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Abstract

Standard train-dev-test splits used to bench-
mark multiple models against each other are
ubiquitously used in Natural Language Pro-
cessing (NLP). In this setup, the train data is
used for training the model, the development
set for evaluating different versions of the pro-
posed model(s) during development, and the
test set to confirm the answers to the main re-
search question(s). However, the introduction
of neural networks in NLP has led to a differ-
ent use of these standard splits; the develop-
ment set is now often used for model selec-
tion during the training procedure.Because of
this, comparing multiple versions of the same
model during development leads to overesti-
mation on the development data. As an effect,
people have started to compare an increasing
amount of models on the test data, leading to
faster overfitting and “expiration” of our test
sets. We propose to use a tune-set when devel-
oping neural network methods, which can be
used for model picking so that comparing the
different versions of a new model can safely be
done on the development data.1

1 Dataset Splits in NLP

1.1 Current State
In Natural Language Processing (NLP), a highly
empirical field, it is common to benchmark mul-
tiple models to each other on a standard dataset.
However, since most current models are super-
vised, and thus require labeled training data, the
datasets have to be split. To ensure a fair com-
parison, most datasets in NLP have standard splits.
Most datasets consist of three splits (also visualized
in Figure 1(a)):

• train: Used for training models, in some se-
tups this split can be omitted (zero-shot or
unsupervised learning).

1Source code is available at https://bitbucket.
org/robvanderg/tuneset
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Development
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Figure 1: Overview of the use of data splits. red :test
orange :dev green :train yellow :tune. a) standard

splits for traditional machine learning models b) stan-
dard splits as used for neural network models c) our
proposed splits for neural network models.

• development (also called validation/evalua-
tion): Used to compare all different versions
of the proposed model(s). Can also be used to
get preliminary answers to the main research
questions.

• test: Used to confirm the final answer to the
research question.

One often raised worry is that if too many papers
are written based on the same test-set, overfitting
occurs, especially when only positive results are
published (Scargle, 2000). It should be noted that
we do not refer to overfitting of the models parame-
ters, but on design decisions (hyperparameters etc.),
in line with “bias from research design” as defined
by Hovy and Prabhumoye (2021). This means that
there is a bias towards methods that perform well
on this specific set. We agree that this is a dan-
ger. If we consider a more general perspective to
this problem, a certain split becomes more prone
to this when more different models are evaluated
on this exact same data. Let’s assume that there
is a threshold N that limits the number of times
we can re-use the same split for evaluation. The
number of papers that can use the same dataset for

https://bitbucket.org/robvanderg/tuneset
https://bitbucket.org/robvanderg/tuneset
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a fair comparison is then equal to N divided by
the average number of evaluated models per paper.
From this, it follows that, no matter how large N
is, a larger average number of runs per paper will
drastically reduce the lifespan of a dataset.

For this reason, it used to be common to evalu-
ate all varieties of a newly proposed model on the
development data, and only confirm the main find-
ings (e.g. comparison of 2 most relevant models)
on the test set. This means that if we propose a new
model B, and we want to prove that it outperforms
existing model A, we would first evaluate and tune
all our varieties of model B (B1...n) on the dev set,
and then only compare the best version of model
B to model A. These varieties of model B can
include differences in hyperparameters as well as
design decisions. From this it also logically follows
that (qualitative) analysis should not be done on
the test data.

It should be noted that in some situations a hid-
den test-set is enforced to circumvent overfitting,
for example in shared tasks, where the test data is
only shared at the end, and on benchmark websites,
where the test-labels remain hidden for the partici-
pants (Kim et al., 2011; Wang et al., 2018; Aguilar
et al., 2020; Khanuja et al., 2020). This setup is en-
forced for good reasons, and, in our opinion, should
be the standard setup in NLP

1.2 What Has Changed?

Since the introduction of neural networks, the use
of the dev set has changed. Neural network models
are commonly trained for multiple epochs over the
training data, because they are prone to overfitting
(on the training data) it is common to evaluate the
model on the dev data after each epoch, and use
the model from the epoch with the highest perfor-
mance on the dev data. This “best model selection”
(i.e. the best epoch) differs from other hyperparam-
eters, as it is re-tuned every run. In other words,
the development data is integrated into the training
procedure. This model selection has shown to be
important for final performance (Chen and Ritter,
2020). A problem now arises when we want to com-
pare our new model B to model A and train mul-
tiple models B1...n on the same dev split. Namely,
the performance on the development data of each
model Bi is likely to be overly optimistic.

People have noticed this problem, and started to
compare multiple versions of their proposed model
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Figure 2: A boxplot visualizing the median and quan-
tiles of the number of models evaluated on test data for
a selection of 100 random papers from the ACL 2010
and ACL 2020 proceedings.

B’s on the test data (Figure 1(b)).2 To confirm this
trend, we counted the number of novel models (i.e.
non-baseline) evaluated on the test data for 100
random papers of the ACL 2010 and 2020 proceed-
ings. Results show a clear trend: in 2020 there are
more models evaluated on the test set per paper
(Figure 2). For example, in 2010 50% of the papers
evaluated less than 4 models on the test data, in
2020 this was the case for only 25% of the papers.
The annotator (with 7 years full-time research expe-
rience in NLP) observed that in many cases it is not
explicitly reported for results on which split they
are based (especially in 2020), but in most cases,
this could be derived from comparing the analysis
results with the main results or from the repository.
Furthermore, the papers in 2010 more often used
non-benchmark datasets created specifically for a
study, for which running multiple models on the
test data is arguably less severe. More details about
the annotation are reported in the appendix.

To sum up, when using the development set for
model picking, one is left with a choice for model
comparison: use the dev data or the test data. If
the dev data is used, performance is easily overes-
timated because the model picking was done on
the same set. If the test data is used, overfitting of
design decisions will more quickly happen on the
test data, and it becomes obsolete faster.

2this tweet anecdotally shows how it became stan-
dard to have seen test data in non-shared task setups:
https://twitter.com/marian_nmt/status/
1331728574307438597. Furthermore, the EMNLP
2020 call for papers asked authors to report “Corresponding
validation performance for each reported test result”:
https://2020.emnlp.org/call-for-papers

https://twitter.com/marian_nmt/status/1331728574307438597
https://twitter.com/marian_nmt/status/1331728574307438597
https://2020.emnlp.org/call-for-papers
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2 Related Work

Gorman and Bedrick (2019) and Çöltekin (2020)
propose to use random data splits instead of the
standard splits. In other words, they propose to
shuffle the whole dataset multiple times, and ex-
tract a train, dev, and test split from each random
shuffle. This would avoid overfitting, as “the use
of a single standard split, may result in avoidable
Type I error” (Gorman and Bedrick, 2019). As
pointed out by Søgaard et al. (2021), these random
splits have another danger. It is good practice to
create stratified datasplits based on some attributes
(e.g., time, speaker, document etc.). This strati-
fied sampling leads to more realistic performance
estimates for real-world situations (as we assume
we want to employ our models for new samples,
from other time-periods, speakers or documents).
The problem now becomes that after shuffling and
re-splitting, it is very likely that sentences from,
for example, the same document are both in the
training data and the test data, which leads to (unre-
alistically) higher performances in the experiments
of both Gorman and Bedrick (2019) and Çöltekin
(2020). Therefore, Søgaard et al. (2021) propose
other strategies to resplit the data. They show that
using biased splits better approximate real-world
performance on new samples (i.e. from another
dataset) as standard splits, but still lead to a large
overestimation of performance. In both of these
proposed setups (random and biased splits), the
splits that are proposed are still train-dev-test splits.
This means that if the same splits are used across
different papers, over-estimation on either dev/test
would still occur (depending which one is used
to compare B1...n), and overfitting still occurs. If
instead, new splits are generated for each paper,
overestimation still happens, and direct compari-
son between different papers is more complex.

Recently, there has been an increasing inter-
est in other aspects of evaluation of NLP mod-
els, including automatic testing of specific abili-
ties (Ribeiro et al., 2020), significance testing (Dror
et al., 2018; Sadeqi Azer et al., 2020), effect of
random seeds (Reimers and Gurevych, 2018) and
reproducibility (Fokkens et al., 2013; Cohen et al.,
2018; Wieling et al., 2018; Branco et al., 2020;
Belz et al., 2021). We consider all of these prob-
lems (including random/biased splits) orthogonal
to the problem of overfitting on the test set, as in
all of the proposed setups/solutions train-dev-test
splits are still used. This is also the case for k-

fold cross-validation which is a standard method
to combat overfitting, within the k folds, there are
still dev-sets on which one will overfit if for each
fold, hyperparameter tuning, model-picking and
analysis is done on the same data.

3 The Tune Split

The solution we propose to the problem introduced
in Section 1.2 follows logically from the observa-
tion that we do not have a data split left for compar-
ing the models. We simply introduce an additional
data split, which we call the tune split (Figure 1(c)).
This tune data can be used to pick the best model,
thereby leaving the development set out of the train-
ing procedure. Then the best model B out of B1...n

to compare against model A can be picked based
on the development data, and the superiority of
model Bi can be confirmed on the test data. This
also makes a comparison to traditional machine
learning models fairer, as they also do not make
use of the dev data during training.

One clear downside of this approach is that there
is less data remaining for the other splits. To over-
come this, one could also pick the best hyperpa-
rameters/settings for model B based on the dev
split, while using the tune split for model picking,
and then for the final comparison add the tune split
to the train split and use the development data for
picking the best model. This procedure is the same
as it would be in a shared task setup, where the
train+dev data can be used however the partici-
pants see fit, but the test data remains unseen until
the final comparison.

It should be noted that in cross-domain or cross-
lingual setups, similar solutions have recently been
proposed. In these setups, people commonly use
the source dataset dev split for model picking (Ke-
ung et al., 2020). To have a pure cross-domain or
cross-lingual setup, it is important to not tune on
all target domains/languages as you are likely to
overestimate performance when no target data is
available. Artetxe et al. (2020) therefore argue to
only use the dev set of one target language and re-
port test results on other languages. ANother case
where a similar solution was sometimes used, is the
devtest set in machine translation, which is used
at least since the WMT 2006 shared task (Koehn
and Monz, 2006). This split is an effect of having
many sequential shared task, where new test-data
is added every year. In some work, the dev split is
used for model-picking and the testdev split is used
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as development data. However, to the best of our
knowledge, there is no offical use (nor guidelines)
on the function of the devtest split. An alternative
solution is introduced by Chen and Ritter (2020),
who propose methods for picking the best model
that do not rely on any labeled data.

4 Case Study

To evaluate the effect of having a separate tune
split, we perform a case study in which we
fine-tune a transition-based (Nivre, 2008) Bi-
LSTM (Graves and Schmidhuber, 2005) parser and
a transformer-based (Vaswani et al., 2017) deep
biaffine parser (Dozat and Manning, 2017) on the
same datasets. We use the Universal Dependencies
(UD) 2.8 data (Zeman et al., 2021) as benchmark,
and use the UUParser (Smith et al., 2018a) and the
MaChAmp (van der Goot et al., 2021) implementa-
tions of the corresponding parsers.

4.1 Experimental Setup
We use the datasets selected by Smith et al. (2018b).
We concatenate the train and dev set (we omit
the test data in these experiments, to avoid over-
analyzing it), and resplit the resulting data in 4
splits: the last 3,000 sentences are used for 1,000
sentences respectively for the test, dev, and tune
split, and the remaining data is used as training
data. We do not shuffle the sentences, as they are
chronologically ordered in many cases, resulting
in a (somewhat) stratified split, thereby avoiding
overestimation of performance because train/test
have overlapping sources (as done by Gorman and
Bedrick (2019) and Çöltekin (2020)).3 We consider
two finetuning setups:

• train+tune for training, model-picking and hy-
perparameter tuning on dev (Figure 1(a)).

• train for training, model-picking on tune, hy-
perparameter tuning on dev (Figure 1(c), our
proposed setup). In this setup, we concatenate
train and tune for the final evaluation on the
test set with the optimal hyperparameters.

For both parsers we make a selection of hyper-
parameters to tune, and take the default values as
starting point. We use no external embeddings
for the UUParser, and initialize MaChAmp with
mBERT to cover a variety of setups. Hence, a fair

3We also provide an alternative splitting method for UD
data, for setups where the original test-split is to be used for the
final comparison, more details can be found in the appendix.

MaChAmp UUParser
Dataset Dif -T +T Dif -T +T

grc_proiel 2/4 72.28 72.19 2/7 78.17 77.38
ar_padt 1/4 82.11 81.82 0/7 77.60 77.63
en_ewt 1/4 88.89 88.90 1/7 82.64 82.90
fi_tdt 2/4 88.41 87.85 1/7 80.50 80.81
zh_gsd 1/4 83.13 82.66 0/7 69.67 69.27
he_htb 2/4 84.49 84.33 1/7 73.22 73.30
ko_gsd 2/4 81.99 82.32 0/7 77.28 77.15
ru_gsd 2/4 88.51 88.48 1/7 80.14 79.84
sv_talbanken 1/4 82.76 82.89 1/7 71.11 71.40

Table 1: Results (LAS) of tuning with both strategies.
Dif reports the number of optimal hyperparameters that
differ between the two setups, -T(une) is using dev for
model picking as well as hyperparameter-tuning, and
+T(une) is our proposed setup.

comparison can only be made between the setups,
and not between the parsers. The exact hyperpa-
rameter ranges that were evaluated are reported in
the appendix. We perform a grid search for each
dataset, and compare the performance on test as
well as the number of hyperparameters that have a
different optimal value across both setups.

4.2 Results
Results (Table 1) show that performance of both
evaluated setups only have minimal differences on
the test data.4 Even though there are different op-
timal hyperparameters found for all datasets for
MaChAmp and for 6/9 for the UUParser, none
of the differences are significant with a paired
bootstrap test (10,000 resamples), both with and
without Bonferroni correction (Bonferroni, 1936).
Hence, the results indicate that for the final per-
formance it is irrelevant which splits to use in this
setup. However, when the tune split is used, we
can do a much more valuable (qualitative or quan-
titative) analysis on the development data, which
would be less realistic to do when we used dev al-
ready for hyperparameter tuning as well as model
picking.

5 Conclusion

We have reflected on the default dataset splits used
in NLP (and actually also more widely in machine
learning) to tune design decisions (architectures,
hyperparameters, etc.) of neural network based
models, which can easily lead to overfitting on

4Performance differences between the development and
test split are reported in the appendix.
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the test data. This is an effect of the fact that in
standard setups, neural networks use the develop-
ment data during training, and it thus became more
common to compare multiple versions of the same
model on the test data. The solution to this problem
is simple, we need another data split to do model
picking, or avoid using the dev set in the training
procedure, by learning which model to pick using
other heuristics (Chen and Ritter, 2020). We call
this split the tune-split. The only downside of using
a separate tune-split, is that there is less data avail-
able for the other splits. This can be circumvented
by using train+tune for the final (test-)runs of the
model. We evaluated the effect of the tune-split for
two common NLP benchmarks by tuning two dif-
ferent types of models. One of them showed to be
more robust against the evaluated hyperparameter
ranges, whereas the other showed a clear perfor-
mance improvement when using a tune-split. This
proposed solution is orthogonal to other proposed
practices for a hygienic experimental setup like
significance testing, random splits, and evaluating
specific abilities of our models.
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Hajič jr., Mika Hämäläinen, Linh Hà Mỹ, Na-
Rae Han, Muhammad Yudistira Hanifmuti, Sam
Hardwick, Kim Harris, Dag Haug, Johannes Hei-
necke, Oliver Hellwig, Felix Hennig, Barbora
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Özateş, Merve Özçelik, Arzucan Özgür, Balkız
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Łapińska, Siyao Peng, Cenel-Augusto Perez, Na-
talia Perkova, Guy Perrier, Slav Petrov, Daria
Petrova, Jason Phelan, Jussi Piitulainen, Tommi A
Pirinen, Emily Pitler, Barbara Plank, Thierry
Poibeau, Larisa Ponomareva, Martin Popel, Lauma
Pretkalnin, a, Sophie Prévost, Prokopis Prokopidis,
Adam Przepiórkowski, Tiina Puolakainen, Sampo
Pyysalo, Peng Qi, Andriela Rääbis, Alexandre Rade-
maker, Taraka Rama, Loganathan Ramasamy, Car-
los Ramisch, Fam Rashel, Mohammad Sadegh Ra-
sooli, Vinit Ravishankar, Livy Real, Petru Rebeja,
Siva Reddy, Georg Rehm, Ivan Riabov, Michael
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A Details of Annotation

The annotator is asked to find the number of runs
per test split of each dataset, where the number
of reported metrics is not important, and multiple
random seeds are not counted as multiple runs. If a
paper contains multiple datasets, the “main” dataset
is counted, or an average is used. If a figure con-
tains more then 10 versions of a model, it is counted
as only 10 different models. Results reported in
an appendix are not counted. Baselines (as defined
by the original authors) are not counted. We skip
papers that do not introduce results of a new model,
as well as analysis only papers (a total of 15 pa-
pers in 2010 and 5 papers in 2020 are skipped). It
should be noted that the annotator observed that
analysis papers are often using the test-set for anal-
ysis which is undesirable in our opinion, as this
easily leads to overfitting. One paper included in
this analysis already included a tune-set in a cross-
lingual setup (Yu et al., 2020), similar as the papers
mentioned in Sectionr̃efsec:relWork.

B Proposed Splits for UD data

We propose a strategy for resplitting the Universal
Dependencies (Zeman et al., 2021) datasets so that
they also include a tune-set. First, for datasets
without development set, we create one from the
last 100 sentences of the training data.5. Then we
take one third of the development split, and use this
as the tune split. With this splitting strategy, the
training data size remains the same as the original,
and we assume that for tuning only little data is
necessary (hence we keep a larger dev set).

Code to generate these splits can be found in
scripts/9.udResplit.py in the repo.

C Experimental details

For our experiments we selected the ranges of hy-
perparameters reported in Table 2.

D Difference in Performance Between
Dev and Test

The difference in score between dev and test for
each setup are shown in Table 3. However, it should
be noted that this comparison is not completely
fair, as for the proposed setup, the final model is
trained on more data when getting the scores on the
test data, so the difference is expected to be more

5In UD, a training set is prioritized over a dev set if the
dataset is small.

MaChAmp

Learning rate [1e-4, 1e-5]
Dropout [.2, .3, .4]
cut_frac [.1, .2, .3]
decay [.35, 38, 5]

UUparser

Graphs based [True, False]
Learning rate [1e-2, 1e-3, 1e-4]
Word emb. size [50, 100, 200]
Char emb. size [100, 500]
Number BiLSTM layers [1, 2]

Table 2: Evaluated hyperparameters of MaChAmp and
the UUParser(defaults are bold).

MaChAmp UUParser
-T +T -T +T

grc_proiel 0.53 1.06 0.99 1.49
ar_padt 0.09 1.25 0.00 2.16
en_ewt -1.94 -1.77 -0.64 0.47
fi_tdt -0.94 -1.05 -0.56 0.79
zh_gsd -0.38 1.70 -0.85 2.86
he_htb 0.99 1.65 0.80 3.29
ko_gsd -1.80 0.33 -2.27 0.11
ru_gsd 0.01 1.71 -1.08 2.01
sv_talbanken -3.69 -0.47 -4.91 -0.48

Table 3: Difference in performance between dev and
test set. Lower scores indicate that performance on the
test set is lower as compared to dev.

positive (the difference is significant for both the
UUParser and MaChAmp with a paired bootstrap
test p=0.05; dataset results are used as samples).

E Results of Hyperparameter Search

The optimal hyperparameters for both setups are
shown in Table 4 for the UUParser and in Table 5
for MaChAmp.
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Data Graph LR WordS. CharS. #-layers

UD_Ancient_Greek-PROIEL
-Tune 1 0.001 100 500 2
+Tune 1 0.0001 50 500 2
UD_Arabic-PADT
-Tune 1 0.001 50 100 2
+Tune 1 0.001 50 100 2
UD_English-EWT
-Tune 1 0.001 200 500 2
+Tune 1 0.001 200 100 2
UD_Finnish-TDT
-Tune 1 0.001 100 100 2
+Tune 1 0.001 50 100 2
UD_Chinese-GSD
-Tune 1 0.001 50 500 2
+Tune 1 0.001 50 500 2
UD_Hebrew-HTB
-Tune 1 0.001 50 500 2
+Tune 1 0.001 100 500 2
UD_Korean-GSD
-Tune 1 0.001 50 500 2
+Tune 1 0.001 50 500 2
UD_Russian-GSD
-Tune 1 0.001 50 500 2
+Tune 1 0.001 200 500 2
UD_Swedish-Talbanken
-Tune 1 0.001 100 500 2
+Tune 1 0.001 50 500 2

Table 4: Optimal hyperparameter for the UUParser,
both without a tune set (-Tune) and with a tune set
(+Tune). WordS. = size of word embeddings, CharS.
= size of character embeddings, #layers = number of
BiLSTM layers.

Data LR dropout cut_frac decay

UD_Ancient_Greek-PROIEL
-Tune 0.0001 0.4 0.1 0.35
+Tune 0.0001 0.4 0.2 0.38
UD_Arabic-PADT
-Tune 0.0001 0.3 0.2 0.5
+Tune 0.0001 0.4 0.2 0.5
UD_English-EWT
-Tune 0.0001 0.4 0.2 0.38
+Tune 0.0001 0.4 0.2 0.35
UD_Finnish-TDT
-Tune 0.0001 0.3 0.2 0.5
+Tune 0.0001 0.4 0.2 0.35
UD_Chinese-GSD
-Tune 0.0001 0.2 0.1 0.5
+Tune 0.0001 0.3 0.1 0.5
UD_Hebrew-HTB
-Tune 0.0001 0.3 0.1 0.5
+Tune 0.0001 0.3 0.2 0.38
UD_Korean-GSD
-Tune 0.0001 0.3 0.2 0.38
+Tune 0.0001 0.3 0.1 0.5
UD_Russian-GSD
-Tune 0.0001 0.4 0.2 0.5
+Tune 0.0001 0.2 0.3 0.5
UD_Swedish-Talbanken
-Tune 0.0001 0.3 0.2 0.5
+Tune 0.0001 0.4 0.2 0.5

Table 5: Optimal hyperparameter for MaChAmp, both
without a tune set (-Tune) and with a tune set (+Tune).


