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Abstract

Dialogue-based relation extraction (RE) aims
to extract relation(s) between two arguments
that appear in a dialogue. Because dia-
logues have the characteristics of high per-
sonal pronoun occurrences and low informa-
tion density, and since most relational facts
in dialogues are not supported by any sin-
gle sentence, dialogue-based relation extrac-
tion requires a comprehensive understanding
of dialogue. In this paper, we propose the
TUrn COntext awaRE Graph Convolutional
Network (TUCORE-GCN) modeled by pay-
ing attention to the way people understand di-
alogues. In addition, we propose a novel ap-
proach which treats the task of emotion recog-
nition in conversations (ERC) as a dialogue-
based RE. Experiments on a dialogue-based
RE dataset and three ERC datasets demon-
strate that our model is very effective in
various dialogue-based natural language un-
derstanding tasks. In these experiments,
TUCORE-GCN outperforms the state-of-the-
art models on most of the benchmark datasets.
Our code is available at https://github.
com/BlackNoodle/TUCORE—-GCN.

1 Introduction

The task of relation extraction (RE) aims to identify
semantic relations between arguments from a text,
such as a sentence, a document, or even a dialogue.
However, since a large number of relational facts
are expressed in multiple sentences, sentence-level
RE suffers from inevitable restrictions in practice
(Yao et al., 2019). Therefore, cross-sentence RE,
which aims to identify relations between two argu-
ments that are not mentioned in the same sentence
or relations that cannot be supported by any single
sentence, is an essential step in building knowledge
bases from large-scale corpora automatically (Ji
et al., 2010; Swampillai and Stevenson, 2010; Sur-
deanu, 2013). In this respect, because dialogues
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S1: Hey Pheebs.

S2:  Hey!

S1:  Any sign of your brother?

S2:  No, but he’s always late.

S1: Ithought you only met him once?

S2:  Yeah, I did. I think it sounds y’know big sistery,
y’know, ‘Frank’s always late.’

S1:  Well relax, he’ll be here.

Subject: Frank

Object: S2

relation: per:siblings

Subject: S2

Object: Frank

relation: per:siblings

Subject: S2

Object: Pheeb

relation:per:alternate_names

Table 1: An example dialogue and its desired relations
in DialogRE (Yu et al., 2020). S1, S2: anonymized
speaker of each utterance.

readily exhibit cross-sentence relations (Yu et al.,
2020), extracting relations from the dialogue is nec-
essary.

To support the prediction of relation(s) between
two arguments that appear within a dialogue, Yu
et al. (2020) recently proposed DialogRE, which
is a human-annotated dialogue-based RE dataset.
Table 1 shows an example of DialogRE. In con-
versational texts such as DialogRE, because of its
higher person pronoun frequency (Biber, 1988) and
lower information density (Wang and Liu, 2011)
compared to formal written texts, most relational
triples require reasoning over multiple sentences in
a dialogue. 65.9% of relational triples in DialogRE
involve arguments that never appear in the same
turn. Therefore, multi-turn information plays an
important role in dialogue-based RE.

There are several major challenges in effec-
tive relation extraction from dialogue, inspired
by the way how people understand dialogue in
practice. First, the dialogue has speakers, and
who speaks each utterance matters. The reason
for it is because the subject and object of rela-
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tional triples depend on who is speaking which
utterance. For example, if S3 answered “Hey!”
after “Hey Pheebs.”, the relational triple (S2,
per:alternate_names, Pheebs) will be revised to
(S3, per:alternate_names, Pheebs), in the case of
Table 1. Second, when understanding the meaning
of each turn in a dialogue, it is important to know
the meaning of the surrounding turns. For example,
if we look at “No, but he is always late.” in Ta-
ble 1, we don’t know who’s always late. However,
if we look at the previous turn, we can see that
S2’s brother is always late. Third, the dialogue con-
sists of several turns. Those turns are sequential,
and the arguments may appear in different turns.
Consequently, it is important to grasp the multi-
turn information in order to capture the relations
between the two arguments. This could be done
using the sequential characteristics of dialogues.
Therefore, we aim to tackle these challenges to
better extract relations from dialogues.

In this paper, we propose the TUrn COntext
awaRE Graph Convolutional Network (TUCORE-
GCN) for dialogue-based RE. It is designed to
tackle the aforementioned challenges. TUCORE-
GCN encodes the input sequence to reflect speaker
information in dialogue by applying BERT; (Yu
et al., 2020) and speaker embedding of SA-BERT
(Gu et al., 2020). Then, to better extract the rep-
resentations of each turn from the encoded in-
put sequence, Masked Multi-Head Self-Attention
(Vaswani et al., 2017) is applied using a surround-
ing turn mask. Next, TUCORE-GCN constructs a
heterogeneous dialogue graph to capture the rela-
tional information between arguments in the dia-
logue. It consists of four types of nodes, namely di-
alogue node, turn node, subject node, object node,
and three different types of edges, i.e., speaker
edge, dialogue edge, and argument edge. Then,
the sequential characteristics of the turn nodes
should be considered. To obtain a surrounding
turn-aware representation for each node, we ap-
ply bidirectional LSTM (BiLSTM) (Schuster and
Paliwal, 1997) to the turn nodes and a Graph Con-
volutional Network (Kipf and Welling, 2017) to the
heterogeneous dialogue graph. Finally, we classify
the relations between arguments with the obtained
features.

The task of emotion recognition in conversations
(ERC) aims to identify the emotion of utterances
in dialogue. ERC is a challenging task that has re-
cently gained popularity due to its potential applica-

Speaker  Utterance Emotion
Monica  He is so cute. So, where did Joyful
you guys grow up?

Angela  Brooklyn Heights. Neutral
Bob Cleveland. Neutral

Monica  How, how did that happen? Neutral
Joey Oh my god. Scared

Monica  What? Neutral
Joey I suddenly had the feeling that Scared

I was falling. But I’'m not.

Table 2: An example conversation with annotated la-
bels in EmoryNLP(Zahiri and Choi, 2018).

S1: Heis so cute. So, where did you guys grow up?
S2:  Brooklyn Heights.

S3:  Cleveland.

S1: How, how did that happen?

S4: Oh my god.

S1: What?

S4:  Isuddenly had the feeling that I was falling. But
I’'m not.

Subject: S1

Object: He is so cute. So, where did you guys grow up?
relation: Joyful

Subject: S2

Object: Brooklyn Heights.

relation: Neutral

Subject: S3

Object: Cleveland.

relation: Neutral

Table 3: An example of converting the example in
Table 2 to DialogRE format to treat the ERC task as
a dialogue-based RE. S1, S2, S3, S4: anonymized
speaker of each utterance.

tions (Poria et al., 2019). It can be used to analyze
user behaviors (Lee and Hong, 2016) and detect
fake news (Guo et al., 2019). Table 2 shows an ex-
ample from EmoryNLP (Zahiri and Choi, 2018), a
dataset widely used in the ERC task. We propose a
novel approach to treat the ERC task as a dialogue-
based RE. If we define the emotion relation of each
utterance when the subject says the object with a
particular emotion (e.g., joyful, neutral, scared),
the emotion of each utterance in the dialogue can
be seen as a triple (speaker of utterance, emotion,
utterance) as shown in Table 3. To the best of our
knowledge, this approach was not introduced in
previous studies.

In summary, our main contributions are as fol-
lows:

* We propose a novel method, TUrn COn-
text awaRE Graph Convolutional Network
(TUCORE-GCN), to better cope with a
dialogue-based RE task.

* We introduce a surrounding turn mask to bet-
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ter capture the representation of the turns.

* We introduce a heterogeneous dialogue graph
to model the interaction among elements (e.g.,
speakers, turns, arguments) across the dia-
logue and propose a GCN mechanism com-
bined with BiLSTM.

* We propose a novel approach to treat the ERC
task as a dialogue-based RE.

2 Related Work

2.1 Dialogue-Based Relation Extraction

Relation extraction has been studied extensively
over the past few years and many approaches have
achieved remarkable success. Most previous ap-
proaches focused on sentence-level RE (Zeng et al.,
2014; Wang et al., 2016; Zhang et al., 2017; Zhu
et al., 2019), but recently cross-sentence RE has
been studied more because a large number of rela-
tional facts are expressed in multiple sentences in
practice.

Recent work begins to explore cross-sentence
relation extraction on documents that are for-
mal genres, such as professionally written and
edited news reports or well-edited websites. In
document-level RE, various approaches includ-
ing transformer-based methods (Tang et al., 2020;
Ye et al., 2020; Wang et al., 2019) and graph-
based methods (Christopoulou et al., 2019; Nan
et al., 2020; Zeng et al., 2020) have been proposed.
Among these, graph-based methods are widely
adopted in document-level RE due to their effec-
tiveness and strength in representing complicated
syntactic and semantic relations among structured
language data. Unlike previous work, we focused
on extracting relations from dialogues, which are
texts with high pronoun frequencies and low infor-
mation density.

(Yu et al., 2020; Xue et al., 2021) were among
the early works on dialogue-based RE. Yu et al.
(2020) introduced several dialogue-based RE ap-
proaches with the DialogRE dataset. Among the
various approaches, BERT;, a model that uses
BERT (Devlin et al., 2019), shows good perfor-
mance. BERT is a model that slightly modified
the original input sequence of BERT in consider-
ation of speaker information. However, it has a
limitation in that it cannot predict asymmetric in-
verse relations well. Our model basically follows
the input sequence of BERT, but we designed it
to overcome this limitation to some extent. More

detailed explanation is in Sec 4.1.5. Xue et al.
(2021) proposed a graph-based approach, GDPNet,
that constructs a latent multi-view graph to capture
various possible relationships among tokens and
refines this graph to select important words for rela-
tion prediction. In this approach, the refined graph
and the BERT-based sequence representations are
concatenated for relation extraction. The graph of
GDPNet is a multi-view directed graph aiming to
model all possible relationships between tokens.
Unlike GDPNet, we combine tokens into mean-
ingful units to form nodes and connect the nodes
with speaker edges, dialogue edges, and argument
edges to model what each edge means. In addition,
GPDNet focuses on refining this multi-view graph
to capture important words from long texts for RE,
but we extract the relations using the features of
the nodes in the graph.

2.2 Emotion Recognition in Conversation

Emotion recognition in conversation has emerged
as an important problem in recent years and many
successful approaches have been proposed. In
ERC, numerous approaches including recurrence-
based methods (Majumder et al., 2019; Ghosal
et al., 2020) and graph-based methods (Ghosal
et al., 2019; Ishiwatari et al., 2020) have been pro-
posed. For instance, DialogueRNN (Majumder
et al., 2019) uses an attention mechanism to grasp
the relevant utterance from the whole conversa-
tion and models the party state, global state, and
emotional dynamics with several RNNs. COSMIC
(Ghosal et al., 2020) adopts a network structure,
which is similar to DialogueRNN but adds exter-
nal common sense knowledge to improve perfor-
mance. DialogueGCN (Ghosal et al., 2019) treats
each dialogue as a graph where each node repre-
sents utterance and is connected to the surrounding
utterances. RGAT (Ishiwatari et al., 2020) is based
on DialogueGCN. It adds relational positional en-
codings that can capture speaker dependency, along
with sequential information. Many studies with re-
markable success have been proposed, but none
can be used in ERC as well as other dialogue-based
tasks like our approaches.

3 Model

TUCORE-GCN mainly consist of four modules:
encoding module (Sec 3.1), turn attention mod-
ule (Sec 3.2), dialogue graph with sequential
nodes module (Sec 3.3), and classification mod-
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Figure 1: The overall architecture of TUCORE-GCN. First, A contextualized representation of each token is ob-
tained by feeding the input dialogue to the context encoder. Next, Masked Multi-Head Attention using surrounding
turn mask is applied to obtain representations that enhance the meaning of each turn. Then, TUCORE-GCN con-
structs a dialogue graph and applies GCN mechanism combined with BiLSTM. Finally, the classification module
predicts relations using information from the previous module.

ule (Sec 3.4), as shown in Figure 1.

3.1 Encoding Module

We follow BERT (Yu et al., 2020) as the input
sequence of the encoding module. Given a dialogue
d=sy:1t1,89 :ta,..., 8y : tar and its associated
argument pair (a1, az), where s; and t; denote the
speaker ID and text of the i'" turn, respectively, and
M is the total number of turns, BERT; constructs
d=351:t1,80: to,....,8n : tas, where §; is:

[51] if S; = aq
§i = [SQ] if S; = a9 (1)

s;  otherwise

where [S1] and [S2] are special tokens. In ad-
dition, it defines ax(k € {1,2}) to be [Sy] if
Ji(s; = ag), and ay otherwise. Then, we con-
catenate d and (a1,a2) with a classification to-
ken [CLS] and a separator token [SEP] in
BERT(Devlin et al., 2019) as the input sequence
[CLS]d[SEP]d; [SEP]ay [SEP].

To model the speaker change information, fol-
lowing SA-BERT(Gu et al., 2020), we add addi-
tional speaker embeddings to the token representa-
tions. F($;) is added to each token representation

of §; : t;, Es(ar)(k € {1,2}) is added to each to-
ken representation of ay, if ax = [Sk|, and Es(f) is
added to all token representations without speaker
embedding added, where E(-) denotes the speaker
embedding layer. F(4) is an embedding output for
token representations without speaker information.
A visual architecture of our input representation is
illustrated in Appendix.

Then, token representations containing speaker
change information are fed into an encoder to ex-
tract the speaker-sensitive token representations.
The encoder can be BERT or BERT variants (Liu
et al., 2019; Conneau and Lample, 2019; Lan et al.,
2020).

3.2 Turn Attention Module

To obtain the turn context-sensitive representation
for each turn, we apply Masked Multi-Head Self-
Attention (Vaswani et al., 2017) to the output of
the encoder using the surrounding turn mask. The
range of this surrounding turn is called the window,
and the number of turns from the front and rear
are viewed as the surrounding turn which is called
the surround turn window size. The surround turn
window size c is a hyper-parameter.

Let X = [z1,292,23,...,2N] be an output of
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the encoding module, where x; is the 4t token
representation in the output and N is the num-
ber of tokens. For token representations corre-
sponding to §; : t; range from xp, to x.,, D; =
[Zb,, T, 41, .-, Te; | denotes representations of the
it turn, D = [zp,, Tp, 41, .-, Te,,| denotes rep-
resentations of a dialogue d, and F(z,,) denotes
the turn number in which z,, is included (e.g.,
F(xy) = 2if x,,, € Dy). We implement the
surrounding turn mask as follows:

1 ifep,é¢D,m=n
—oo ifxy, € D,m#n

MSUT’ — 2
mm 1 ifxy, € Dz, € R(zp) o
—oo otherwise
F(xm)+c
where R(z,,) denotes U  D.. Avisual ar-
z=F(xm)—c

chitecture of an example regarding the surrounding
turn mask is illustrated in Appendix.

Then, we reinforce the representation of each
turn from representations of surrounding turns.

3.3 Dialogue Graph with Sequential Nodes
Module

To model the dialogue-level information, interac-
tions between turns and arguments, and interactions
between turns, a heterogeneous dialogue graph is
constructed.

We form four distinct types of nodes in the graph:
dialogue node, turn node, subject node, and object
node. The dialogue node is a node with the pur-
pose of containing overall dialogue information.
Turn nodes represent information about each turn
in the dialogue and are created as many as the total
number of turns in the dialogue. The subject node
and object node represent the information of each
argument. In our work, the initial representation of
the dialogue node uses a feature corresponding to

[CLS] in the output of the turn attention module.
The initial representation of the 5" turn node, sub-
ject node, and object node use the average of the
token representations corresponding to §; : t;, a1,
and as in the output of the turn attention module,
respectively.

There are three different types of edge:

¢ dialogue edge: All turn nodes are connected
to the dialogue node with the dialogue edge
so that the dialogue node learns while being
aware of turn-level information.

* argument edge: To model the interaction be-
tween turns and arguments, the it" turn node
and argument nodes (i.e., subject node and
object node) are connected with the argument
edge if the argument is mentioned in §; : ;.

» speaker edge: To model the interaction
among different turns of the same speaker,
turn nodes uttered by the same speaker are
fully connected with speaker edges.

Next, we apply a Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) to aggregate each
node feature from the features of the neighbors.
At this time, in order to inject sequential informa-
tion to the turn nodes, GCN is applied after the
turn nodes pass through the bidirectional LSTM
(Schuster and Paliwal, 1997) layers. Given node u
at the [** GCN layer, A and A denote the rep-
resentation of the node before injecting sequential
information and the representation of the node after
injecting sequential information, respectively. ES )
can be defined as:

) = (st @ () LsTmMO(hD)) - (3)

W(gl)h%,) + bg) if type of w is turn node

h(l) _

u
hg ) otherwise

“)
where T; represents an 7" turn node and h%) rep-
resents turn node feature injected sequential infor-
mation in the dialogue by concatenating the hidden
states of two directions. Wo(él) € Rdx2d bg) € R,
and d is the dimension. Then, the graph convolu-
tion operation can be defined as:

WD = ReLU (Y0 S w0 4ol
k€k vEN (u)
(%)
where  are different types of edges, N (u) denotes
neighbors for node u connected in the k" type

edge, W € R4, and b) € RY,

3.4 Classification Module

We concatenate the dialogue node, subject node,
and object node to classify the relation between ar-
guments. Furthermore, to cover features of all dif-
ferent abstract levels from each layer of the GCN,
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we concatenate the hidden states of each GCN layer
as follows:

C= [h((iO); hO:nO; s h D p @ RD:] (6)

where G is the number of GCN layers and d, s,
and o denote the dialogue node, subject node, and
object node, respectively. For each relation type r,
we introduce a vector W, € R3(G+1Dd and obtain
the probability P, of the existence of r between ar-
guments by P, = sigmoid(CW,"). We use cross-
entropy loss as the classification loss to train our
model in an end-to-end way.

4 Experiments

In this section, we report our experimen-
tal results on two tasks, dialogue-based RE
and ERC. We experiment with two versions
of TUCORE-GCN, TUCORE-GCNpgrr and
TUCORE-GCNRg,BERTA, respectively based on
the uncased base model of BERT (Devlin et al.,
2019) and the large model of RoBERTa (Liu et al.,
2019). TUCORE-GCN is trained using Adam
(Kingma and Ba, 2015) as an optimizer with weight
decay 0.01. We run each experiment five times and
report the average score along with the standard
deviation (o) for each metric. The full details of
our training settings are provided in the Appendix.

4.1 Dialogue Based Relation Extraction
4.1.1 Dataset

We evaluate our model on DialogRE (Yu et al.,
2020), an updated English version with a few an-
notation errors fixed !. DialogRE has 36 relation
types, 1,788 dialogues, and 8,119 triples, not in-
cluding no-relation argument pairs, in total. We
follow the standard split of the dataset.

4.1.2 Maetrics

For DialogRE, We calculate both the F'1 and F'1,
(Yu et al., 2020) scores as the evaluation metrics.
F'1. is an evaluation metric to supplement the stan-
dard F'1. F'1. is computed by taking in the part of
dialogue as input, instead of only considering the
entire dialogue.

4.1.3 Baselines and State-of-the-Art

For a comprehensive performance evaluation, we
compared our model with the models using the
following baseline and state-of-the-art methods:

"https://dataset.org/dialogre

BERT (Devlin et al., 2019): The BERT base-
line for dialog-based RE, initialized with pre-
trained parameters of BERT-base. It is classified
using a final hidden vector corresponding to the
[CLS] token.

BERT; (Yu et al., 2020): A modification to the
input sequence of the above BERT baseline. This
modification prevents a model from overfitting to
the training data and helps a model locate the start
positions of relevant turns.

GDPNet (Xue et al., 2021): A state-of-the-art
model for the DialogRE. GDPNet finds indicative
words from long sequences by constructing a latent
multi-view graph and refining the graph. It uses
the same input format of BERT and pre-trained
parameters of BERT-base.

RoBERTa,: A model that uses the pre-trained
parameters of RoBERTa-large (Liu et al., 2019)
instead of pre-trained parameters of the BERT,
above.

4.1.4 Results

We show the performance of TUCORE-GCN on
the DialogRE dataset in Table 4 compared with
other baselines.

Among the models using BERT, TUCORE-
GCNpggr outperforms all baselines by 5.3 ~ 7.6
F'1 scores and 2.9 ~ 7.1 F'1. scores on the test set.
GDPNet, the state-of-the-art model, achieved high-
performance improvement at F'1., but TUCORE-
GCN showed high-performance improvement at
both F'1 and F1.. Among the models using
RoBERTa, TUCORE-GCNRg,pERT, yields a great
improvement of F'1/F'1. on the test set by 1.8/2.2,
in comparison with the strong baseline ROBERTa,.
Our model can use BERT (or its variants) as an en-
coder, and in the experiment, we used both the
BERT-base model and also the RoBERTa-large
model. TUCORE-GCN show outstanding perfor-
mance even when the BERT-base was used as the
encoder. RoBERTa-large was also used, and it
achieves state-of-the-art performance on DialogRE
dataset with F'1 score 73.1 and F'1. score 65.9. It
suggests that TUCORE-GCN is very effective in
this dialog-based RE task.

4.1.5 Analysis on Inverse Relations

We analyze asymmetric inverse relations and
symmetric inverse relations performance on the
dialogue-based RE task. We divide the DialogRE
dev set into three groups depending on whether it
was asymmetric inverse relation, symmetric inverse

448



Dev Test

Method Fl (0) Fl. (o) Fl (0) Fl. (o)
BERT 594(0.7) 54.7(0.8) | 579(1.0) 53.1(0.7)
BERT, 62.2(1.3)  57.0(1.0) | 59.52.1) 542(1.4)
GDPNet 61.8 (1.4)* 585 (1.4)* | 60.2(1.0)* 57.3(1.2)*
ROBERTa, 726(1.7) 65117 | 713(1.6) 63.7(1.2)
TUCORE-GCNppar 668(0.7) _61.0(0.5) | 655(04)  60.2(0.6)
TUCORE-GCNpoprrra | 743(0.6)  67.0(0.6) | 73.1(04) 659 (0.6)

Table 4: Performance on DialogRE. The scores marked by “*” are based on our re-implementation, because of

the data differences.

relation, or other. Then, we report the F'1 score
for each group in Appendix. In the dialogue-based
RE task, when asymmetric inverse relations are
predicted to exists, BERT makes more mistakes
compared to symmetric inverse relations (Yu et al.,
2020). Since BERT learns the tokenized representa-
tion of the input sequence through a Self-Attention
mechanism, whether the arguments in the input
sequence are a subject or an object is not learned
in detail. As a result, the performance of asym-
metric inverse relations that indicate different rela-
tions when subject and object are changed is signif-
icantly lower than in symmetric inverse relations
that indicate the same relations even when sub-
ject and object are changed. However, TUCORE-
GCN creates nodes for arguments separately, learns
features of these nodes, and classifies relations.
Thus, these issues with BERT can be improved.
TUCORE-GCN ggrr has improved performance
in all groups compared to BERT and BERT, espe-
cially for asymmetric inverse relations.

4.2 Emotion Recognition in Conversations
4.2.1 Dataset

We evaluate our model on three ERC benchmark
datasets. We follow the standard split of the
datasets and classify the emotion label of each
utterance in the ERC benchmark datasets as the
relation between the speaker and the utterance in
the dialogue as in Table 3.

MELD (Poria et al., 2019)? is a multimodal
dataset collected from the TV show, Friends. We
only used textual modality in this dataset. It has
seven emotion labels, 2,458 dialogues, and 12,708
utterances. Each utterance is annotated with one of
the seven emotion labels.

EmoryNLP (Zahiri and Choi, 2018)? is also
collected from the TV show, Friends. It has seven
emotion labels, 897 dialogues, and 12,606 utter-

*https://affective-meld.github.io
3https://github.com/emorynlp/emotion-detection

ances. Each utterance is annotated with one of the
seven emotion labels.

DailyDialog (Li et al., 2017)* reflects our daily
communication way and covers various topics
about our daily life. It has seven emotion labels,
13,118 dialogues, and 102,979 utterances. Each ut-
terance is annotated with one of the seven emotion
labels. Since it does not have speaker information,
we consider the utterance turns as two anonymized
speaker turns by default.

4.2.2 Metrics

For DailyDialog, we calculate micro-F'1 except
for the neutral class, because of its extremely high
majority. For MELD and EmoryNLP, we calculate
weighted-F'1.

4.2.3 Baselines and State-of-the-Art

For a comprehensive performance evaluation, we
compared our model with the models using the
following baseline and state-of-the-art methods:

Previous methods: CNN (Kim, 2014),
CNN+cLSTM (Poria et al., 2017), DialogueRNN
(Majumder et al., 2019), DialogueGCN (Ghosal
et al., 2019), and RoBERTa (Liu et al., 2019).

RGAT (Ishiwatari et al., 2020): A model that
is provided with some information reflecting re-
lation types through relational position encodings
that can capture speaker dependency and sequential
information.

RoBERTa,: The RoBERTa baseline for ERC
as our proposed approach, initialized with pre-
trained parameters of RoBERTa-large (Liu et al.,
2019). We set the input sequence of RoBERTa
to [CLS]d[SEP]laj[SEP]as[SEP] and feed
them into RoBERTa for classification.

COSMIC (Ghosal et al., 2020): A state-of-
the-art model for MELD and EmoryNLP. It uses
RoBERTa-large as an encoder. It is a frame-
work that models various aspects of commonsense
knowledge by considering mental states, events,

*http://yanran.li/dailydialog.html
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Method MELD EmoryNLP DailyDialog
CNN 55.86 32.59 49.34
CNN+cLSTM 56.87 32.89 50.24
DialogueRNN 57.03 31.70 50.65

DialogueGCN 58.10 - -

RGAT 60.91 34.42 54.31
RoBERTa 62.02 37.29 55.16
RoBERTa, 64.19 38.03 61.65
COSMIC 65.21 38.11 58.48
CESTa 58.36 - 63.12
TUCORE-GCNBERT 62.47 36.01 58.34
TUCORE-GCNRoBERTa 65.36 39.24 61.91

@ 9

Table 5: Overall performance on three ERC datasets. “-” signifies that no results were reported for the given
dataset. Performance scores of TUCORE-GCNggrr on MELD, EmoryNLP, and DailyDialog have standard
deviations of 0.4, 0.7, and 0.4, respectively, and performance scores of TUCORE-GCNg,pgrT, have standard

deviations of 0.4, 0.6, and 0.8, respectively.

actions, and cause-effect relations for emotional
recognition in conversation.

CESTa (Wang et al., 2020): A state-of-the-art
model for DailyDialog that uses Conditional Ran-
dom Field layer. The layer is used for sequential
tagging, and it has an advantage in learning when
there is an emotional consistency in conversation.

4.2.4 Results

We show the performance of TUCORE-GCN on
the ERC datasets in Table 5, in comparison with
other baselines. In addition, the performance of
TUCORE-GCNpgEggrr (F'1(0)) on the development
sets of MELD, EmoryNLP, and DailyDialog is
59.75 (0.5), 37.95 (0.8), 60.25 (0.4), respectively,
and the performance of TUCORE-GCNg,BERTG
s 65.94 (0.5), 40.17 (0.6), 62.83 (0.5), respectively.
We have quoted the results for the baselines and
state-of-the-art results reported in (Ishiwatari et al.,
2020; Ghosal et al., 2020; Wang et al., 2020), ex-
cept for the results of ROBERTa,..

The only difference between RoBERTa and
RoBERTz:, is the form of the input sequence, but
RoBERTa, is better at solving ERC task. Ac-
cordingly, we claim that treating the ERC as a
dialogue-based RE is useful in practice. TUCORE-
GCNRgoBERT, outperforms COSMIC, the previous
state-of-the-art model for MELD and EmoryNLP,
by 0.15, 1.13, and 3.43 on test sets of MELD,
EmoryNLP, and DailyDialog respectively. It
shows state-of-art performance on both MELD
and EmoryNLP. On the other hand, TUCORE-
GCNRgoBERT. Shows slightly lower performance
than CESTa on DailyDialog dataset. When utter-
ances in a conversation are adjacent to one another,
they tend to show similar emotions. This is called
emotional consistency, and CRF layer of CESTa

fits well with this tendency. Therefore, it has better
performance on DailyDialog, which shows emo-
tional consistency well. However, it shows very
poor performance on MELD, where emotional con-
sistency does not appear much (Wang et al., 2020).
Considering these observations, our model gener-
ally shows outstanding performance on MELD,
EmoryNLP, and also DailyDialog. It suggests
that TUCORE-GCN is effective in ERC as well
as dialogue-based RE.

4.3 Ablation Study

We conduct ablation studies to evaluate the effec-
tiveness of different modules and mechanisms in
TUCORE-GCN. The results are shown in Table 6.

First, we removed the speaker embedding in
the encoder module. To be specific, the encoder
and input format of TUCORE-GCNg,pERT, are
the same as ROBERTa,. Without speaker embed-
ding, the performance of TUCORE-GCNgr,BERT,
drops by 0.4 F'1 score and 0.1 F'1, score on the Di-
alogRE test set and 0.72 and 1.65 F'1 scores on the
MELD and EmoryNLP test set, respectively. This
drop shows that when encoding a dialogue, a bet-
ter representation can be obtained through speaker
change information.

Next, we removed the turn attention module. To
be specific, the output of the encoding module is de-
livered to the dialogue graph with sequential nodes
module. Without turn attention, the performance
of TUCORE-GCNgr,pERT, sharply drops by 1.1
F'1 score and 0.6 F'1. score on DialogRE test set
and 0.77 and 2.17 F'1 scores on the MELD and
EmoryNLP test set, respectively. This drop shows
that the turn attention module helps capture the rep-
resentation of the turns and, therefore, improves
dialogue-based RE and ERC performance.
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DialogRE MELD EmoryNLP
Method Fl (0) Fl. (o) Fl (0) Fl (o)
TUCORE-GCNgrogERTa | 73.1(04) 659 (0.6) | 65.36(0.4) | 39.24 (0.6)
w/o speaker embedding 72.7(1.0) 65.8(0.6) | 64.64(0.9) 37.59 (0.5)
w/o turn attention 72.0 (0.6) 65.3(0.3) | 64.59 (0.4) 37.07 (1.1)
w/o turn-level BiLSTM 72.5(0.4) 65.7(0.3) | 65.02(0.4) | 38.35(0.5)

Table 6: Results of ablation study on DialogRE, MELD, and EmoryNLP.

Finally, we removed the turn-level BiLSTM for
turn nodes in the dialogue graph with sequential
nodes module. To be specific, in the module, we ap-
ply GCN without injecting sequential information
of the turn nodes. Without turn-level BiLSTM, the
performance of TUCORE-GCNRg,5ERT, drops by
0.6 F'1 score and 0.2 F'1. score on DialogRE test
set and 0.34 and 0.89 F'1 scores on MELD and
EmoryNLP test set, respectively. This means that
reflecting the characteristics of the sequential nodes
when learning the graph helps to learn the features
of each node and, therefore, improves dialogue-
based RE and ERC performance.

5 Conclusion and Future Work

In this paper, we propose TUCORE-GCN for
dialogue-based RE. TUCORE-GCN is designed
according to the way people understand dialogues
in practice to better cope with dialogue-based RE.
In addition, we propose a way to treat the ERC
task as dialogue-based RE and showed its effec-
tiveness through experiments. Experimental results
on a dialogue-based RE dataset and three ERC
task datasets demonstrate that TUCORE-GCN
model significantly outperforms existing models
and yields the new state-of-the-art results on both
tasks.

Since TUCORE-GCN is modeled for the di-
alogue text type, we expect it to perform well
in dialogue-based natural language understanding
tasks. In future work, we are going to explore the
effectiveness of it on other dialogue-based tasks.
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A Appendix

A.1 Input Representation

A visual architecture of our input representation is
illustrated in Figure 2.

A.2 Surrounding Turn Mask

A visual architecture of our surrounding turn mask
of Turn Attention Module is illustrated in Figure 3.
1 was given as an example for surround turn win-
dow size c .
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A.3 [Experimental Settings
A.3.1 Hyperparameter Settings

We truncate a dialogue when the input sequence
length exceeds 512 and use the development set
to manually tune the optimal hyperparameters for
TUCORE-GCN, based on the F'1 score. Hyperpa-
rameter settings for TUCORE-GCN on a dialogue-
based RE dataset are listed in Table 7 and the ones
on ERC datasets are listed in Table 8. The final
values of hyperparameters we adopted are in bold.
We do not tune all the hyperparameters.

A.3.2 Other Settings

TUCORE-GCNpggr is implemented by using
PyTorch 1.6.0 with CUDA 10.1 and TUCORE-
GCNRgoBERT. 18 implemented by using PyTorch
1.7.0 with CUDA 11.0. Our implementation of
TUCORE-GCN g pr uses the DGL? 0.4.3 and our
implementation of TUCORE-GCNg,5ERT, USES
the DGL? 0.5.3. We used the official code® of
(Yu et al., 2020) to calculate F'1 and F'1. scores
on DialogRE, and scikit-learn’ to calculate F'1
score on ERC datasets. It takes about 2 hours,
1.25 hours, 1.5 hours, 12 hours to run TUCORE-
GCNpgEggr on DialogRE, MELD, EmoryNLP, and
DailyDialog once, respectively. Additionally, it
takes about 4 hours, 2.2 hours, 2.3 hours, 20
hours to run TUCORE-GCNg,gERT. On Dialo-
gRE, MELD, EmoryNLP, and DailyDialog once,
respectively. We conducted all experiments that
uses TUCORE-GCNggrr on a Ubuntu server
using Intel(R) Core(TM) i9-10900X CPU with
128GB of memory, and used GeForce RTX 2080
Ti GPU with 11GB of memory. We conducted
all experiments that uses TUCORE-GCNRr,BERT,
on a Ubuntu server using Intel(R) Core(TM) i9-
10980XE CPU with 128GB of memory, and used
GeForce RTX 3090 GPU with 24GB of memory.

A.4 Experimental results on Inverse
Relations

We show the performance of TUCORE-GCN on
asymmetric inverse relation, symmetric inverse re-
lation, and other of DialogRE (Yu et al., 2020) in
Table 9 compared with other baselines.

Among the models using BERT (Devlin et al.,
2019), TUCORE-GCN gt has significantly re-
duced difference between the F'1 scores of asym-

Shitps://www.dgl.ai
Shttps://github.com/nlpdata/dialogre
"https://scikit-learn.org/stable

Value

Hyperparameter BERT RoBERT:
Epoch 20 20, 30
Batch Size 12 12
Learning Rate 3e-5 3e-5, le-5, 5e-6, le-6
Speaker Embedding Size 768 768
Layers of Turn Attention 1 1
Heads of Turn Attention 12 12
Surround Turn Window Size 1,2,3 1,2
Dropout of Turn Attention 0.1 0.1
Layers of LSTM 1,2,3 1,2,3
LSTM Hidden Size 768 768
Dropout of LSTM 0.2,0.4,0.6 0.2,04
Layers of GCN 2 2
GCN Hidden Size 768 768
Dropout of GCN 0.6 0.6
Numbers of Parameters 401M

156M ‘

Hyperparameter Search Trials 12 12

Table 7: Settings for TUCORE-GCNpgrr and
TUCORE-GCNpg,perTe On dialogue-based RE
dataset.

Hyperparameter Value

BERT RoBERTa

Epoch 10 10

Batch Size 12 12

Learning Rate 3e-5 3e-5, le-5, 5e-6, le-6

Speaker Embedding Size 768 768

Layers of Turn Attention 1 1

Heads of Turn Attention 12 12

Surround Turn Window Size 1 1,2

Dropout of Turn Attention 0.1 0.1

Layers of LSTM 1,2,3 2

LSTM Hidden Size 768 768

Dropout of LSTM 0.2,04 0.2

Layers of GCN 2 2

GCN Hidden Size 768 768

Dropout of GCN 0.6 0.6

Numbers of Parameters 401M

156M ‘

Hyperparameter Search Trials 6 6

Table 8: Settings for TUCORE-GCNpgrr and
TUCORE-GCNg,5ERT. on ERC datasets.

metric relation group and the symmetric relation
group. The F'1 score difference between two
groups were 5.8, which was the smallest F'1 score
difference compared with the other models that
use BERT. In addition, compared to ROBERTa,’s
F'1 score difference between asymmetric relation
group and the symmetric relation group, TUCORE-
GCNRroERTS’S F'1 score difference was reduced
by 2.9. This suggests that TUCORE-GCN solves
the limitations of BERT and its variants’ inability
to predict the inverse relation well.
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Figure 2: The input representation of TUCORE-GCN. The final input embeddings are the sum of the token em-
beddings, the segment embeddings, the position embeddings and the speaker embeddings.

Method Asymmetric Symmetric Other
BERT (Devlin et al., 2019) 4253.2) 60.7 (1.2)  65.6 (0.8)
BERT; (Yu et al., 2020) 46.5(3.3) 61.5(0.7)  69.4(0.3)
GDPNet (Xue et al., 2021) 474 (1.9) 59.8(2.5)  68.1(0.8)
RoBERTa, 574 (3.2) 69.3(2.1)  79.6 (1.3)
TUCORE-GCNBERT 57.9(1.9) 63.7(1.9)  72.2(0.6)
TUCORE-GCNRoBERTa 62.3 (3.1) 71.3(0.8) 79.9(04)

Table 9: Performance (F'1 (0)) on asymmetric inverse relations group, symmetric inverse relations group, and
other relations group of DialogRE (Yu et al., 2020). The scores of BERT, BERT, and GDPNet are based on our

re-implementation.
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Figure 3: When the surround turn window size is 1, it is
the surrounding turn mask of TUCORE-GCN. For each
token, the surrounding turn and its own turn correspond
to 1, and the rest is —oo.
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