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Abstract
We present a model to predict fine-grained
emotions along the continuous dimensions of
valence, arousal, and dominance (VAD) with
a corpus with categorical emotion annotations.
Our model is trained by minimizing the EMD
(Earth Mover’s Distance) loss between the pre-
dicted VAD score distribution and the categor-
ical emotion distributions sorted along VAD,
and it can simultaneously classify the emo-
tion categories and predict the VAD scores
for a given sentence. We use pre-trained
RoBERTa-Large and fine-tune on three differ-
ent corpora with categorical labels and evalu-
ate on EmoBank corpus with VAD scores. We
show that our approach reaches comparable
performance to that of the state-of-the-art clas-
sifiers in categorical emotion classification and
shows significant positive correlations with the
ground truth VAD scores. Also, further train-
ing with supervision of VAD labels leads to im-
proved performance especially when dataset is
small. We also present examples of predic-
tions of appropriate emotion words that are not
part of the original annotations.

1 Introduction

In psychology literature, basic emotions are catego-
rized as happy, sad, angry and so on (Ekman, 1992;
Plutchik, 2001), however, we can feel and express
more subtle and complex emotions beyond them.
They can be systematically represented with the
Valence-Arousal-Dominance (VAD) model which
maps emotional states to 3-dimensional continu-
ous VAD space. This space allows various emo-
tions to be projected into the space with mea-
surable distances from one another (Russell and
Mehrabian, 1977), covering a wider range of sub-
tle emotions compared to the categorical mod-
els with a finite set of basic emotions. Captur-
ing such fine-grained emotions with dimensional
VAD models could benefit clinical natural language
processing (NLP) (Desmet and Hoste, 2013; Sa-
hana and Girish, 2015), emotion regulation such as

psychotherapy (Torre and Lieberman, 2018). For
example, analyzing the client’s utterance and ac-
knowledging the negative emotion as ‘neglected’
rather than ‘sad’, which is known as ‘affect label-
ing’, would reduce negative physiological, behav-
ioral, and psychological responses resulting from
that emotional state.

Thus developing a dimensional emotion detec-
tion model would be very useful, but one problem
is a lack of required annotated resources. There
is a relatively small sentence-level corpus with
full VAD annotations (Buechel and Hahn, 2017),
and a corpus annotated with V and A dimensions
(Preoţiuc-Pietro et al., 2016a; Yu et al., 2016a), and
only with V (Lykousas et al., 2019). We could
build additional resources by labeling VAD scores
by Best-Worst Scaling (Kiritchenko and Moham-
mad, 2017). Instead, we approach this problem
with a novel and more efficient method to predict
VAD scores from existing corpora annotated with
categorical emotions (Scherer and Wallbott, 1994;
Alm et al., 2005; Aman and Szpakowicz, 2007;
Mohammad, 2012; Sintsovaa and Musata, 2013;
Li et al., 2017; Schuff et al., 2017; Shahraki and
Zaiane, 2017; Mohammad et al., 2018).

In this paper, we propose a framework to learn
the VAD scores from sentences with categorical
emotion labels by leveraging the VAD scores of
the label words obtained from the NRC-VAD lexi-
con (Mohammad, 2018). We demonstrate our ap-
proach by fine-tuning a pre-trained language model
RoBERTa (Liu et al., 2019). Our model learns con-
ditional VAD distributions through supervision of
categorical labels and uses them to compute VAD
scores as well as to predict the emotion labels for a
given sentence. Our contributions are as follows.
• We propose a framework which enables learn-

ing to predict VAD scores as well as categorical
emotions from a sentence only with categorical
emotion labels.

• Our model shows significant positive correlations
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Figure 1: Overview of our approach. (a) Our model predicts VAD distributions of input sentence through super-
vised training with categorical emotion labels. (b) Categorical labels are sorted in terms of VAD scores, to be
served as (sparse) label VAD distributions during training. After training, (c) categorical emotion class is predicted
by picking one having maximum probability of the product of the three distributions. (d) Continuous VAD scores
are predicted by computing expectation of each distribution.

to corresponding ground truth VAD scores.
• Our model outperforms state-of-the-art dimen-

sional emotion detection models by fine-tuning
with supervision of VAD scores when the train-
ing dataset size is limited.

2 Approach

Overview. We predict VAD scores for a given text
from a model trained on a dataset with categori-
cal emotion annotations. The key idea is to train
VAD prediction model by using categorical emo-
tion labels. It is possible because we find that those
categorical labels can be mapped to word-level
VAD scores by using NRC-VAD lexicon (Moham-
mad, 2018). Thus we conceptualize categorical
emotion as a point in the VAD space. Then we
sort the labels by each VAD dimension to obtain
(sparse) ground truth conditional VAD distributions
(Fig. 1a, 1b). Then we train a model to predict the
VAD distributions, rather than an emotion category,
by minimizing the distance between the predicted
and the ground truth distributions. This allows the
model to predict the VAD scores (expectations of
predicted distributions, Fig. 1d) and pick an emo-
tion label within a given set of categorical labels
(argmax of emotion labels, Fig. 1c).

Model Architecture (Fig 1a). Formally, an emo-
tion detection model is P (e|X) where e is an emo-
tion drawn from a set of pre-defined categorical
emotions e ∈ E = {joy, anger, sadness, ...},
and X = {x1, x2, ..., xn} is a sequence of sym-
bols xi representing the input text. Usually e is a
one-hot vector in emotion classification.

Unlike classification models directly learning
P (e|X), we learn each distribution of V, A, and D
from a pair of input text X and categorical labels.
To this end, we map the categorical emotion labels
to the three-dimensional VAD space, e = (v, a, d),
using the NRC-VAD Lexicon. Each v, a and, d
ranges from 0 to 1. For example, an emotion label
"joy" is mapped to (0.980, 0.824, 0.794) and "sad"
to (0.225, 0.333, 0.149) (Mohammad, 2018). Using
es, our model predicts the following distribution:

P (e|X) = P (v, a, d|X) (1)

Furthermore, since the VAD dimensions are nearly
independent (Russell and Mehrabian, 1977), we
simply assume mutual independence:

P (v, a, d|X) = P (v|X)P (a|X)P (d|X). (2)

For each decomposed conditional distribution, we
can use any type of trainable function with suf-
ficient complexity to capture the linguistic pat-
terns from the given input. As a demonstration,
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we use pre-trained bidirectional language model
RoBERTa (Liu et al., 2019) which shows high per-
formances in natural language understanding tasks
if fine-tuned over task-specific datasets. We stack a
softmax or sigmoid activation layer over the hidden
state corresponding to [CLS] token in the model
for each conditional distribution.
Model Training (Fig 1b). To train our model,
we need to obtain target conditionals for each
P (v|X), P (a|X), P (d|X) from categorical emo-
tion labels. We simply sort categorical emotions
in E by V, A, D scores respectively, based on
the mapped VAD coordinates. For example, if
we have four emotions in the categorical labels
E = {joy, sad, happy, anger} and they have cor-
responding valence (V) scores (0.980, 0.225, 1.000,
0.167) in NRC-VAD (Mohammad, 2018), then we
sort the labels in the order (anger, sad, joy, happy)
and the corresponding one-hot labels to obtain the
target conditional P (v|X). In other words, by re-
arranging the label positions in ascending order of
valence scores, sorted one-hot labels can be treated
as a proxy of target conditionals. Similarly, we sort
the labels for the A, D dimensions to obtain the
other conditionals. They will be sparse because we
only have |E| points for each dimension.

Next, we minimize the distances between the
true and predicted P (·|X)s. Since we sorted the
labels, there is ordering among the classes. This
should be taken into account during optimization,
so we minimize the squared Earth Mover’s Dis-
tance (EMD) loss (Hou et al., 2017) between them
to consider the order of labels as follows:

EMD(p, p̂) =

C∑
c=1

(CDFi(pc)− CDFi(p̂c))
2 (3)

where p is the true conditional, p̂ is the predicted
conditional and c is class index. Formally, EMD
loss is the squared difference between the cumula-
tive distribution function (CDF) p and the corre-
sponding p̂. The loss penalizes the mispredictions
according to a distance matrix that quantifies the
dissimilarities between classes. For instance, if a
ground truth is ‘happy’, the loss give more penalty
to a prediction ‘sad’ compared to ‘joy’ because
‘sad’ is way more far from ‘happy’ than ‘joy’ on
the V dimension. Simple cross-entropy loss cannot
reflect this distance between classes.

Note that Eq. 3 has an assumption that the prob-
ability mass of p and p̂ should be the same. In
the single label case, i.e., if the categorical label

can appear only once for each text, it could be eas-
ilty satisfied when using softmax for p̂. However,
in multi-label, this assumption is violated because
generally sigmoid is used to represent positive prob-
abilities for each class independently. Thus we
slightly change Eq. 3 to satisfy the assumption,
defining interclass EMD loss:

EMDinter(p, p̂) =
C∑

c=1

(vc − vc−1)(CDF (〈pc〉)− CDF (〈p̂c〉))2

(4)

where 〈pc〉 and 〈p̂c〉 are corresponding probabili-
ties for class c in normalized p and p̂. In addition,
as shown in Fig. 1d, the distances between classes
are usually not the same, so we give larger weights
if they are far from each other through (vc − vc−1).
vc is one of the corresponding V, A, D values for
class c, and vc = 0 if c = 0. We also introduce
intraclass EMD loss:

EMDintra(pc, p̂c) =

2∑
i=1

(CDF (pci)− CDF (p̂ci))
2

(5)

where we assume pc could be divided into two
classes, [pc, 1−pc], which represent the probability
of belonging to class c : (pc) and not belonging to
class c : (1− pc). Finally we sum two EMD losses
for multi-labeled case as follows:

EMD(p, p̂) = EMDinter +
1

C

C∑
c=1

EMDintra (6)

Finally, we minimize the sum of three squared
EMD losses between target and predicted distribu-
tions for each of VAD dimensions:

l = EMD(v, v̂) + EMD(a, â) + EMD(d, d̂) (7)

where v, a, d denote target and v̂, â, d̂ predicted
conditional distributions.
Predicting Continuous VAD Scores (Fig. 1d).
We can further compute the expectations of each
predicted conditional distributions of V, A, D di-
mension to predict the continuous VAD scores.

vX = E(v̂) =

C∑
i=1

viP (v̂i|X), aX = E(â) =

C∑
i=1

aiP (âi|X),

dX = E(d̂) =

C∑
i=1

diP (d̂i|X)

(8)

Once again, we use the VAD scores in (Moham-
mad, 2018) for each dimension when computing
the expectations. This allows us to predict continu-
ous VAD scores from the model which is trained
over categorical emotion annotations.
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Predicting Categorical Emotion Labels (Fig.
1c). We can further recover categorical emotions
from the predicted distributions. We pick one emo-
tion label from a given set E as in the conventional
emotion classifiers. By computing the product of
predicted p(v|X), p(a|X), p(d|X), we obtain pre-
dicted p(v, a, d|X) assuming conditional indepen-
dence. Then we pick an emotion label e ∈ E as
follows:

argmax
{v,a,d}=e∈E

P (v, a, d|X) (9)

Since we only have |E| given emotion labels, we
compare the joint probabilities of (v, a, d) = e ∈
E and pick one emotion label having the maxi-
mum probability among labels (single-label case,
Eq. 9), or multiple labels with probability over a
certain threshold (multi-label case). The threshold
is a hyperparameter of the model, set to 0.51/3, a
geometric mean of the three distributions.

3 Experiments

We mainly focus on demonstrating our approach
can effectively predict continuous emotional dimen-
sions only with categorical emotions throughout
experiments.

3.1 Dataset
We use four existing datasets consisting of text
and corresponding emotion annotations. Three of
them have categorical emotion labels, and the last
is annotated with VAD scores.
SemEval 2018 E-c (SemEval). A multi-labeled
categorical emotion corpus contains 10,983 tweets
and corresponding labels for presence or absence of
11 emotions (Mohammad et al., 2018). We abbre-
viate this hereafter as SemEval. We use pre-splits
of train, valid, test set of the dataset.
ISEAR. A single-labeled categorical emotion an-
notated corpus contains 7,666 sentences. A label
can have only one emotion among 7 categorical
emotions (Scherer and Wallbott, 1994). We split
the dataset in a stratified fashion in terms of the
labels. The train, valid, test set is split by the ratios
(0.7:0.15:0.15).
GoEmotions. A multi-labeled categorical dataset
consisted of of 58,009 reddit comments with 28
emotion labels including neutral class (Demszky
et al., 2020). However, the original dataset with
28 emotion labels has large disparity in terms of
emotion frequencies (admiration is 30 times more
frequent that grief ). To reduce the side-effects from
this property, we choose the ‘Ekman’ option of the

dataset provided by the authors which consists of
7 emotion labels including neutral class. We use
pre-splits of train, valid, test set of the dataset.
EmoBank. Sentences paired with continuous VAD
scores as labels. This corpus contains 10,062 sen-
tences collected across 6 domains and 2 perspec-
tives. Each sentence has three scores represent-
ing VAD in the range of 1 to 5. Unless otherwise
noted, we use the weighted average of VAD scores
as ground truth scores, which is recommended by
EmoBank authors. We use pre-splits of train, valid,
test set of the dataset (Buechel and Hahn, 2017).

3.2 Dimensional Emotion (VAD) Prediction

We investigate VAD score prediction performance
of our approach and compare them to the state-of-
the-art models. Since training objectives of models
vary, we use Pearson’s correlation coefficient as the
evaluation metric.

3.2.1 Zero-shot VAD Prediction
Our Models. We compute the VAD score predic-
tions using Eq. 8 with our model trained on three
datasets with categorical emotion annotations (Se-
mEval, ISEAR, GoEmotions). We call these results
as zero-shot prediction performances because they
are not trained over the EmoBank train-set, only
using the EmoBank test-set for evaluation. This
could be interpreted as how much a model can
generalize the categorical emotions into the con-
tinuous VAD space using only |E| fixed points in
the space. These are denoted as (Ours, d) where
d ∈ {SemEval, ISEAR, GE} in Table. 1. We high-
light these results to evaluate our main idea.

3.2.2 VAD Prediction with Supervision
We continuously train the our zero-shot models
with the train-set of the EmoBank, and compare
their performance with other methods which relies
on the direct supervision from them. This allow us
to compare the zero-shot prediction performances
against them, and how much the zero-shot predic-
tion model could be improved if VAD annotations
are available. We also compare data scarce scenar-
ios, only using a part of Emobank training-set.
Our Models. We fine-tune our zero-shot models
once again on the Emobank train-set. In the first
stage, we train zero-shot models by combining the
EMD loss with MLM loss to prevent catastrophic
forgetting (Chronopoulou et al., 2019). In the sec-
ond stage, we add another linear layer and ReLU
activations on top of the model for each VAD di-
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mensions. All of the parameters are fine-tuned by
minimizing the mean squared error loss (MSE).
During fine-tuning, parameters are freezed for 5
epochs except the added linear layer and then all
parameters are unfreezed. Through this model, we
investigate the effectiveness of our approach as
a parameter initialization strategy of VAD regres-
sion model where the VAD annotations are avail-
able. These models are denoted as (Ours, EB← d)
where d ∈ {SemEval, ISEAR, GE} in Table. 1.
AAN. Adversarial Attention Network for dimen-
sional emotion regression which learns to discrim-
inate VAD dimension scores (Zhu et al., 2019).
Pearson correlations of predicted and ground truth
of VAD scores in EmoBank are reported. Since the
scores are reported by 2 perspectives and 6 domains
respectively, we use the highest VAD correlations
among perspective and domains.
Ensemble. Multi-task ensemble neural networks
which learns to predict VAD scores, sentiment, and
their intensity simultaneously (Akhtar et al., 2019).
SRV-SLSTM. Predicting VAD scores through vari-
ational autoencoders trained by semi-supervised
learning, which shows state-of-the-art performance
on the VAD score prediction task (Wu et al., 2019).
The model shows highest performance when using
40% of labeled Emobank data, so we compare our
model’s performances to scores of that setting.
RoBERTa-Large (Regression). We add simple
yet effective baseline for fair comparison. We
add a linear layer with Relu on top of pre-trained
RoBERTa (Liu et al., 2019) for training on a entire
EmoBank training-set. The models are optimized
by minimizing the mean squared error loss (MSE).

3.3 Categorical Emotion Prediction

We examine classification performances of our ap-
proach and compare them to the state-of-the-art
emotion classification models. We use accuracy
and macro/micro F1 scores as evaluation metrics.
Our Models. We fine-tune RoBERTa with our
EMD objective and predict the emotion category
as shown in Fig 1c. For a multi-labeled dataset
(SemEval, GoEmotions), we minimize Eq. 7 with
Eq. 6. For a single-labeled dataset (ISEAR), we
fine-tune RoBERTa by minimizing Eq. 7 with
Eq. 3 for each VAD dimension. These models
are denoted as (d, M) where d ∈ {SemEval,
ISEAR, GoEmotions} and M ∈ {state-of-the-art,
RoBERTa, Ours} in Table. 2.
MT-CNN. A convolutional neural network for text

classification trained by multi-task learning (Zhang
et al., 2018). The model jointly learns classification
labels and emotion distributions of a given text.
The model reaches state-of-the-art classification
accuracy and F1 score on ISEAR.
NTUA-SLP. A classifier using deep self-attention
layers over Bi-LSTM hidden states. The models is
pre-trained on general tweets and ‘SemEval 2017
task 4A’, then fine-tuned over all ‘SemEval 2018
subtasks’ (Baziotis et al., 2018). The model took
first place in multi-labeled emotion classification
task on SemEval.
Seq2Emo A sequence-to-sequence model for
multi-label classification task. (Huang et al., 2019).
The model additionally leverages correlations be-
tween emotion labels during classification.
RoBERTa-Large (Classification). As a simple
baseline, we add a linear layer with sigmoid activa-
tion on RoBERTa (Liu et al., 2019) for training on
a multi-labeled dataset (SemEval, GoEmotions)
or softmax activation for single-labeled dataset
(ISEAR). These models are optimized by minimiz-
ing the cross-entropy loss.

3.4 Experimental Details

In all experiments, we use PyTorch version of
RoBERTa-Large from Huggingface Transformers
(Wolf et al., 2019). We set the learning rate to 3e-5,
batch size to 32. Fine-tuning parameters is stopped
when the validation loss and and evaluation met-
rics are converged. We use 1 RTX 6000 GPU for
optimization. More details are in Appendix. We
release our implementation in GitHub. 1

4 Results

Zero-Shot VAD Prediction. The results are
shown in Table 1. When our model is trained on
SemEval and tested on Emobank, the predicted
VAD scores show significant positive Pearson’s
correlation coefficients with target VAD scores
in EmoBank. The correlation in valence (V)
shows the highest score among the dimensions
(r=.715, p<.001), followed by arousal (A) (r=.319,
p<.001), and dominance (D) (r=.308, p<.001).
For our model trained on ISEAR dataset, the scores
also show significant positive Pearson’s r. The
correlation in V dimension is highest (r=.611,
p<.001), followed by D (r=.242, p<.001), and
A (r=.083, p<.001). For GoEmotions dataset, the

1https://github.com/SungjoonPark/
EmotionDetection

https://github.com/SungjoonPark/EmotionDetection
https://github.com/SungjoonPark/EmotionDetection
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Dataset EmoBank
(Buechel and Hahn, 2017)

Task Regression

Model Scheme V (r) A (r) D (r)

Ours, SemEval Zero-shot .715 .319 .308
Ours, ISEAR Zero-shot .611 .083 .242
Ours, GE Zero-shot .630 .277 .311

AAN Supervised .424 .352 .265
Ensemble Supervised .635 .375 .277
SRV-SLSTM Semi-super. .620 .508 .333

RoBERTa-Large Supervised .829 .569 .513
Ours, EB←SemEval Supervised .838 .570 .518
Ours, EB←ISEAR Supervised .836 .568 .536
Ours, EB←GE Supervised .835 .573 .529

Table 1: Performance of VAD score prediction. With
fine-tuning pre-trained RoBERTa-Large, we show sig-
nificant positive correlations with VAD scores using
only the categorical emotion annotations. If those mod-
els are continuously fine-tuned on EmoBank, it outper-
forms all SOTA VAD regression models. Validation set
results are in Appendix.

highest correlation is also V dimension (r=.630,
p<.001), followed by dominance (D) (r=.311,
p<.001), and arousal (A) (r=.277, p<.001). We
observe prediction performances of VAD scores
from text usually are the best in V dimension and
A, D follows. These tendencies are observed in our
experiments as well as in other baselines (AAN,
Ensemble, SRV-SLSTM).

The average of correlations between dataset is in
the order of SemEval (.448), GoEmotions (.406),
and ISEAR (.312) in descending order. The main
reason SemEval has best performance is because
emotion labels in SemEval have more information
than that of ISEAR or GoEmotions. First, SemEval
has 11 categorical emotion annotations whereas
ISEAR and GoEmotions have 7 labels each. More
labels lead to less sparse VAD target distributions,
thus our model can distinguish the extent of VAD
more easily where there are more labels. Second,
SemEval and GoEmotions can have multiple emo-
tion labels for every sentence, but ISEAR has only
one label. Apparently, these multiple emotion la-
bels makes the possible range of the expected VAD
scores much wider than that of single emotion la-
bels. If a sentence always should have a single
label, then the predicted VAD distribution must
sum up to one. Having multiple labels enables the
distributions to sum to a larger number, which leads
to a wider range of the expected values that help the
model distinguish the degree of VAD dimensions
for a given sentence.

Figure 2: Average VAD prediction score when using
a part of EmoBank training data. Our model performs
better compared to RoBERTa when less data is avail-
able. The error bars mark the region within 1 standard
deviation and the lines indicate the average of five runs.

Note that we observe the correlation in A di-
mension of ISEAR is low. We see that the standard
deviation of arousal scores of ISEAR labels ‘anger’,
‘disgust’, ‘fear’, ‘sadness’, ‘shame’, ‘joy’, ’guilt’
is lower (.191) than other dimensions, (V: .313, D:
.235) and actually it becomes much lower when
only one label ’sadness’, is removed, dropping to
(.105). This makes model difficult to differentiate
labels in terms of the degree of arousal, leading to
lower correlation for the A dimension.
VAD prediction with Supervision. Three compar-
ison models (AAN, Ensemble, SRV-SLTSTM) in
Table 1 are trained by supervision of VAD scores.
Among the comparison models, Ensemble shows
the highest correlation on V dimension (.635), SRV-
SLSTM reaches to the highest correlation on A
(.508) and D (.333) dimensions. We emphasize
that our model trained on SemEval shows even
better correlation in the V dimension (.715) with-
out any supervision of VAD scores. Correlation
for A (.319) is next which is slightly lower than
AAN and Ensemble, and correlation for D (.308)
is comparable to SRV-SLTSTM.

Furthermore, we observe that if we continue
training our zero-shot models with supervision
of VAD labels, our model outperforms all of the
state-of-the-art models with a large margin. For
model trained on SemEval, the VAD fine-tuned
model shows a significant correlation in V (r=.838,
p<.001), A (r=.570, p<.001) and D (r=.518,
p<.001) dimensions. For ISEAR, the fine-tuned
model shows correlation of V (r=.836, p<.001),
A (r=.568, p<.001) and D (r=.536, p<.001) di-
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Dataset (Model) Macro
F1

Micro
F1 Acc.

ISEAR (MT-CNN) - .668 -
ISEAR (RoBERTa) .754 .755 -
ISEAR (Ours) .752 .753 -

SemEval (NTUA-SLP) .528 .701 .588
SemEval (Seq2Emo) - .709 .592
SemEval (RoBERTa-Large) .574 .725 .607
SemEval (Ours) .566 .725 .607

GoEmotions (Demszky et al., 2020) .640 - -
GoEmotions (RoBERTa) .618 .691 .659
GoEmotions (Ours) .611 .686 .657

Table 2: Performance of categorical emotion classifica-
tion. With fine-tuning pre-trained RoBERTa, we show
comparable performance to SOTA models in classifica-
tion. Validation set results are in Appendix.

mensions. For GoEmotions, the fine-tuned model
shows correlation of V (r=.835, p<.001), A
(r=.573, p<.001) and D (r=.529, p<.001) dimen-
sions. The average of supervised result between
dataset is in the order of ISEAR (.647), GoEmo-
tions (.646) and SemEval (.642) in descending or-
der. For model trained from ISEAR, these are
(+.215, +.065, +.196) improvement of the corre-
lation from the state-of-the-art models with super-
vision for VAD dimensions.

In fact, the performance of our approach are
comparable to that of RoBERTa-large (Regression)
and it shows correlations in V (r=.829, p<.001),
A (r=.569, p<.001) and D (r=.513, p<.001) di-
mensions. We see that this is because the size
of Emobank training set is sufficiently large, so
we further conduct experiment assuming the train-
ing data is small. Figure 2 shows results on such
settings, using only {5, 10, 20, 30, 40, 50}% of
the training data. For all models initialized to
our fine-tuned model on SemEval, ISEAR, Ekman,
our method shows better performance compared to
that of RoBERTa-large (Regression) when using of
training data is smaller.
Categorical Emotion Prediction. Next, classifi-
cation performances of our model and that of com-
parison models are reported in Table. 2. Note that
our model outperforms all baseline models for emo-
tion classification except RoBERTa-Large, which
is comparable to our model.

5 Ablation Study

We further conduct ablation study to investigate our
model’s VAD prediction performances. Since we
use pre-trained RoBERTa and fine-tune them with
different datasets, the effect of model architecture,

Model V (r) A (r) D (r) Avg.

Zero-Shot
1. RoBERTa (CE, SE) .685 .315 .278 .426
2. RoBERTa (Ours, SE) .715 .319 .308 .448

Supervised
3. RoBERTa (Random, EB) .381 .386 .253 .340
4. BERT (Pretrained, EB) .794 .537 .514 .615
5. RoBERTa (Pretrained, EB) .829 .569 .513 .637
6. Ours, SE-EB (RoBERTa) .838 .570 .518 .642

Table 3: Ablation study results. Given that the model
architecture is the same (RoBERTa-Large), the archi-
tecture and its pre-trained knowledge are effective for
VAD regression. Overall, initialization with our model
trained on categorical emotions (SE, SemEval) and
then fine-tuning on VAD (EB, EmoBank) helps im-
prove performance. Validation set results are in Ap-
pendix.

pre-training and fine-tuning should be decomposed
to understand the source of improvements. We
show the result for SemEval dataset because it gave
the best performance for zero-shot score prediction.
Validation set results are shown in Appendix.

In Table 3, we present six models for ablation
study. Model 1 is RoBERTa trained on SemEval
with our framework except EMD loss replaced with
cross-entropy which does not consider the order of
classes in terms of VAD. Compared to Model 2,
RoBERTa trained on SemEval with EMD loss, our
model shows better correlations in overall. (+.022)

Model 3 is fine-tuned on EmoBank without pre-
trained weights of RoBERTa, showing highly un-
derperforming result compared to Model 5, which
take advantage of pre-trained weights. Still the per-
formance of Model 3 is comparable to that of AAN
(Zhu et al., 2019), it could be highly improved with
using pre-trained knowledge obtained from masked
language modeling task. (+.302) More Interest-
ingly, Model 4 uses BERT (Devlin et al., 2018)
pre-trained weights, showing slightly lower perfor-
mance than Model 5. This indicates using better
language models also improves the performance.
(+.027) Model 6 shows comparable performance
compared to Model 5 when using full train-set.

6 Qualitative Examples

In Table 4, we show examples predicted from our
model trained on SemEval. The table presents an-
notated tweets from SemEval test set, correspond-
ing predicted categorical labels, and top 5 nearest
neighbor emotional words with respect to the pre-
dicted VAD scores. For these three tweets, our
model correctly predicted the categorical emotion
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Tweet Categorical Label Nearest Neighbors from VAD scores

Gooood morning it is such a #blessing to see another day
all that Read this I hope have a great morning joy, optimism reaffirm, shimmer,

brighten, affections, mythological

Not only was and responsible for the
unnecessary outrage of this movie,
but made the director look bad

anger, disgust refusal, liar, falsified,
disrespect, unsavory

Mentally suffered #iwanttodie #worthless
#lifewithoutcolor #pain #suicidal

disgust, pessimism,
sadness

orphaned, wasting, decomposed,
hopelessness, dead

Table 4: Qualitative examples of predictions from our model trained on SemEval. Examples Tweets are from test
set of SemEval. We present predicted categorical emotion labels, and corresponding top 5 nearest neighbor words
in NRC-VAD-Lexicons with respect to the model predictions of VAD scores.

labels. We elaborate how we find the nearest neigh-
bor words from the VAD scores.

Given our model’s predicted VAD scores, we
find the nearest neighbor words for those scores
by using NRC-VAD-Lexicons (Mohammad, 2018).
We first rescale our model’s predicted VAD scores
from 0 to 1 for each VAD dimension since the
NRC-VAD lexicons have values from 0 to 1. To do
this, we first predict VAD scores for every sentence
in SemEval test set and then we rescale the scores
by following: (x−min(x))/(max(x)−min(x))
to make all dimension scores range from 0 to 1.

Next, we find the nearest neighbor words by us-
ing the rescaled VAD values. Euclidean distances
between the values and all words in NRC-VAD-
Lexicons are computed, and we pick the top five
nearest words among them with the smallest dis-
tances. We present the words in the right column of
Table 4. Note that these words are extracted from
NRC-VAD lexicons so some words are not emo-
tional because it contains frequently used 20,000
English words. However, these words help us un-
derstand VAD scores intuitively, and they could be
regarded as automatically generated emotion an-
notations for a given sentence, which are not seen
during training.

7 Related Work

Categorical model of emotion assumes that the cat-
egories represented by emotion words compose
the building blocks of human emotion. Support-
ing evidence includes six basic emotions (Ekman,
1992), and findings of universally adaptive emo-
tions (Plutchik, 1980). An alternative to under-
stand how people conceptualize emotional feelings
is the dimensional model of emotion. Osgood et al.
(1957) suggested the initial idea of emotion coordi-
nates. Russell and Mehrabian (1977) further con-
structed Pleasure or Valence-Arousal-Dominance
(PAD, VAD) model, a semantic scale model to rate

emotional state, representing an emotional state
as a pair of orthogonal coordinates on VAD di-
mensions. Absolute values of the intercorrelations
among the three scales show considerable inde-
pendence among the scales (Russell and Mehra-
bian, 1977), categorical emotion states can be rep-
resented in 3D (VAD) emotion space.

Based on emotional dimensions, word-level
VAD annotation of English words has been created
(Bradley and Lang, 1999; Warriner et al., 2013;
Mohammad, 2018). Also, there are few sentence-
level VA or VAD annotated corpora (Buechel and
Hahn, 2017; Preoţiuc-Pietro et al., 2016b; Yu et al.,
2016b). By using these resources, recent work tried
to predict VAD scores from sentences based on
variational autoencoders (Wu et al., 2019), adver-
sarial learning (Zhu et al., 2019), ensemble learn-
ing (Akhtar et al., 2019). However, sentence-level
VAD annotated corpus is scarce, we use more com-
mon resource which is sentences annotated with
basic categorical emotions for VAD score predic-
tion (Scherer and Wallbott, 1994; Alm et al., 2005;
Aman and Szpakowicz, 2007; Mohammad, 2012;
Sintsovaa and Musata, 2013; Li et al., 2017; Schuff
et al., 2017; Shahraki and Zaiane, 2017; Moham-
mad et al., 2018; Demszky et al., 2020). These
datasets are commonly used for emotion classifi-
cation, we use them to predict VAD scores from
sentences with word-level VAD scores of categori-
cal emotion labels.

Recently, a lot of dataset related to emotion
has been released. Especially, there are dataset
in healthcare domain (Sosea and Caragea, 2020),
relation between emoji and emotion (Shoeb and
de Melo, 2020), and emotional text from social me-
dia (Ding et al., 2020). All of these are cateogrical
annotations which again shows the lack of dimen-
sional annotations thus the need for our model to
capture fine-grained emotion detection. Also, our
work could be extended to a large domain: it could
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help better performance of multimodal emotion
detection (Zhang et al., 2020), emotion in conver-
sation (Ishiwatari et al., 2020), and emotion change
in a paragraph (Brahman and Chaturvedi, 2020).

There are multiple emotion datasets annotated
with various types of label sets. To train model
across the various shaped emotion dataset, sev-
eral existing studies aggregate various format of
emotion dataset into a common annotation schema,
and show better performance using unified dataset
(Bostan and Klinger, 2018; Belainine et al., 2020).
However, still the labels are mapped to other pre-
defined emotions and the datasets are limited to
categorical labels. In (Buechel and Hahn, 2018),
they convert categorical emotions into VAD repre-
sentation using simple Feed-Forward Neural Net-
works. They train model with dataset labeled with
both emotion categories and VAD. However, in our
paper, we convert categorical emotion knowledge
to VAD without any labeled pairs.

8 Discussion and Conclusions

We propose learning to predict VAD scores from
the text with categorical emotion annotations. Our
framework predicts VAD score distributions by
minimizing the EMD distances between predicted
VAD distributions and sorted label distributions
as a proxy of target VAD distributions. Even our
model assumes VAD emotion space and order be-
tween emotions, our model shows significant pre-
diction performances in real-world datasets.
Robustness. Our framework could be applied to
multimodal datasets. If we apply our framework
to IEMOCAP (Busso et al., 2008), the zero-shot
VAD predictions are significantly correlated with
ground truths (V: 0.396, A: 0.241, D: 0.197) as well.
However, the performance is rather low since our
model does not leverage other modalities such as
audio or videos. Once our framework is extended
to integrate such information through image/speech
encoders, performance would be improved. We use
NRC-VAD to estimate distance between emotions
because it is constructed very carefully to locate
words in VAD space. If we use other word-level
VAD resources such as ANEW (Redondo et al.,
2007), we observe positive results as well (V: 0.682,
A: 0.270, D: 0.296).
Ethical Considerations. A model trained by our
approach could be used to understand and regulate
one’s own emotional states and to save people from
suicide. In addition, social bots capable of emo-

tion recognition could help people in various ways.
However, a model trained by our approach could
be misused to detect or control others’ emotional
states against their will. It may reveal private infor-
mation about mental or physical health or private
feelings an individual does not wish to share. This
concern is even more serious when we consider
that machine learning models can be cost-effective
and thus used at scale for pervasive monitoring of
emotions (Greene, 2020). An example of a harmful
use of the technology is manipulating the seman-
tic emotive content of user news feeds which can
affect the choices of both individuals and groups
on the platform to engage and interact (Stark and
Hoey, 2020). From a different perspective, prob-
lems might occur from the inaccurate results of the
model. Mispredictions of the models could result
in harmful outcomes even in systems designed to
be helpful, and this is a serious problem in many
languages with relatively low resources (i.e., lan-
guages other than English and a few others that
are extensively studied within NLP), resulting in
inequity with respect to the benefits gained by this
technology. Basically, resources to train emotion
detection models are scarce in most languages, and
their quality would degrade if translated to other
languages from English since cultural nuances to
defining emotions vary. Therefore, one should fol-
low guidelines for the ethical use of emotional AI
technologies, which present a checklist for anyone
engaged with data about human emotion. (Stark
and Hoey, 2020) For example, McStay and Pavlis-
cak’s guidelines (McStay and Pavliscak, 2019) in-
clude a number of salutary suggestions for taking
action as a practitioner.

We hope our framework will be helpful in
building an annotated sentence-level VAD emo-
tion dataset by providing machine-annotated VAD
scores as a start, or use it just as VAD score predic-
tion model. Most of the languages except English
would not have such corpus with VAD annotations,
so our model will be helpful to build resources us-
ing multilingual corpora with categorical emotion
labels (Öhman et al., 2018).
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A Appendix

Model V (r) A (r) D (r) Avg.

Zero-Shot
1. RoBERTa (CE, SE) .682 .310 .249 .414
2. RoBERTa (Ours, SE) .710 .327 .282 .440

Supervised
3. RoBERTa (Random, EB) .400 .411 .184 .332
4. BERT (Pretrained, EB) .806 .596 .473 .625
5. RoBERTa (Pretrained, EB) .839 .605 .512 .652
6. RoBERTa (Ours, EB-SE) .834 .594 .517 .648

Table 5: Validation Set performance of models in Abla-
tion study.

A.1 Hyperparameter Searching

We follows default setting of models except max-
imum sequence length of Ours, (EB←SemEval,
ISEAR, GoEmotions with RoBERTa-Large).
The default settings are as follows: learning rate
learning rate 3e-05, maximum sequence length
256, total update 10000, update frequency 4,
warmup proportion 0.1, BertAdam for optimizer,
and dropout 0.1. For supervised setting, the learn-
ing rate for 5 epochs when freezing the parameters
is 3e-03 and learning rate after freezing is 5e-06.
The warmup proportion during this process is 0.001.
For fine-tuning experiment with 5% of training set
size, warmup proportion for RoBERTa baseline is
0.01 and number of epochs for freezing is 10 for
ISEAR in the purpose of stable fine-tuning process
and faster convergence.

A.2 Dataset Details

In our experiment, we use four types of emotion
datasets: Emobank 2, SemEval: 3, ISEAR 4, and
GoEmotions 5. We include all the original datasets
and data splitting is done as follows. We use the
train, validation, test split of EmoBank, SemEval
and GoEmotions published from the authors. In
case of ISEAR, we split 7:1.5:1.5 with random seed
42 using train_test_split function in sklearn library,
in stratified fashion to retain ratio between classes.

A.3 Experimental Details

In all experiment, we specifically use RoBERTa-
Large 6 and BERT-Large trained on cased English

2https://github.com/JULIELab/EmoBank
3https://competitions.codalab.org/competitions/17751#learn_the_details-

datasets
4http://www.affective-sciences.org/index.php/download_file/view/395/296/
5https://github.com/google-research/google-

research/tree/master/goemotions
6https://huggingface.co/transformers/model_doc/roberta.html

text using Whole-Word-Masking 7. The details of
model structure are described in model library 8.
RoBERTa-Large contains 355M trainable param-
eters and BERT-Large has 340M. The batch size
is set to 32, we stop fine-tuning all of the layers
when the validation loss and metrics are converged.
We use 1 GPU (RTX 6000 Ti), and take less than 5
hours for each runs. All evaluation measures in test
and validation split results are average of 5 runs.

7https://huggingface.co/transformers/model_doc/bert.html
8https://huggingface.co/transformers/pretrained_models.html
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Dataset EmoBank SemEval 2018 E-c ISEAR GoEmotions (GE)

Task Regression Classification
(|E|=11)

Classification
(|E|=7)

Classification
(|E|=7)

Model Scheme V (r) A (r) D (r) Macro
F1

Micro
F1 Acc. Macro

F1
Micro

F1
Macro

F1
Micro

F1 Acc.

RoBERTa-Large (Classification) - - - - .601 .731 .619 .735 .734 .623 .697 .665

Ours, SemEval (RoBERTa) Zero-shot .710 .327 .282 .585 .727 .614 - - - - -
Ours, ISEAR (RoBERTa) Zero-shot .595 .027 .218 - - - .735 .735 - - -
Ours, GE (RoBERTa) Zero-shot .602 .308 .271 - - - - - .604 .690 .660

Ours, EB←SemEval (RoBERTa) Supervised .834 .594 .517 - - - - - - - -
Ours, EB←ISEAR (RoBERTa) Supervised .836 .601 .512 - - - - - - - -
Ours, EB←GE (RoBERTa) Supervised .842 .594 .512 - - - - - - - -

Table 6: Validation Set Performance of VAD score prediction and categorical emotion class prediction.


