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Abstract

Deep reinforcement learning has shown great
potential in training dialogue policies. How-
ever, its favorable performance comes at the
cost of many rounds of interaction. Most of the
existing dialogue policy methods rely on a sin-
gle learning system, while the human brain has
two specialized learning and memory systems,
supporting to find good solutions without re-
quiring copious examples. Inspired by the hu-
man brain, this paper proposes a novel com-
plementary policy learning (CPL) framework,
which exploits the complementary advantages
of the episodic memory (EM) policy and the
deep Q-network (DQN) policy to achieve fast
and effective dialogue policy learning. In or-
der to coordinate between the two policies,
we proposed a confidence controller to con-
trol the complementary time according to their
relative efficacy at different stages. Further-
more, memory connectivity and time prun-
ing are proposed to guarantee the flexible and
adaptive generalization of the EM policy in di-
alog tasks. Experimental results on three di-
alogue datasets show that our method signif-
icantly outperforms existing methods relying
on a single learning system.

1 Introduction

Dialogue policy, one of the most critical modules of
task-oriented dialogue systems, aims to determine
system responses based on current states (Zhang
et al., 2019a). One of the earliest methods is the
rule-based policy (Litman and Allen, 1987; Bos
et al., 2003). Although this method often has ac-
ceptable performance, handcrafting rules are ex-
pensive and non-extensible. Recently, deep rein-
forcement learning (RL) has become a mainstream
method for training dialogue policies (Cuayáhuitl,
2016; Li et al., 2017; Peng et al., 2017, 2018).
Since Deep RL-based methods are learning in an
online fashion, a large amount of interaction with
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real users is required, which is generally infeasible
in practical application (Fatemi et al., 2016; Dhin-
gra et al., 2017; Su et al., 2018; Wu et al., 2019).

Intuitively, the reward-based learning mech-
anism in Deep RL (DRL) coincides with the
dopamine-centered regulation in the human brain
(O’Reilly et al., 2014). Human brains have two
differentially specialized learning and memory sys-
tems for collaboration, allowing them to find good
solutions without requiring copious examples (Mc-
Clelland et al., 1995; Norman and O"Reilly, 2003;
O’Reilly et al., 2014). However, most of the DRL-
based dialogue policies (Chen et al., 2017b; Peng
et al., 2018; Lipton et al., 2018; Takanobu et al.,
2019; Wu et al., 2019; Wang et al., 2020) rely on
a single learning system, which neglects the hu-
man brain’s memory structure. Consequently, we
imitate the human brain to construct an efficient
complementary policy learning (CPL) model with
learning and memory systems for cooperation.

Inspired by cognitive neuroscience studies
(Sutherland and Rudy, 1989; Daw et al., 2005; Pol-
drack et al., 2001), some researches evidence that
episodic memory (EM) plays a vital role in deci-
sion tasks. Thus, they incorporate the EM into RL
to accelerate learning (Blundell et al., 2016; Young
et al., 2018; Pritzel et al., 2017; Lin et al., 2018).
Despite the effectiveness of these methods on video
game tasks, there is little research validating the
practical usage of EM in dialogue tasks.

In this paper, we investigate the roles of the EM
policy and the DQN policy (a classic representative
of the DRL-based dialogue policies) in dialogue
policy tasks. We observed that the EM policy is
similar to the human brain’s memory system, which
efficiently leans with little data and bridges inter-
dependency between actions and results from past
experience. It is of limited usefulness in novel situ-
ations, since it generalizes poorly. The DQN policy
is analogous to the human brain’s learning system.
It effectively extracts and generalizes potential in-
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formation from a large amount of experience to
drive decisions and calibrate strategies stored in
the EM. Its good generalization comes at a cost of
learning inefficiency and the demand for massive
data. These two policies complement each other.
Nevertheless, directly combining the DQN policy
with the vanilla EM policy is difficult to maintain
effectiveness consistently in the dialog policy task.
Thus we have the following considerations:

(1) A meta-controller should be proposed to co-
ordinate between the two policies. Over-reliance
on the DQN policy may not achieve the available
performance quickly, while over-reliance on the
EM policy is difficult to generalize to new situa-
tions. (2) In order to ensure that the EM policy
remains consistently effective in the dialogue tasks,
a mechanism for generalization to new situations is
needed. The same situation may never be encoun-
tered twice in dialogue tasks, and it is impossible
to record all the situations.

For question (1), we propose a confidence con-
troller that allows the two policies to form a seam-
less hybridization by controlling the complemen-
tary timing according to their relative efficacy at
different stages. Once the CPL is enabled, the
EM policy provides diversified guidances for the
DQN policy: an extra memory objective (EMO),
an example memory action (EMA), and an extra
intrinsic reward (EIR). For question (2), we define
memory connectivity that allows the flexibility and
generalization of the EM policy by associating past
familiar memories. Then, time pruning prunes the
outdated memories.

In summary, our main contributions are two-fold:
(1) We present a novel CPL framework, which gets
rid of collecting any demonstrations and does not
rely on any experts. Preferably, it exploits the com-
plementary superiorities of the EM policy and the
DQN policy through the confidence controller. To
the best of our knowledge, this is the first work to
learn a dialogue policy, which integrates the learn-
ing and memory systems seamlessly and avoids
being stuck on a single system. (2) We experi-
mentally demonstrate that the effectiveness of our
framework, and EM can be a crucial building block
of effective dialogue policy learning. Our model is
the first step in that direction, as far as we know.

2 Related Work

The research on the learning efficiency of dialogue
policies is not new. Lipton et al. (2016, 2018)

showed that pre-filling the replay buffer with few
successful dialogue experiences at the beginning
can accelerate learning. Prioritized experience re-
play improves the sample efficiency by increasing
the replay probability of experiences with higher
temporal difference errors (Schaul et al., 2016).
Peng et al. (2018) proposed a world model to simu-
late users and integrated planning into policy learn-
ing. A lot of progress has been made in improving
the effectiveness of dialogue policies by combining
supervised learning (SL) Henderson et al. (2008).
Su et al. (2016, 2017) and Williams et al. (2017)
proposed to use SL to initialize the policy network
and then fine-tune it within the RL process. Chen
et al. (2017a,b), Liu et al. (2018), and Zhao et al.
(2021) incorporated a teacher to guide policy learn-
ing. Nevertheless, these methods require extra ef-
fort to hire or design teacher models. Wang et al.
(2020) proposed an efficient policy learning from
demonstrations. However, these methods require
the collection of human demonstrations, and their
performance depends on the quality of the demon-
strations. Parallelly, another solution is to increase
the density of meaningful rewards (Takanobu et al.,
2019; Lu et al., 2019; Zhao et al., 2020).

Episodic memory has been used outside of dia-
logue research to improve data efficiency (Lengyel
and Dayan, 2007). Blundell et al. (2016) proposed
table-based model-free episodic control to learn
past good experiences in a one-shot learning fash-
ion. Pritzel et al. (2017) proposed neural episodic
control, which uses differentiable neural dictio-
naries to store and lookup beneficial memories
for decision. However, these table-based meth-
ods lack good generalization capabilities. Young
et al. (2018) proposes a EM integrated into RL
agent. But its computing time increases with the
history length. Based on this, Lin et al. (2018)
proposed episodic memory deep Q-network in the
video game domains with high-dimensional. How-
ever, these researches focused on the video game
fields, how effectively use the EM in the dialogue
domain, and whether it is feasible are less explored.

3 Proposed Framework

The CPL framework is described in Figure 1, which
mainly includes three modules: (1) The episodic
memory policy quickly latches familiar experiences
from the past to provide auxiliaries for the DQN
policy. It includes two operations. Writing effec-
tively retains memories while minimizing the reten-
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Figure 1: Complementary policy learning framework. Taking M = 2 as an example, it contains three colors, in
which red represents the Q-value, green represents the update time, and black represents the importance.

tion of obsoleting memories. Lookup with memory
connectivity and time pruning selectively associates
relevant memories while casting aside irrelevant or
obsolete memories; (2) The DQN policy effectively
extracts and generalizes potential information from
a large amount of experience to drive decisions and
calibrate strategies stored in the EM; (3) The con-
fidence controller choose an appropriate time to
perform complementary policy learning according
to their relative efficacy at different stages.

3.1 Episodic Memory Policy
Episodic memory policy is a memory system based
on past experience. It can quickly record and re-
play the empirical decisions of the dialogue agent,
containing two operations, as depicted in Figure 2:

Writing: we adopt the similar architecture as
previous EM (Pritzel et al., 2017) to record past ex-
perience. For each action a ∈ A, the EM policy has
a separate memory, which is indexed by states and
actions, Ma = (Ha, T a, Qa). After the episode
ends, the EM policy will write each (h, t,Q(s, a))
into the corresponding Ma through a backward re-
play process according to the following equation:

Ma ←


add(h, t,Qθ(s, a))if(s, a) /∈Ma

update(h, t,QM(s, a)

+ α(Qθ(s, a)−
QM(s, a))) otherwise

(1)

where h is the representation of state s, t are the up-

date time,Qθ(s, a) is the current Q-value estimated
by the DQN policy, QM(s, a) is the past Q-value
recorded by Ma, α is the learning rate.

In theory, each Ma in vanilla EM is constantly
growing, so they need to consume a large amount
of memory to record. Therefore, we add the up-
date time T a and overwrite the entry that has the
least recently updated to minimize the retention
of obsoleting memories and limit the size of the
memory for each action. This is in line with the
law that the human brain is more likely to forget
older memories (Hardt et al., 2013).

Lookup: the query key h is used to lookup sim-
ilar experiences from the Ma. For large-scale dia-
log tasks, novel states are common. However, the
lookup methods used in the video game domain are
not applicable. Generalizing familiar experiences
to novel situations in our tasks is essential. There-
fore, we define memory connectivity to lookup M
memories as similar memories 1 :

C(h||hi) =
n∑
j=0

h(j) · log h(j)

hi(j)
(2)

where h and hi are two probability distributions
of the state. The smaller C(h||hj), the stronger
the connectivity of memories. Consequently, we
use it to indicate the importance weighting of the

1We tested the influence of the M value in the subsequent
simulation experiments.
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Figure 2: Illustration of writing and lookup operations on episodic memory.

selected memories, W a = 1−C(h||hi). This is in
line with the law that the past familiar experiences
have profound implications for humans (Carbonell,
1983). In order to cast aside the outdated non-
optimal policies, we further propose time pruning
for corresponding entry, which a monotonically
decreasing function:

TP a(ta) =

0 if t′ − t ≥ T

1− (t′ − t)
T

otherwise

 (3)

where T is the maximum valid time (set to 15 in
this paper), t′ is the current time, and t is the update
time of the memory.

Therefore, for each the Ma, the corresponding
QaM obtained by lookup operation can be rewritten
as follow:

QaM =


Qa if(s, a) ∈Ma

M∑
j=1

[Qaj ·W a
j ·

TP aj (t
a
j )] otherwise

 (4)

where W a
j · TP aj (taj ) is a normalized value belong-

ing to [0, 1], and
∑M

j=1[W
a
j · TP aj (taj )] = 1. The

EM policy select the corresponding action with
the maximum QaM as the memory action aMt for
subsequent auxiliaries.

Overall, the EM policy is different from the
DQN policy, which does not correspond to esti-
mate the expected return, rather than looking up
the highest potential return for a given state based
on the previous memories.

3.2 DQN Policy
The task-oriented dialogue policy learning is typi-
cally formulated as an MDP problem. We employ

the vanilla DQN (Mnih et al., 2015) 2to train the
dialogue policy based on experience from the inter-
action between agents and users.

At each step, the agent uses ε-greedy to select
a DQN action based on the dialogue state s. Af-
terward, the agent obtains a reward r, observes a
corresponding user response, and updates the dia-
logue state to the next s′ until the end of the conver-
sation. Finally, we store the experience (s, a, r, s′)
into the experience replay buffer D. We optimize
the parameter θ by minimizing the mean-squared
loss function. It is worth noting that here we only
consider the vanilla inference objective function:

L(θ) = E(s,a,r,s′)∼D[(yi −Qθ(s, a))2]
yi = r + γmax

a′
Qθ′(s

′, a′)
(5)

where γ ∈ [0, 1] is a discount factor, and Qθ′ is
the target value function that is updated periodi-
cally. Qθ is optimized through back-propagation
and mini-batch deep Q-learning.

3.3 Confidence Controller
We use the confidence controller to control the
complementary timing by judging the confidence
of the DQN policy.

We use the DropoutQNetwork 3 (Hinton et al.,
2012; Srivastava et al., 2014; Chen et al., 2017b) to
estimate the confidence of the DQN policy at t-th
turn cDt (lines 7-12 in Algorithm 1). The DQN pol-
icy has more confidence when the cDt is greater than
the confidence threshold ξ, and its Qθ is greater
than QM. Otherwise, the EM policy is more confi-
dent. When the DQN has less confidence, the CPL
is enabled, where the EM policy provides three
guidances for the DQN policy:

2Obviously, our approach works for any policy optimizer.
3The output element of each hidden layer h is randomly

set to 0 with probability p and then fed to the next layer.
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Algorithm 1 The Procedure of CPL.
1: for each episode do
2: for t = 1→ T do
3: Initialize the probability vector p =

[p1, p2, ..., pn] with zeros, where n is the
number of actions.

4: Receive observation st from the environ-
ment

5: aDt ← ε-greedy policy based on the DQN
policy

6: for i = 1→ N do
7: Qi(st, a)← DropoutQNetwork(st)
8: ati = argmaxaQi(st, a)
9: p[ati]← p[ati] +

1
N

10: end for
11: Get confidence of aDt : cDt = p[aDt ]
12: if cDt > ξ & Qθ > QM then
13: Take action aDt , receive environment

rewards rextt and next state st+1.
14: Append (st, a

D
t , r

ext
t , st+1) to D

15: Train DQN policy via single inference
objective (Eq.(5))

16: else
17: Lookup QaM for each action via Eq.(4),

aMt = argmaxaQM
18: Take action aMt , receive environment

rewards and EIR rt ← rextt + rintt and
next state st+1.

19: Append (st, a
M
t , rt, st+1) to D

20: Train DQN policy via two inference
objectives (Eq.(6))

21: end if
22: end for
23: for t = 1← T do
24: Update Ma using (ht, t, Q(st, at)) via

Eq.(1)
25: end for
26: end for
a) Extra Memory Objective (EMO): the EM pol-
icy provides an extra memory objective L(M) to
reconciles the loss function of DQN policy. We
propose a new objective function combining the
two objectives:

L(M) = E(s,a,r,s′)∼D[(Qθ(st, at)−
QM(st, at))

2]

L = L(θ) + λL(M)

(6)

where Qθ(st, at) is the same as Qθ(s, a) in Eq. (5).
QM(st, at) is the Q-value looked up by the EM

Task Intents Slots User goals
Movie-Ticket Booking 11 16 128
Restaurant Reservation 11 30 3525

Taxi Ordering 11 29 2830

Table 1: The number of intents, slots and user goals in
three datasets.

policy in the same action. And we weigh the two
policies by adjusting the value of λ. In this way,
we make flexible use of two policies in the learning
process.
b) Example Memory Action (EMA): the mem-
ory action aMt with the highest potential reward
replaces the DQN action aθt for responding.
c) Extra Intrinsic Reward (EIR): exploitation re-
wards and exploration rewards are composed of the
extra intrinsic reward rintt to encourage the DQN
policy to explore and exploit effectively. If the
DQN action aθt is the same as the memory action
aMt with the highest potential rewards, exploitation
rewards are provided. If the DQN action aθt does
not appear in the corresponding Ma, exploration
rewards are provided.

At each turn, the dialogue state st is transmitted
to both the DQN policy and the EM policy. The
DQN policy first generates a DQN action aθt . Then
the confidence controller judges whether the DQN
policy has sufficient confidence. When it has less
confidence, the EM policy provided auxiliaries for
it: EMO, EMA, and EIR. After the episode ends,
the memories of the EM policy will be updated
through a backward replay process. The full proce-
dure of the CPL is described in Algorithm 1.

4 Performance Evaluation

We conduct sufficient experiments on three public
task-oriented datasets in both simulation and hu-
man evaluation: movie-ticket booking, restaurant
reservation, and taxi ordering 4.

4.1 Dataset

The movie-ticket booking task is collected from
Amazon Mechanical Turk and annotated by Li et al.
(2017), and the other two tasks are provided by Mi-
crosoft Dialogue Challenge (Li et al., 2016, 2018).
Each domain has its domain-specific intents, slots,

4We consider that these tasks have been widely used in the
research of dialogue policy (Li et al., 2017; Wang and Chen,
2019; Zhang et al., 2019b; Wang et al., 2020). Hence, we use
these three datasets as all benchmark task-oriented dialogue
environments to evaluate our model.
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and labeled dialogues, and the statistics are shown
in Table 1. Readers can refer to the details of the
three domains from Appendix A.

4.2 Baselines
To benchmark the performance of our method, we
have developed different versions of task-oriented
dialogue agents as baselines for comparison:

• DQN agents are learned with standard DQN
with only direct reinforcement learning 5.

• DQN(K) agents are learned by DQN, but
with (K−1) times more real experiences than
the DQN agent (Peng et al., 2018; Su et al.,
2018; Wu et al., 2019). 6.

• EPAC agents introduce a human teacher in
the training process to teach dialogue policy
learning via providing example actions and
extra rewards (Chen et al., 2017a).

• S2Agent learns the dialogue policy from
demonstrations through policy shaping and
reward shaping (Wang et al., 2020).

In order to further analyze the effectiveness of
each component in our method, we construct abla-
tion tests:
Proposed CPL

• CPL is our proposed approach which learns
policy by complementary policy learning.

• CPL w/o EMP is a variant of CPL which
learns policy by DQN policy with two guid-
ances (without EMA).

• CPL w/o DQN is a variant of CPL, but only
uses EMP to make quick decisions (without
the DQN action).

• CPL w/o W is our proposed method which
learns policy by complementary policy learn-
ing without importance weights.

• CPL w/o T is our proposed method which
learns policy by complementary policy learn-
ing without time pruning.

5For a fair comparison, all baselines are based on DQN
rather than DQN(K).

6Since the performance of DQN(K) can be viewed as the
upper bound of DDQ(K) (Peng et al., 2018), D3Q(K) (Su
et al., 2018), and Switch-DDQ(K) (Wu et al., 2019) with
the same planning steps, we directly use DQN(K) instead of
above methods as the baseline model.

4.3 Implementation Details

For all RL-based agents, value network Q(·) has
one hidden layer MLPs with 80 hidden nodes,
ReLU is used as the activation function in three
domains. All the NN models are warm start 100
epochs and trained with the same hyper-parameters
settings. ε-greedy is applied for policy exploration
which starts from 0.2 and decays every episode
with a decay rate of 0.95. We set the discount fac-
tor γ = 0.9. The size of the experience relay in the
movie domain and other domains is set to 5000 and
10000, respectively. The batch size is 16, and the
learning rate is 0.001. We set K as 10 in the movie
domain and 50 in other domains. For a fair com-
parison, all baselines (except DQN(K)) are based
on DQN rather than DQN(K).

In terms of hyperparameters for EM policy, the
memories are stored up to 5000 per action. We do
a backward replay update for each action after the
end of each episode. The M = 5 unless indicated.
The learning rate α in Eq.1 is set to 0.1. We fix λ
in Eq.6 at 0.1. The confidence threshold ξ is set
0.7. The N is set to 50. The dropout rate is set
to 0.25. Exploration in the EM Policy is applied
by using ε-greedy with ε = 0.005. The maximal
extra intrinsic reward rint is 5. Appendix B shows
detailed information about the user simulator.

4.4 Simulation Evaluation

4.4.1 Main Results
The main simulation results are shown in Table 2
and Figure 3. From the results, it is clear that
through complementary policy learning, the CPL
agents are much faster and consistently better than
other strong methods in all domains.

Figure 3 shows the learning curves of different
agents in three domains. It can be seen that the
DQN(K) performs better than the DQN in all do-
mains since its experiences have K − 1 times more
than the DQN. With the same number of experi-
ences, EAPC and S2Agent consistently perform
better than the DQN in all domains. And even in
the case of less experience, they are still superior to
the DQN(K) in restaurant and taxi domains. But
their performance hardly exceeds the DQN(K) in
the movie domain. The reason might be that, in the
simpler movie domain where dialogues are easier
to succeed, simply increasing experiences makes
efficiency improvement more obvious. By contrast,
in the relatively complex domains where successful
dialogues are relatively rare, it is difficult to provide
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Agent domain Epoch = 100 Epoch = 200 Epoch = 300
Success Reward Turns Success Reward Turns Success Reward Turns

DQN

Movie

0.4012 -6.477 31.24 0.5242 10.36 27.08 0.6448 26.17 24.40
DQN(10) 0.7796 46.80 15.52 0.8136 51.75 13.76 0.8002 50.19 13.68
EAPC 0.4930 26.07 28.18 0.6685 30.18 22.08 0.7180 58.81 22.60
S2Agent 0.5867 35.84 29.61 0.6978 49.29 28.46 0.6982 51.80 29.75
CPL* 0.8386 62.93 28.05 0.8448 66.80 22.28 0.8446 67.54 20.18
CPL w/o EMP 0.6214 33.11 24.91 0.7728 40.95 19.86 0.8198 45.52 18.37
CPL w/o DQN 0.3881 34.22 33.26 0.5894 55.27 32.45 0.5969 58.69 33.16
CPL w/o W 0.3935 33.86 30.19 0.3982 33.94 30.58 0.3997 39.18 30.44
CPL w/o T 0.4774 40.99 27.86 0.5406 52.58 28.12 0.5283 51.82 28.19
DQN

Rest.

0.0358 -55.13 40.85 0.0385 -54.85 40.94 0.0439 -54.14 40.82
DQN(50) 0.0996 -43.99 35.91 0.1201 -41.98 35.59 0.1260 -41.42 35.52
EAPC 0.1882 -32.58 33.33 0.2079 -30.63 33.29 0.2294 -28.13 32.83
S2Agent 0.2327 -21.08 29.54 0.2352 -20.46 29.62 0.2378 -20.39 29.58
CPL* 0.4832 17.76 29.31 0.4846 24.03 28.32 0.4673 17.83 25.91
CPL w/o EMP 0.3548 6.360 27.60 0.4141 15.03 27.59 0.4559 18.32 27.64
CPL w/o DQN 0.3227 8.896 30.99 0.3399 13.02 32.18 0.3456 16.44 30.60
CPL w/o W 0.2694 4.041 34.89 0.2775 11.97 36.12 0.2279 15.05 35.92
CPL w/o T 0.2333 5.393 26.90 0.2973 11.32 29.28 0.3137 12.02 30.68
DQN

Taxi

0.0000 -58.31 38.62 0.0015 -59.68 41.73 0.0095 -57.97 40.21
DQN(50) 0.2534 -25.82 34.45 0.2638 -24.44 34.19 0.2748 -22.97 33.89
EAPC 0.3178 -13.23 27.67 0.3172 -13.30 29.70 0.3209 -12.97 25.62
S2Agent 0.3409 -13.98 31.76 0.3743 -9.394 30.63 0.4181 -3.669 29.69
CPL* 0.6086 30.55 28.88 0.6413 37.04 30.12 0.6822 44.04 31.20
CPL w/o EMP 0.4967 5.472 26.53 0.5712 12.02 25.15 0.6441 20.89 23.61
CPL w/o DQN 0.3742 11.21 30.70 0.4484 12.14 32.84 0.4631 26.09 33.52
CPL w/o W 0.2839 17.93 33.36 0.2688 12.60 31.30 0.2832 12.07 29.87
CPL w/o T 0.2857 13.17 36.64 0.2979 11.76 29.20 0.3279 14.51 31.94

Table 2: The results of different agents at training epoch = {100, 200, 300}. Each number is averaged over 10
runs, and each run is tested on 1000 dialogues. Best scores are labeled in blue. * denotes significant level p < 0.05
with other agents. Success: average success rate, Reward: average reward, Turn: average turn.

clear guidance for agents. The above observations
are also confirmed in Table 2. With complemen-
tary learning, the CPL agent also alleviates reward
sparsity issues, which is especially obvious in rela-
tively complex domains. In the restaurant and taxi
domains, the average rewards of all baselines are
negative, while the CPL agent always learns mean-
ingful positive actions. These actions are basically
given in the form of EIR.

Moreover, an additional result is observed. Al-
though the CPL agents have the highest average
success rate and rewards, their average turns are
longer than the CPLw/oEMP agents. We argue
that the EMA from EM policy may be non-optimal,
causing the CPL agents to complete user goals in
a detour instead of the most effective way. The
CPLw/oEMP agents explore a more efficient path
through EMO and EIR.

4.4.2 Training with varing number of M
Intuitively, the number of M has a large impact on
dialogue policy learning. M represents the number
of empirical decisions that the EM policy provides

to the DQN policy for reference. Experiments with
varying numbers of M values were conducted in
three domains. The moving averaged success rate
is calculated at 300 epochs. Figure 4 shows that the
moving average success rate of each agent during
the learning. The agent with a small M value still
has better learning efficiency in the movie domain,
while the agent performs worst in other domains.
In all domains, the agent with a large M value has
an inferior learning efficiency. This is owing to the
fact that the dialogue agent benefits from related
memories in many aspects to consider the current
state more comprehensively with the increase ofM .
After more than 9, irrelevant episodic memories are
chosen to simply fill the post, which affects the effi-
ciency and quality of dialogue policy learning. This
experimental result also verified our assumption.

4.4.3 Training with varing values of λ
Similarly, the λ affects the performance of dia-
logue policies by controlling the use of two policies
(EM policy and DQN policy) in the dialogue pol-
icy learning process. Therefore, experiments with
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(a) Movie (b) Rest. (c) Taxi

Figure 3: The learning curves of different agents in Movie, Restaurant, and Taxi domains.

(a) Movie (b) Rest. (c) Taxi

Figure 4: The effect of the number of M on performance in Movie, Restaurant, and Taxi domains.

varying λ values were conducted in three domains
to serve as a reference for CPL practitioners. The
moving average success rate of each agent at 300
epochs is shown in Figure 6. It can be viewed that
no matter whether the EM policy is completely non-
participation or completely dominated, it seriously
hurt the performance of dialogue policies. It per-
forms better when the DQN policy is dominating
with the EM policy auxiliary.

4.4.4 Ablation Test
We conduct ablation experiments to analyze the
effectiveness of each component in the CPL frame-
work. As illustrated in Figure 5, although the av-
erage success rate of the CPLw/oEMP in the early
stage is lower than the CPL, it can achieve approx-
imate performance finally in three domains. The
CPLw/oDQN achieves rapid learning in the early
stage, but its later learning is limited when mak-
ing decisions in novel situations. It can be seen
that the involvement of the EM policy in the CPL
framework tends to predominate early, while the
involvement of the DQN policy predominates later.
Although both the CPLw/oW and the CPLw/oT
learn faster in the early stage, the performance in
the later stage hardly improves. It is helpful to ref-
erence memories aggressively at the early stages
regardless of their relevance and timeliness. With
the increase of training time, the dialogue agent
has been significantly improved, irrelevant and out-

dated memories often hurt the performance badly.
The experiment verifies that the four components
benefit the CPL to a large extent.

4.5 Human Evaluation

In order to further verify the feasibility of our
method in real dialogue scenarios, we recruited 33
real users to interact with different agents in three
tasks without know which one is behind. We col-
lect 50 valid conversations for each agent in each
domain. All evaluated agents have been trained for
300 epochs. In each conversation, users randomly
select an agent to communicate with a user goal
sampled from the corpus. Users have the right to
abandon the task and terminate the conversation
if they believe that the dialogue is unlikely to suc-
ceed. At the end of the conversation, in addition to
requiring users to provide feedback on whether the
conversation is successful, the datasets (Li et al.,
2018, 2017) also needs users to evaluate the natu-
ralness, coherence, and task completion ability of
the agent with a score of 1 to 5 7. As illustrated in
Table 3, the CPL and CPLw/oEMP are significantly
outperforms other agents and the CPL is consid-
ered to be more slightly dilatory than CPLw/oEMP,
which is consistent with what we have observed in
simulation evaluation.

75 is the best, 1 is the worst
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(a) Movie (b) Rest. (c) Taxi

Figure 5: The ablation experiment of four components of our method in Movie, Restaurant, and Taxi domains.

(a) Movie (b) Rest. (c) Taxi

Figure 6: The effect of the number of λ on performance in Movie, Restaurant, and Taxi domains.

Agent Movie Rest. Taxi
Success Rating Success Rating Success Rating

DQN 0.48 3.14 0.03 1.71 0.01 1.09
DQN(K) 0.59 3.40 0.10 2.48 0.24 2.38
EAPC 0.57 3.08 0.27 2.56 0.41 2.50
S2Agent 0.64 2.84 0.23 1.91 0.43 2.48
CPL* 0.75 3.61 0.42 2.85 0.64 2.69
CPL w/o EMP 0.72 3.88 0.40 3.65 0.62 3.36

Table 3: Human evaluation of different agents in
Movie, Rest. and Taxi domains.

5 Conclusion

In this paper, we propose a novel complementary
policy learning (CPL) framework that realized dia-
logue policy learning in a more effective and faster
manner through direct use of its own experience
without any extra cost. This framework exploits the
complementary advantages of the EM policy and
the DQN policy. Additionally, we proposed a con-
fidence controller to coordinate between the two
policies according to their relative efficacy at differ-
ent stages. Further proposed memory connectivity
and time pruning ensure the flexible and adaptive
generalization of the EM policy in dialogue tasks.
The results show that the CPL significantly outper-
forms baselines in three domains, and an episodic
memory component is a crucial building block of
effective dialogue policy learning. To the best of
our knowledge, this is the first work to learn a
dialogue policy, which integrates the learning and

memory systems seamlessly and avoids being stuck
on a single system. In the future, we plan to expand
our method to multi-domain tasks, e.g., MultiWoz
(Budzianowski et al., 2018) and evaluating it using
other dialogue platforms, e.g., PyDial (Ultes et al.,
2017), Convlab (Lee et al., 2019).
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A Appendices

Table 4 lists all annotated dialogue acts and slots in
details.

These three datasets are not used to directly train
the dialogue policy model, but to extract the user
goals. Therefore, the movie-ticket booking task is
simpler than the other two tasks. For each conver-
sation, the user simulator (Li et al., 2016; Zhang
et al., 2020) randomly samples a user goal from the
user goal set to interact with the agent. The goal
of each agent is to help them achieve specific user
goals.

In order to verify the effectiveness of the pro-
posed method, the datasets provide both automatic
and human evaluations on three criteria (Li et al.,
2018, 2017): success rate, average turns, and av-
erage reward 8. Also, the datasets conducted a
human evaluation: in addition to the above crite-
ria, human users need to give a rating (1-5) at the
end of each conversation according to the natural-
ness, coherence, and task completion ability of the
agent. Specifically, the fulfillment degree of task
(2 points), natural responses (1 point), timely and
correct responses (1 point), and smoothly steer con-
versations (1 point). In this paper, we choose the
success rate as our main evaluation criteria. If and
only if the agent identifies all constraints provided
by users and provides all information that users
want, and finally successfully booking, the user
goal is considered successful.

B Appendices

The task-oriented dialogue system is designed to
assist users to accomplish a specific goal G. The
entire conversation revolves around this user goal
G implicitly, while the agent knows nothing about
the user goal explicitly.

In order to make the user goal G more clear, tak-
ing the movie-ticket booking domain as an example.
A user may ask about the theater and starttime of
a today’s movie-ticket about the Enter the Dragon

8In this paper, we choose the success rate as our main
evaluation criteria.

of Bruce Lee,where the goal is in the form of:

Goal =

(
C =


moviename = Enter

the Dragon

actor = BruceLee

date = today

 ,

R =

[
theater =

starttime =

]) (7)

The user goals are generated from the annotated
dataset mentioned in Section 4.1. The user goals
extracted from the dataset are then aggregated into
a user goal set. Whenever running dialogues, the
user simulator randomly samples one user goal
from this user goal set.

For the intrinsic rewards rint, it includes ex-
ploitation rewards and exploration rewards to en-
courage the DQN policy to explore and exploit
effectively. Exploitation rewards of 5 are provided,
when the DQN action is the same as the memory
action with the highest potential rewards. Explo-
ration rewards of 5 are provided, if no memories
are corresponding to the DQN action in EM policy.
These two rewards do not appear at the same time.
For the external reward function, in all domains,
the agent receives 2L reward if the dialogue fin-
ishes successfully and −L if it fails, where L is the
maximum of turns in each dialogue. A fixed (−1)
penalty is given to the agent at each turn to encour-
age the policy to reach the goal more efficiently.
We set L to 40 in three domains.
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Table 4: Number of intents, slots and dialogues in three dataset.

Task Intents Slots Dialogues

Movie

request, inform, city, closing,

280

confirm_question, data, greeting,
confirm_answer, distanceconstraints,
greeting, closing, moviename, price,

deny,not_sure, numberofpeople,
multiple_choice, starttime, state,
thanks, welcome taskcomplete, theater,

teater_chain, ticket,
video_format, zip

Restaurant

request, inform, address, atmosphere,

4103

confirm_question, choice, city, closing,
confirm_answer, cuisine, date, food,
greeting, closing, dress_code, greeting,

deny,not_sure, distanceconstraints,
multiple_choice, numberofkids, mealtype,
thanks, welcome numberofpeople,

other, personfullname,
phonenumber, pricing,
rating, restaurantname,
restauranttype, seating,

starttime, state, zip,
result, occasion,

taskcomplete, reservation

Taxi

request, inform, car_type, city, speed,

3094

confirm_question, closing, car_level, date,
confirm_answer, distanceconstraints,
greeting, closing, dropoff_location,

deny,not_sure, zip, result, numberofkids,
multiple_choice, greeting, name, driver_id,
thanks, welcome numberofpeople, other,

pickup_location, state,
dropoff_location_city,
pickup_location_city,

pickup_time, cost,
taxi_company, mc_list,

taskcomplete, taxi, budget,
emergency degree, drive_level


