof on the
performance of models. In this paper, we study
verbal leakage cues to understand the effect of
the data construction method on their signifi-
cance, and examine the relationship between
such cues and models’ validity. The LIWC
word-category dominance scores of seven lie
detection datasets are used to show that audio
statements and lie-based annotations indicate
a greater number of strong verbal leakage cue
categories. Moreover, we evaluate the valid-
ity of state-of-the-art lie detection models with
cross- and in-dataset testing. Results show that
in both types of testing, models trained on a
dataset with more strong verbal leakage cue
categories—as opposed to only a greater num-
ber of strong cues—yield superior results, sug-
gesting that verbal leakage cues are a key fac-
tor for selecting lie detection datasets.

1 Introduction

One theory of lie detection is about cues to lying:
Why and when do liars and truth-tellers display
different behavior? Ekman and Friesen (1969) pro-
posed two categories of cues: deception cues and
leakage cues. Deception cues relate to the content
of lies, such as an inconsistency in one’s story;
leakage cues appear because liars’ emotions betray
their true feeling, which can be further classified
into non-verbal and verbal leakage cues. Zuck-
erman et al. (1981) reject the utility of focusing
on liars’ emotions but link such cues to cognitive
load, supported by Vrij et al. (2008, 2016, 2017).
DePaulo et al. (2003) analyzes 158 cues to decep-
tion, including non-verbal and verbal leakage cues,
finding that verbal leakage cues are more reliable
than others. Studies such as Adams (1996), Smith
(2001), and Levitan (2019) show that verbal leak-

age cues can be found through psycholinguistic
dictionaries such as the LIWC lexicon (Pennebaker
et al., 1999), LDI (Bachenko et al., 2008; Enos,
2009), and Harbingers (Niculae et al., 2015).

Many NLP studies have recently collected lie
detection datasets and detected lies using computa-
tional models (Hirschberg et al., 2005; Pérez-Rosas
et al., 2014; Peskov et al., 2020); most of these ig-
nore traditional lie detection methods and findings,
and have no follow-up studies, making it difficult to
know which datasets are suitable for model training.
To use machine learning approaches together with
lie detection research in psychology and linguistics,
and to seek a way to evaluate and select proper
datasets, this study focuses on analyzing verbal
leakage cues within; leakage cues hereafter indi-
cate verbal leakage cues. We study leakage cues in
terms of the data collection method and model per-
formance. Seven lie detection datasets are adopted
for experiments. We analyze these datasets using
word categories defined in LIWC2015 (Pennebaker
et al., 2015). Through this study, we aim to answer
three questions: (1) How do data collection meth-
ods affect strong leakage cues? (2) What is the role
of the quantity and the category of strong leakage
cues in lie detection task? (3) Do strong leakage
cues contribute to model validity? We expect these
answers to help in the construction and selection of
appropriate datasets for lie detection tasks.

2 Leakage Cues and Datasets

To understand how leakage cues contribute to lie
detection, we first measure the extent of leakage
cues in lie detection datasets.

2.1 Datasets

We consider seven lie detection datasets:
• Diplomacy (DM) (Peskov et al., 2020): con-

versation logs collected from Diplomacy, an
online text-based board game.
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Dataset Size Label Statement Context?

DM 13,132 Lies T Yes
MS 9,676 Liar T Yes
OD 7,168 Lies T No
LIAR 4,560 Lies A, T No
BOL 502 Lies A Yes
MU3D 320 Lies A Yes
RLT 121 Liar A Yes

Table 1: Lie detection datasets used here. T: Textual. A:
Audio. Audio statements in datasets are transcribed.

• Mafiascum (MS) (de Ruiter an, 2018): logs
from Mafia, an online text-based board game.

• Open_domain (OD) (Pérez-Rosas and Mi-
halcea, 2015): collected using Amazon Me-
chanical Turk (AMT) by asking turkers to pro-
vide seven lies and seven truths in text.

• LIAR (Wang, 2017): audio and textual truth
and false statements made by politicians col-
lected from PolitiFact.com1.

• Box_of_lies (BOL) (Soldner et al., 2019):
video clips collected from Box of Lies games
from Tonight Show Starring Jimmy Fallon.

• MU3D (Lloyd et al., 2018): audio statements
about social relationships collected in labora-
tory interviews.

• Real-life_trial (RLT) (Pérez-Rosas et al.,
2015): true and false courtroom testimonies
collected from InnocenceProject.org2.

Dataset statistics are provided in Table 1.

2.2 Datasets and Dominant Word Categories

We start by measuring the representation of leakage
cues in datasets using word-category dominance
scores. The word categories C used here are de-
fined in LIWC2015. LIWC is a psycholinguistic
dictionary that groups words into 93 categories rel-
evant to psychological processes, which has been
used to detect leakage cues in multiple deception
studies (Newman et al., 2003; Ott et al., 2011). Ex-
ample LIWC word categories and their words are
given in Table 2.

To calculate the dominance score of a word cat-
egory Ci ∈ C in a dataset D, we first divide the
samples in D into lie set L and truth set T . We
calculate the lie and truth coverage rate of Ci as

uLi =
1

|L|

|Ci|∑
j

v(L, i, j) (1)

1https://www.politifact.com/
2https://innocenceproject.org/

Category Sample words

Discrep could, would, if, need, should, want
Number first, half, once, one, two, million*
Certain all, always, every, never, sure
Differ but, than, or, exclude, opposite*, other
Affiliation we, together, friend, family, met
Quant more, percent, some, any, bunch

Table 2: LIWC dictionary samples.

uTi =
1

|T |

|Ci|∑
j

v(T, i, j), (2)

where v( · , i, j) measures the occurrence count of
word wi,j ∈ Ci within a given set. |L| and |T |
represent the number of tokens in L and T , respec-
tively. The dominance score of Ci is calculated by

ri = uLi /u
T
i . (3)

An ri ≥ 1.2 indicates a more deceptive category;
an ri ≤ 0.8 indicates a more truthful category. In
both cases, Ci is a strong word category (Mihalcea
and Strapparava, 2009). Thus, we define a set of
strong word categories

S = {Ci | ri ≥ 1.2 ∨ ri ≤ 0.8} (4)

and the number of dominant words as

ρ =

|S|∑
i

|Ci|∑
j

v(D, i, j). (5)

We refer to the number of dominant words as
the number of strong leakage cues, and the number
of strong word categories as the number of strong
leakage cue categories.

Similar to Levitan (2019), LIWC word cate-
gories that cover less than 1% of truths or lies are
first removed to minimize noise. LIWC word cate-
gories related to punctuation are also removed for
normalization as this is not included in some tran-
scriptions. The number of remained LIWC word
categories is denoted as |C|.

2.3 Analysis by Dataset
As shown in Table 2, studies collected lie detection
data using various approaches. We are interested
in how data collection methods affect leakage cues,
specifically, how we can construct datasets to ob-
tain more leakage cues for model learning. We list
in Table 3 the max. and the min. dominance scores,
their differences, the number of strong categories
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Dataset Max Min Max-Min |S| / |C| ρ

MS 1.05 0.96 0.09 0 / 44 0
DM 1.20 0.78 0.42 3 / 43 19,180
MU3D 1.38 0.72 0.66 6 / 50 3,952
OD 2.11 0.83 1.28 6 / 48 4,408
LIAR 1.31 0.68 0.63 10 / 50 11,647
RLT 2.36 0.32 2.04 18 / 52 2,338
BOL 4.55 0.36 4.19 44 / 52 2,823

Table 3: Dataset aspect analysis. Max, Min: the max-
imum and minimum dominance score. Max-Min: the
differences between Max and Min. |S|: the number
of strong leakage cues categories. |C| the number of
filtered LIWC word categories. ρ: the number of domi-
nant words.

and total categories, and the number of dominant
words. Their analyses are shown below.

Audio vs. Textual Sample Datasets with audio
recordings (BOL and RLT) have many strong word
categories: 44 for BOL and 18 for RLT, whereas
data collected from textual statements (MS, DM, and
OD) have few strong word categories. This may be
due to the difference in complex cognitive load, as
Zuckerman et al. (1981) shown in their work. Com-
paratively, deceiving using text incurs a smaller
cognitive load, given that when typing, liars have
more time to think and no need to control nonverbal
behaviors. The only exception is audio-recorded
MU3D, which asks interviewees to record four state-
ments honestly and dishonestly about their social
relationships. Since they can prepare the statements
beforehand, and interviewers do not predict which
statement is true, their cognitive load may not be
as heavy as other audio datasets where lies are gen-
erated on the fly.

Lie- vs. Liar-based Annotation Results also
show that datasets with liar-based annotation have
few strong leakage cue categories. Comparing tex-
tual datasets, there is no strong leakage cue cate-
gory in liar-based MS; comparing audio datasets,
the number of strong leakage cue categories in liar-
based RLT is considerably fewer than in lie-based
BOL. Note that liars tend to wrap their lies with true
information in an effort to be convincing (Peskov
et al., 2020), i.e., lies are diluted by truth.

2.4 Analysis by Word Category

We find 53 strong word categories from 7 experi-
mental datasets; 10 of these dominate on more than
3 datasets. To dig deeper into each category, for
each dataset, we calculated the normalized word
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Figure 1: Normalized word frequency of the most com-
mon categories among seven datasets. For each dataset,
we plot the normalized word frequency of the top five
frequent words in each category. In this figure, distribu-
tions of top-5-word in 6 categories are shown. Green
(Red) bars refer to deceptive (truthful) categories.

frequency forwi,j—the proportion of thewi,j word
frequency to the total words that belong to Ci:

φi,j = v(D, i, j)/

|Ci|∑
k

v(D, i, k). (6)

We plot the normalized word frequency of the most
common strong leakage cues categories in Figure
1 and give some examples of lies and truths with
those salient cues in Table 4.

In general, word categories capture words that
are frequently used in lying and truth-telling. The
upper results in Figure 1 show that liars in most
datasets consistently use both Discrep and Certain
words, suggesting that when lying, people tend to
obscure facts with subjunctive mood, but also at-
tempt to use definite words to increase credibility
(See the first and second lies in Table 4). The mid-
dle results in the figure show that liars seldom use
Number and Quant words, suggesting that liars are
unwilling to include details (See the first and sec-
ond truths in Table 4 add for camera ready). This
supports the cognitive theory: describing details is
a cognitively complex task.

In some cases, word categories dominate on dif-
ferent sides in different datasets. For example, Dif-
fer is a truthful category in LIAR but is a decep-
tive category in BOL and RLT. The lower-left re-
sults show that words in the Differ category used
in LIAR are different than those used in RLT and
BOL, suggesting that word usage affects which side
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Examples

Lies
Says he never said he would keep education funding the same. (LIAR)
No sir I did not. I absolutely did not. No sir I was not. No sir. (RLT)
We’re friends, right? I believe that every message I’ve sent you has been truth. Are we still friends? (DM)

Truths
One is dusty. One’s got big hair. One’s got hundreds and thousands on it. (BOL)
Weve created more than 850,000 jobs, more than all the other states combined. (LIAR)
... we would share a room together even though we had our own separate bedrooms... (RLT)

Table 4: Some examples of lies and truths. We select 3 lie and truth samples from the top 10 samples with many
dominant words. Dominant words here are marked with italic.

the category is dominant on. Another interesting
reason to cause a word category to dominate in
both lies and truths is the nature of the scenario. Af-
filiation is a deceptive category in DM but a truthful
category in RLT and MU3D. The lower-right results
show that Affiliation words are used in these three
datasets in a similar way: we is used frequently.
However, data in DM are collected from a board
game, and people in that game tend to deceive oth-
ers when they are in alliances (See the third lie in
Table 4). Therefore, Affiliation dominates on dif-
ferent sides in these three datasets. These results
suggest that word categories provide insights to
how humans lie in different scenarios.

3 Leakage Cues and Model Validity

To explore the effect of leakage cues on model va-
lidity, we conducted both cross- and in-dataset eval-
uations. We adopted three lie detection models for
the experiments: UniGRU (an, 2014), CNN (Zhang
and Wallace, 2017), and BERT (Devlin et al.,
2019).

3.1 Experimental Details

For lie-based datasets, as each sample is an ut-
terance labeled as lie or truth, we do not con-
sider speakers of samples while splitting them into
train/eval/test sets. For liar-based datasets, on the
other hand, we concatenate all samples of one
speaker to be one sample and assign it a speaker-
level annotation in preprocessing before we split
these samples.

For all three models, we use Adam with a lr
of 3e-4 as the optimizer, and set the maximum
number of input tokens to 256 as 95% of the sam-
ple’s length is smaller than this number except the
liar-based samples. For liar-based samples, some
samples are too long to input into the NN model.
As we found that the F1 score of those samples has
no significant difference when configuring the max-
imum number of input tokens as 256 or 512, we

Model
Inconsistent Label Rate

MS DM MU3D OD LIAR RLT BOL

BERT 0.86 0.16 1.0 0.26 0.21 0.24 0.58
CNN 0.82 0.52 1.0 0.58 0.53 0.62 0.42
UniGRU 0.75 0.43 1.0 0.61 0.48 1.0 0.36

Table 5: Inconsistent label rate for each model trained
on different datasets (lower is better). Models with an
inconsistent label rate of 1 would be excluded from fur-
ther experiments.

keep the same setting and use 256 here. We apply
batch sizes from 10 to 300 for different datasets,
depending on their training set size. To deal with
the unbalanced labels in some datasets, we apply
weighted binary cross-entropy loss and use the ratio
of labels as the weight.

3.2 Reliability

To discuss model validity, we first test the relia-
bility and remove unreliable settings. We seek to
evaluate model validity only on reliable models,
that is, models with low label inconsistency rates.
We define this rate as the percentage of samples
that are sometimes predicted as true but sometimes
as false by models trained with different random
seeds. We trained 50 models with different random
seeds as M = {m1, ...,m50} and tested them on
testing set Dts, where d ∈ Dts. The inconsistent
label rate ε is measured as

ε = |Dt ∩Df | / |Dts| (1)

Dt = {d|∃m ∈M,f(d;m) ≥ 0.5} (2)

Df = {d|∃m ∈M,f(d;m) < 0.5}. (3)

A smaller ε indicates lower label inconsistency.
Table 5 shows that all three models trained on

MU3D and UniGRU trained on RLT yielded an ε
of 1, indicating models with highly inconsistent
labels; we excluded these from further analysis.
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Figure 2: Experiment result of inter-dataset validity
(lower is better). Datasets are ordered from BOL to MS
by the increasing number of strong leakage cues cate-
gories (See Table 3).

3.3 Validity

Inter-dataset Validity In this experiment, we ex-
amined how the number of strong leakage cue cate-
gories affects model validity when training on one
dataset and testing on another.

Inspired by (Chen et al., 2020), inter dataset va-
lidity is measured as F1drop = F1in − F1cross : a
small F1drop across datasets indicates good valid-
ity. Results in Figure 2 show that for each model,
F1drop in the black cluster is smaller than others, in-
dicating that training on datasets with many strong
leakage cue categories (BOL, RLT, LIAR, and OD)
yields good or even better testing results on other
datasets, i.e., good inter-dataset validity. Accord-
ingly, to acquire a generalizable model, a lie de-
tection dataset containing many strong leakage cue
categories should be selected.

Inner-dataset Validity In this experiment, to un-
derstand how model performance changes, we con-
trolled the training set (1) by varying the number
of strong leakage cues while fixing the dataset size,
and (2) by varying the dataset size while fixing the
number of strong leakage cues. Models used here
are UniGRU, and datasets are DM and LIAR, which
include samples with many strong leakage cues.

We first set the dataset size to 1,000 samples,
and use seven different numbers of strong leakage
cues. The result is shown in Figure 3a. Models
trained on datasets with many strong leakage cues
(DM, blue) yield a significantly high F1 score. In
particular, models trained on DM improve the F1
score by more than 40% when the number of strong
leakage cues in the training set increases from 10
to 100. This result also shows that the F1 score
increases with the number of strong leakage cues
in training, and that this increase ceases after the
number of strong leakage cues exceeds 1,000.

To evaluate the impact of dataset size, we fixed
the number of strong leakage cues to 2,000, and
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Figure 3: Experiment result of inner-dataset validity.
The shade is the standard error, and the solid line is
the mean of the results of the 7 datasets we tested in
this experiment.

used three different dataset sizes. As shown in
Figure 3b, models trained on datasets with many
samples also achieve a high F1 score on some set-
tings, whereas this improvement is less compared
to when the number of strong leakage cues is in-
creased. Moreover, in some settings, performance
fails to improve when the dataset size is increased.
These two experiments suggest that the number
of strong leakage cues in datasets is more critical
for model validity than the dataset size. Therefore,
we argue that a good lie detection dataset should
contain many strong leakage cues.

4 Conclusion

In this paper, we study the convolutions among
leakage cues, datasets, and models. Various con-
ditions are analyzed, with results that show that
leakage cues help increase model validity, and that
they can be found the most in datasets containing
audio statements and lie-based annotations. These
findings and the testing methods are good refer-
ences for selecting appropriate data and models
when building lie detection applications. Under the
condition that no benchmark has been recognized
yet, we expect this research to serve as a guide for
researchers new to this problem, saving them un-
necessary effort and helping them to quickly get up
to speed.

5 Ethical Considerations

We analyze the relationship between verbal leakage
cues and existing lie detection datasets and mod-
els, providing a proper way to select and collect
lie detection data. We found that a good lie detec-
tion dataset should contain many strong leakage
cue categories, which can be achieved with audio
statements and lie-based annotation, not related to
race, sex, or other factors which may cause ethical
issues. We believe that this study can help improve
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the quality of lie detection datasets and models, and
protect people from deceived.
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