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Abstract

Weakly-supervised table question-answering
(TableQA) models have achieved state-of-art
performance by using pre-trained BERT trans-
former to jointly encoding a question and a ta-
ble to produce structured query for the ques-
tion. However, in practical settings TableQA
systems are deployed over table corpora hav-
ing topic and word distributions quite dis-
tinct from BERT’s pretraining corpus. In
this work we simulate the practical topic shift
scenario by designing novel challenge bench-
marks WikiSQL-TS and WikiTQ-TS1, con-
sisting of train-dev-test splits in five distinct
topic groups, based on the popular WikiSQL
and WikiTableQuestions datasets. We empir-
ically show that, despite pre-training on large
open-domain text, performance of models de-
grades significantly when they are evaluated
on unseen topics. In response, we propose
T3QA (Topic Transferable Table Question An-
swering) a pragmatic adaptation framework
for TableQA comprising of: (1) topic-specific
vocabulary injection into BERT, (2) a novel
text-to-text transformer generator (such as T5,
GPT2) based natural language question gener-
ation pipeline focused on generating topic spe-
cific training data, and (3) a logical form re-
ranker. We show that T3QA provides a reason-
ably good baseline for our topic shift bench-
marks. We believe our topic split benchmarks
will lead to robust TableQA solutions that are
better suited for practical deployment.

1 Introduction

Documents, particularly in enterprise settings, of-
ten contain valuable tabular information (e.g., finan-
cial, sales/marketing, HR). Natural language ques-
tion answering systems over a table (or TableQA)
have an additional complexity of understanding
the tabular structure including row/column head-

∗Equal contribution by first two authors.
1The source code and new dataset splits are available at

https://github.com/IBM/T3QA

Party Candidate Votes
Conservatives Andrew Turner 32,717
Liberal Democrats Anthony Rowlands 19,739
Labour Mark Chiverton 11,484
UK Independence Michael Tarrant 2,352
Independent Edward Corby 551

Question: Who ran in the election for labour party?
Answer : Mark Chiverton

Figure 1: Topic-sensitive representations are important
to infer that, in the context of the topic politics, the
query span “ran in the election” should be linked to the
“Candidate” column in the table.

ers compared to the more widely-studied passage-
based reading comprehension (RC) problem. Fur-
ther, TableQA may involve complex questions with
multi-cell or aggregate answers.

Most of the TableQA systems use semantic pars-
ing approaches that utilizes language encoders to
produce an intermediate logical form from the nat-
ural language question which is executed that over
the tabular data to get the answer. While some sys-
tems (Zhong et al., 2017) were fully supervised,
needing pairs of questions and logical forms as
training data, more recent systems (Pasupat and
Liang, 2015; Krishnamurthy et al., 2017; Dasigi
et al., 2019) rely only on the answer as weak su-
pervision and search for a correct logical form.
The current best TableQA systems (Herzig et al.,
2020; Yin et al., 2020a) capitalize on advances
in language modeling, such as BERT, and extend
it to encode table representations as well. They
are shown to produce excellent results on popu-
lar benchmarks such as WikiSQL (Zhong et al.,
2017) and WikiTableQuestions(WikiTQ) (Pasupat
and Liang, 2015).

With increasing prevalence of text analytics as
a centrally-trained service that serves diverse cus-
tomers, practical QA systems will encounter tables
and questions from topics which they may not have
necessarily seen during training. It is critical that

https://github.com/IBM/T3QA
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Figure 2: Overview of the proposed T3QA framework
for weakly-supervised TableQA.

the language understanding and parsing capabili-
ties of these QA models arising from their training
regime are sufficiently robust to answer questions
over tables from such unseen topics.

As we show later in this paper, the existing ap-
proaches degrade significantly when exposed to
questions from topics not seen during training (i.e.,
topic-shift).2 To examine this phenomenon, we first
instrument and dissect the performance of these re-
cent systems under topic shift. In particular, we
experiment with TaBERT (Yin et al., 2020b), which
is a weakly supervised TableQA model which en-
codes the table and question using BERT-encoder
and outputs a logical form using an LSTM decoder.
In the example shown in Figure 1, topic shift may
cause poor generalization for specific terminology
or token usage across unseen topics.

We introduce a novel experimental protocol to
highlight the difficulties of topic shift in the con-
text of two well-known Wikipedia-based TableQA
datasets: WikiSQL (Zhong et al., 2017) and Wik-
iTableQuestions Pasupat and Liang (2015). De-
spite recent transformer-based TableQA models
being pre-trained with open-domain data, includ-
ing Wikipedia itself, we observe a performance
drop of 5–6% when test instances arise from topics
not seen during training.

To address this challenge, we next propose a
novel T3QA framework for TableQA training that
leads to greater cross-topic robustness. Our ap-
proach uses only unlabeled documents with ta-

2Topic shift may be regarded as a case of domain shift
studied in the ML community. However, here we refrain
from referring to the proposed topic-driven splits as “domains”
due to the open-domain nature of these datasets and the pre-
training data used to build these models.

bles from the never-seen topic (which we inter-
changeably call the target topic), without any hand-
created (question,logical form) pairs in the target
topic. Specifically, we first extend the vocabulary
of BERT for the new topic. Next, it uses a pow-
erful text-to-text transfer transformer module to
generate synthetic questions for the target topic.
A pragmatic question generator first samples SQL
queries of various types from the target topic table
and transcribes them to natural language questions
which is then used to finetune the TableQA model
on target topic. Finally, T3QA improves the per-
formance of the TableQA model with a post-hoc
logical form re-ranker, aided by entity linking. The
proposed improvements are applicable to any se-
mantic parsing style TableQA with transformer en-
coders and is shown to confer generally cumulative
improvements in our experiments. To the best of
our knowledge, this is the first paper to tackle the
TableQA problem in such a zero-shot setting with
respect to target topics.

The main contributions of this work are:

• This is the first work to address the phe-
nomenon of topic shift in Table Question An-
swering systems.

• We create novel experimental protocol on 2
existing TableQA datasets to study the effects
of topic shift. (WikiSQL-TS and WikiTQ-TS)

• We propose new methods that uses unlabeled
text and tables from target topic to create
TableQA models which are more robust to
topic shift.

2 Related work

Most TableQA systems take a semantic parsing
view (Pasupat and Liang, 2015; Zhong et al., 2017;
Liang et al., 2017) for question understanding and
produce a logical form of the natural language
question. Fully-supervised approaches, such as
by (Zhong et al., 2017) need pairs of questions
and logical form for training. However, obtain-
ing logical form annotations for questions at scale
is expensive. A simpler, cheaper alternative is to
collect only question-answer pairs as weak super-
vision (Pasupat and Liang, 2015; Krishnamurthy
et al., 2017; Dasigi et al., 2019). Such systems
search for the correct logical forms under syntactic
and semantic constraints that produce the correct
answer. Weak supervision is challenging, owing
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Topics Member sub-topics from Wikipedia WikiSQL-TS WikiTQ-TS
Train Dev Test Train Dev Test

Politics Crime, Geography, Government, Law, Military, Policy,
Politics, Society, World 7728 1236 2314 1836 545 580

Culture
Entertainment, Events, History, Human
behavior, Humanities, Life, Culture, Mass media,
Music, Organizations

11804 1734 3198 2180 502 691

Sports Sports 26090 4016 7242 4867 1195 1848
People People 6548 861 1957 1946 420 743

Misc

Academic disciplines, Business, Concepts, Economy,
Education, Energy, Engineering, Food and Drink, Health,
Industry, Knowledge, Language, Mathematics, Mind,
Objects, Philosophy, Religion, Nature,
Science and technology, Universe

3059 395 852 1032 357 438

Table 1: Statistics of the proposed WikiSQL-TS and WikiTQ-TS benchmarks per topic.

to the large search space that includes many possi-
ble spurious logical forms (Guu et al., 2017) that
may produce the target answer but not an accurate
logical transformation of the natural question.

Recent TableQA systems (Herzig et al., 2020;
Yin et al., 2020a; Glass et al., 2021) extend BERT
to encode the entire table including headers, rows
and columns. They aim to learn a table-embedding
representation that can capture correlations be-
tween question keywords and target cell of the ta-
ble. TAPAS (Herzig et al., 2020) and RCI (Glass
et al., 2021) are designed to answer a question by
predicting the correct cells in the table in a truly
end-to-end manner. TaBERT (Yin et al., 2020a) is
a powerful encoder developed specifically for the
TableQA task. TaBERT jointly encodes a natural
language question and the table, implicitly creating
(i) entity links between question tokens and table-
content, and (ii) relationship between table cells,
derived from its structure. To generate the struc-
tured query, the encoding obtained from TaBERT
is coupled with a memory augmented semantic
parsing approach (MAPO) (Liang et al., 2018).

Question generation (QG) (Liu et al., 2020; Sul-
tan et al., 2020; Shakeri et al., 2020) has been
widely explored in reading comprehension (RC)
task to reduce the burden of annotating large vol-
umes of Q-A pairs given a context paragraph. Re-
cently, Puri et al. (2020) used GPT-2 (Radford et al.,
2019) to generate synthetic data for RC, showing
that synthetic data alone is sufficient to obtain state-
of-art on the SQUAD1.1 dataset. For the QG task
in TableQA, systems proposed by Benmalek et al.
(2019); Guo et al. (2018); Serban et al. (2016) uti-
lize the structure of intermediate logical forms (e.g.,
SQL) to generate natural language questions. How-
ever, none of these QG methods utilize the addi-
tional context like table headers, structure and se-

mantics of the tables or the nuances of different
possible question types like complex aggregations.
To the best of our knowledge, our approach is the
first to generate questions specifically for TableQA
with the assistance of a logical query and large
pre-trained multitask transformers.

Domain adaptation approaches in QA (Lee et al.,
2019; Ganin et al., 2016) have so far mostly used
adversarial learning with an aim to identify do-
main agnostic features, including in RC applica-
tions (Wang et al., 2019; Cao et al., 2020). How-
ever, for the TableQA systems using BERT-style
language models with vast pre-training, topic shifts
remain an unexplored problem.

3 T3QA framework

To our knowledge, this is the first work to explore
TableQA in unseen topic setting. Consequently,
no public topic-sliced TableQA dataset is available.
We introduce a topic-shift benchmark by creating
new splits in existing popular TableQA datasets:
WikiSQL (Zhong et al., 2017) and WikiTQ (Pa-
supat and Liang, 2015). The benchmark creation
process is described in Section 3.1. Then, we in-
troduce the proposed framework (illustrated in Fig-
ure 2) to help TableQA system cope with topic shift.
Section 3.2 describes the topic specific vocabulary
extension for BERT, followed by Question Gener-
ation in target topic in Section 3.3 and reranking
logical forms in Section 3.4.

3.1 TableQA topic-shift benchmark
To create a topic-shift TableQA benchmark out
of existing datasets, topics have to be assigned to
every instance. Once topics are assigned, we create
train-test splits with topic shift. I.e., train instances
and test instances come from non-overlapping sets
of topics. TableQA instances are triplets of the
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form {table, question, answer}. For the datasets
WikiSQL and WikiTQ, these tables are taken from
Wikipedia articles. WikiSQL has 24,241 tables
taken from 15,258 articles and WikiTQ has 2,108
tables from 2,104 articles.

The Wikipedia category graph (WCG) is a dense
graph organized in a taxonomy-like structure. For
the Wikipedia articles corresponding to tables in
WikiSQL and WikiTQ, we found that they are con-
nected to 16000+ categories in WCG on an average.
Among the Wikipedia Category:Main topic articles,
Wikipedia articles were connected to 38+ out of 42
categories in WCG.

We use category information from Wikipedia
articles to identify topics for each of the article
and then transfer those topics to the corresponding
tables. The main steps are listed below; details can
be found in Appendix B.
• We identify 42 main Wikipedia categories.
• For each table, we locate the Wikipedia article

containing it.
• From the page, we follow category ancestor links

until we reach one or more main categories.
• In case of multiple candidates, we choose one

based on the traversed path length and the num-
ber of paths between the candidate and the article.

We cannot take an arbitrary subset of topics for
train and the rest for test split to create a topic-
shift protocol, because many topics are strongly
related to others. For example, topic Entertainment
is more strongly related to Music than to Law. To
avoid this problem, we cluster these Wikipedia
main topics into groups such that similar topics fall
in the same group. Using a clustering procedure
described in Appendix B, we arrive at 5 high-level
topic groups: Politics, Culture, Sports, People and
Miscellaneous.

Table 1 gives the membership of each topic
group and the number of instances in WikiSQL
and WikiTQ dataset per topic. For ease of discus-
sion, we will be calling the five topic groups as
topics from now on. For both datasets, we create
five leave-one-out topic-shift experiment protocols
where in each topic becomes the test set, called
the target topic and the rest four the training set is
called the source topic(s).

In our protocol, for training, apart from the in-
stances from source topic, we also provide tables
and document from the target topic. Documents
are the text crawled from the target topic articles
from Wikipedia. Collecting unlabeled tables and

text data for a target topic is inexpensive. We name
these datasets WikiSQL-TS (WikiSQL with topic
shift) and WikiTQ-TS.

3.2 Topic specific BERT vocabulary
extension

Sub word segmentation in BERT has a potential
risk of segmenting named entities or in general un-
seen words in the target corpus. Vocabulary exten-
sion ensures that topic specific words are encoded
in entirety and avoids splitting into sub-words. Our
goal is to finetune BERT with extended vocabulary
on topic specific target corpus to learn topic sensi-
tive contextual representation. So we add frequent
topic-specific words to encourage the BERT en-
coder to learn better topic sensitive representation,
which is crucial for better query understanding and
query-table entity linking.

3.3 Table-question generation

In our proposed topic-shift experiment protocol
with the training set from source topic, unlabeled
tables and free text from target topic are provided
in the training phase. We propose to use tables
from the target topic to generate synthetic question-
answer pairs and use these augmented instances
for training the TableQA model. Unlike question
generation from text, a great deal of additional
control is available when generating questions from
tables. Similar to Guo et al. (2018), we first sample
SQL queries from a given table, and then use a
text-to-text transformers (T5) (Raffel et al., 2020)
based sequence-to-sequence model to transcribe
the SQL query to a natural language question.

3.3.1 SQL sampling
For generating synthetic SQL queries from a given
table T, we have designed a focused and control-
lable SQL query generation mechanism presented
in Algorithm 1. Our approach is similar to Zhong
et al. (2017) but unlike the existing approaches,
we use guidance from target query syntax to offer
much more control over the type of natural lan-
guage questions being generated. We also use ad-
ditional context such as table header, target answer
cell to help the model generate more meaningful
questions suitable for T3QA . We sample the query
type (simple retrieval vs. aggregations) and associ-
ated where clauses from a distribution that matches
the prior probability distribution of training data,
if that is available. Sampling of query type and
number of where clauses is important to mitigate
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Algorithm 1: Algorithm for SQL query
Generation from a table.

Input: Table T, Integer targetNum
Output: SQLQuery[] generatedSQLs

1 foreach Column C ∈ T.columns do
2 C.dataType← ExtractDataType(C)

3 while generatedSQLs.size() < targetNum do
4 SQLQuery S← Empty ;
5 Integer num_where← sample from a multinomial

distribution over {1,2,3,4} ;
6 Where[] whereClauses← generateWhereClauses(T,

num_where) ;
7 S.Where← whereClauses ;
8 String returnType← sample from a multinomial distribution

over {SELECT, SUM, AVG, MAX, MIN} ;
9 if returnType ∈ {SUM, AVG, MAX, MIN} then

10 Column selectColumn← sample Column C from
{T.Columns \ whereClauses.Columns |
C.dataType = Numeric} ;

11 else
12 Column selectColumn← sample Column C from

{T.Columns \ whereClauses.Columns}

13 S.Select← selectColumn ;
14 if ∃ SQL S2 | S2.Where ⊂ S.Where AND

S2.Result = S1.result then
15 valid = false;

16 if returnType ∈ {SUM, AVG, MAX, MIN} AND
numOfRows(S.Result) == 1 then

17 valid = false;

18 if valid then
19 generatedSQLs.add(S)

20 Return generatedSQLs

the risk of learning a biased model that cannot gen-
eralize for more complex queries with more than 2
where clauses, as reported by Guo et al. (2018).

The generated SQL queries are checked for vari-
ous aspects of semantic quality, beyond mere syn-
tactic correctness in typical rule based generations.
WikiSQL has a known imitation: even an incorrect
SQL query can produce the same answer as the
gold SQL query. To avoid such cases, we make
two important checks: (1) The WHERE clauses
in the generated SQL queries must all be manda-
tory to produce the correct answer. i.e., dropping
a WHERE clause should not produce the expected
answer and (2) a generated SQL query with an ag-
gregation must have at least 2 rows to aggregate
on and therefore, dropping the aggregation will not
produce the expected answer. These quality checks
ensure that the generated synthetic SQL queries are
fit to be used in TableQA training pipeline.

3.3.2 T5 transfer learning for QG
For question generation in the TableQA setup, it
is more intuitive to create SQL queries first and
then use the structure of the SQL query to trans-
late it to a natural language question. Previously,
Guo et al. (2018) and Benmalek et al. (2019) used
LSTM-based sequence to sequence models for di-
rect question generation from tables. However, we

Figure 3: Generating synthetic questions on target top-
ics using only tables. Special tokens are shown in col-
ored font.

hypothesize that apart from SQL queries, using
answers and column headers with the help of trans-
former based models, can be more effective.

For our question generation module we have
used unified text-to-text transformers (T5) (Raffel
et al., 2020), which is popular for its constrained
text generation capabilities for multiple tasks such
as translation and summarization. To leverage this
capability of T5 for generating natural language
questions from SQL queries, we encode a SQL
query in a specific text format. We also pass the
answer of the SQL query and the column headers
of table to T5 as we observe that using these two
sets of extra information along with the SQL query
helps in generating better questions, especially with
"Wh" words. As illustrated in Figure 3, the gener-
ated SQL query with answer and column headers
are encoded into a specific sequence before passing
onto T5 model. Special separator tokens are used to
demarcate different parts of the input sequence: [S]
to specify the main column and operation, [W] de-
marcates elements in a WHERE clause, [A] marks
the answer, [C] and [CS] show the beginning of set
of column headers and separation between them,
respectively.

In this example, one can observe that although
the SQL query do not have any term on day or date,
our QG module was able to add “What day”. Fur-
thermore, ill-formed and unnatural questions gener-
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Type Ground truth SQL Generated Question Ground truth question
SELECT Rounds WHERE Chassis
= b195

What round has a car with a b195
chassis?

Which rounds had the B195 chas-
sis?

Lookup SELECT College WHERE Player
= Paul Seiler

What college does Paul Seiler play
for?

What college has Paul Seiler as a
player?

SELECT Date WHERE Atten-
dance > 20,066 AND Home =
Tampa Bay

On what date was the attendance
more than 20,066 at Tampa Bay?

When has an Attendance larger
than 20,066 in tampa bay?

SELECT SUM(Attendance)
WHERE Date = May 31

How many people attended the
May 31 game?

How many people attended the
game on May 31?

Aggregate SELECT MAX(Mpix) WHERE
Aspect Ratio = 2:1 AND Height
< 1536 AND Width < 2048

What is the highest Mpix with
an Aspect Ratio of 2:1, a Height
smaller than 1536, and a Width
smaller than 2048?

What camera has the highest Mpix
with an aspect ratio of 2:1, a height
less than 1536, and a width smaller
than 2048?

SELECT AVG(Score) WHERE
Player = Lee Westwood

What is Lee Westwood’s average
score?

What is the average score with lee
westwood as the player?

Table 2: Ground truth SQL queries with generated questions (using T5 based QG module) and gold questions

Operation Sampled SQL Generated Question
SELECT SELECT Production code WHERE Written by

= José Rivera
what is the production code for the episode writ-
ten by José rivera?

SELECT Average WHERE Rank by average >
3 AND Number of dances=17

what is the average for a rank by average larger
than 3 and 17 dances?

MAX SELECT MAX(SEATS) WHERE Kit/Factory
= Factory

can you tell me the highest seats that has the
kit/factory of factory?

SELECT MAX(YEAR) WHERE WINS = 70
AND Manager = Jim Beauchamp

what is the most recent year of the team with 70
wins and manager Jim Beauchamp?

MIN SELECT MIN(Rank) WHERE Nationality =
RUS

which rank is the lowest one that has a national-
ity ofrus?

SELECT MIN(Televote Points) WHERE Panel
Points = 0

which Televote points is the lowest one that has
panels pointss of 0?

SUM SELECT SUM(Game) WHERE Team = Balti-
more

what is the sum of game, when team is Balti-
more?

SELECT SUM(Division) WHERE Year < 2011
AND Playoffs = Did not qualify

what is the total number of division(s), when
year is less than 2011, and when playoffs did
not qualify?

AVG SELECT AVG(Digital PSIP) WHERE Network
= Omni Television

which digital PSIP has a network of Omni tele-
vision?

SELECT AVG(Attendance) WHERE Week < 5 what was the average attendance before week
5?

Table 3: Synthetic questions generated on sampled SQLs with SELECT and various aggregate functions on Wiki-
SQL-TS tables. Observe that the quality of questions is generally better with SELECT operation than aggregate
ones. The reason for this might be that the data used to train QG module includes more SELECT questions.

ated by T5 model are filtered out using a pretrained
GPT-2 model (Radford et al., 2019). We removed
questions with the highest perplexity scores before
passing the rest to the TableQA training module.

For training the QG module, we use SQL queries
and questions provided with the WikiSQL dataset.
In our experiments, only query+question pairs from
the source topics are used to train the question gen-
eration module and synthetic questions are gener-

ated for the target topic.

We are able to produce high-quality questions
using this T5 transcription. Table 2 shows a few
example of generated questions from ground truth
SQL and Table 3 on sampled SQLs. Observe that
the model is able to generate lookup questions,
multiple conditions, and aggregate questions of
high quality. It is interesting to see that for the
first example in Table 2, T5 model included the
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term car in the question even though it was not
available in the SQL query, probably taking the
clue from chassis. Some questions created from
sampled SQLs for WikiTQ tables is provided in
Appendix C.

3.4 Reranking logical forms

We analysed the logical forms predicted by
TaBERT model in WikiSQL-TS and observed that
the top logical forms often do not have the cor-
rect column headers and cell values. In fact, in
WikiSQL-TS there is a 15–20% greater chance
of finding a correct prediction from the top-5 pre-
dicted logical form than the top 1.

We propose to use a classifier, Gboost (Fried-
man, 2002) to rerank the predicted top-5 logical
form. Given a logical form and table-question pair
we create a set of features on which a classifier is
trained to give higher score to the correct logical
form.

The logical form-question pair which gives the
correct prediction is labelled as +ve and wrong
predictions as -ve. We use the predicted logical
forms for source topic dev set to train this classifier
and in the inference step while predicting for target
topic, the logical form which got highest score by
the classifier is selected.

3.4.1 Features for logical form reranker
Two sets of features are extracted for the reranker:
(1) entity linking based features, (2) logical form
based features.
Entity linking based features: This captures
matches between query fragments and table el-
ements. Our system of entity linking using
string matching also finds partial matches. Par-
tial matches happen when only a part of column
name or cell value appear in the question. Another
scenario is when token in the question partially
matches with multiple entities in the table. We
create three feature separately for cell values and
column headers.
• Number of linked entities in logical form which
appear partially or fully in question.
• Sum of ratio of tokens matched with entities in
logical form. If the questions has word States and
corresponding entity in table is United States, then
the ratio would be 0.5.
• Sum of a measure of certainty in entity linking.
if the question token partially matches with mul-
tiple entities in table then certainty is less. If the
question has word United and there are three en-

tities in the table United Kingdom, United States
and United Arab Emirates, then we assign certainty
score as 1/3.
Only logical form features:
• Probability score of logical form given by the
TableQA model
• Length of answer obtained by using this logical
form. Length here doesn’t mean the number of
characters but number of cells in prediction.
• If ‘count’ is present in the logical form
• If ‘select’ is present in the logical form
• Number of where clauses.
• If columns are repeated in the logical form.

4 Experiments and Analysis

Here we describe key details of the experimental
setup, the models compared and evaluation tech-
niques. We also provide a thorough analysis of the
results to highlight the key takeaways.

4.1 Setup

We consider WikiSQL-TS and WikiTQ-TS for our
experiments with topic assignments as described
in Section 3.1. The larger WikiSQL-TS dataset
consists of tables, questions and corresponding
ground truth SQL queries, whereas WikiTQ-TS
contains only natural language questions and an-
swers. The five topics are 1) Politics 2) Culture
3) Sports 4) People and 5) Miscellaneous. Table 1
captures some interesting statistics about the topic
split benchmark created from WikiSQL. All ex-
periments are conducted in a leave-one-out (LOO)
fashion where the target topic examples are with-
held. For example, if the target topic is Politics
then the model is trained using the train set and dev
set of Culture, Sports, People, Misc and evaluated
on test set of Politics. Further, a composite dev set
is curated by adding equal number of synthetically
generated questions from the target topic to the dev
set of source topics.

4.2 Models

We perform all experiments using a vari-
ant of TaBERT+MAPO3 architecture, with
the underlying BERT model initialized with
bert-base-uncased. TaBERT+MAPO uses
standard BERT as table-question encoder and
MAPO (Liang et al., 2018) as the base seman-
tic parser. TaBERTt+MAPO uses topic spe-

3https://github.com/pcyin/pytorch_
neural_symbolic_machines

https://github.com/pcyin/pytorch_neural_symbolic_machines
https://github.com/pcyin/pytorch_neural_symbolic_machines
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Topic TaBERT TaBERTt
TaBERT

+QG
TaBERTt

+QG

TaBERTt

+QG
+Reranker

Politics 61.71 64.95 64.26 66.12 70.22
Culture 64.89 66.10 69.32 69.88 72.63
Sports 62.10 62.70 63.03 63.83 66.5
People 60.34 61.93 63.10 66.27 70.87
Misc 61.85 59.03 64.31 64.43 69.60

Table 4: Performance on WikiSQL-TS benchmark.
Here, TaBERT means TaBERT+MAPO and TaBERTt

means TaBERTt+MAPO. All numbers are in %.

cific pre-trained BERT encoder (as described
in section 3.2). Similar to the base model,
this model use MAPO as the base semantic
parser. TaBERT+MAPO+QG uses an extended
training set with question answer pairs gener-
ated from the proposed QG model to train the
TaBERT+MAPO model. TaBERTt+MAPO+QG
uses an initialized BERT encoder parameters with
topic specific pre-trained BERT and add question-
answer pairs generated by our QG model to train
the TaBERTt+MAPO model.
Table Question Generation (QG): We use the T5
implementation of Wolf et al. (2019) for question
generation, intialized with t5-base and finetuned
using SQL and corresponding questions from Wik-
iSQL dataset. To ensure that the target topic is
not leaked through the T5 model, we trained five
topic-specific T5 models, one for each leave-one-
out group by considering only SQL-question pairs
from the source topic only. As WikiTQ-TS does
not have ground truth SQL queries included in the
dataset, we use T5 trained on WikiSQL-TS to gen-
erate synthetic questions. We use a batch-size of
10 with a learning rate of 10−3.
Implementation details: We build upon the exist-
ing code base for TaBERT+MAPO released by
Yin et al. (2020b) and use BERTbase as the encoder
for tables and questions. We use topic-specific vo-
cabulary (explained in Section 3.2) for BERT’s to-
kenizer and train it using MLM (masked language
model) objective for 3 epochs with p=0.15 chance
of masking a topic-specific high frequency (occur-
ring more than 15 times in target topic corpus)
token . We optimize BERT parameters using Adam
optimizer with learning rate of 5×10−5.

All numbers reported are from the test fold, fix-
ing system parameters and model selection with
best performance on the corresponding composite
dev set. Further details and the dataset are provided
in the supplementary material.

Topic Number of WHERE clauses
1 2 3 4

Politics 2.11 12.24 6.66 15.00
Culture 0.85 8.93 4.89 5.00
Sports 0.96 6.81 5.20 -3.89
People 1.65 9.52 11.03 6.25
Misc 1.71 13.00 10.00 33.34

Table 5: Change in performance in WikiSQL-TS after
applying Reranker to TaBERTt+MAPO+QG, across
number of WHERE clauses. All numbers are in ab-
solute %.

4.3 Results and Analysis

WikiSQL-TS: TaBERTt+MAPO improves over
TaBERT+MAPO for four out of five test topics
by an average of 1.66%, showing the advantage
of vocabulary extension (Table 4). In addition to
supplying the topic-specific sense of vocabulary,
fine tuning also avoids introducing word-pieces
that adversely affect topic-specific language under-
standing. For instance, for the topic culture the
whole word ‘rockstar’ is added to the vocabulary
rather than the word-pieces ‘rocks’, ‘##tar’. We
implement vocabulary extension by using the 1000
placeholders in BERT’s vocabulary, accommodat-
ing high frequency words from the target topic
corpus .

Further, TaBERT+MAPO+QG signific-
antly outperforms TaBERT+MAPO and also
TaBERTt+MAPO when finetuned with target
topic samples obtained from QG (after careful
filtering). In WikiSQL-TS, QG also improves
the performance of TaBERTt+MAPO, though
relevant vocabulary was already added to BERT,
suggesting additional benefits of QG in T3QA
framework. While vocabulary extension ensures
topical tokens are encoded, QG improves implicit
linking between question and table header tokens
within the joint encoding of question-table. The
largest improvement of 10.53% and 7.74% is
obtained for People and Culture respectively.
Moreover, TaBERT+MAPO+QG out-performs
an in-topic performance of 64.07% and 67% with
66.27% and 69.88% (details in Appendix D),
showing that the unseen topic performance can
be substantially improved with only auxiliary text
and tables from documents without explicitly
annotated table, question, and answer tuples.

As mentioned, Misc is a topic chimera
with a mixed individual statistics, hence an
explicit injection of frequent vocabulary does
not significantly improve TaBERTt+MAPO over
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Topic TaBERT+MAPO TaBERTt+MAPO+QG+Reranker
overall select count min max sum avg overall select count min max sum avg

Politics 61.71 62.82 66.17 53.28 58.64 46.26 60.21 70.22 73.90 60.59 70.98 56.57 56.71 65.59
Culture 64.89 64.47 70.62 62.74 65.56 62.66 60.71 72.63 74.50 65.01 69.53 69.93 64.0 63.09
Sports 62.10 61.60 57.16 69.55 72.09 54.14 62.07 66.5 67.06 45.45 78.85 74.39 67.15 69.41
People 60.34 59.10 66.92 60.71 69.56 50.72 73.33 70.87 72.55 60.0 72.82 65.17 60.86 73.33
Misc 61.85 60.8 65.0 72.34 76.19 44.82 55.17 69.60 69.76 66.25 95.23 ↑ 74.46 44.82 51.72

Table 6: Performance on WikiSQL Topic specific benchmark across various question types. The largest group,
select, is shown in bold. Largest improvement is shown as ↑. All numbers are in absolute %.

Topic TaBERT TaBERTt
TaBERT

+QG
TaBERTt

+QG

TaBERTt

+QG
+Reranker

Politics 40.52 41.03 41.55 41.38 43.79
Culture 36.03 38.49 38.49 37.05 39.50
Sports 37.55 37.5 37.93 39.12 41.50
People 35.94 37.69 37.42 36.61 39.30
Misc 38.58 40.64 41.10 40.18 42.23

Table 7: Performance on WikiTQ-TS benchmark.
Here, TaBERT means TaBERT+MAPO and TaBERTt

means TaBERTt+MAPO. All numbers are in %.

TaBERT+MAPO. However, TaBERT+MAPO+QG
outperforms TaBERTt+MAPO by 5.4% due to QG,
suggesting that the improvement from both meth-
ods are disjoint. Further, Question generation,
though conditioned on the table and topic specific
text is not supplied with the topic vocabulary. We
also observe that the composite dev set with 50%
real questions and 50% questions generated on ta-
bles from target topic improves performance. Ta-
bles 4 & 5 take the advantage of ground truth SQL
queries to further dissect the performance along
question types and number of WHERE clauses.
Number of Where clauses: As described previ-
ously, performance of TaBERT+MAPO is sub-
stantially affected by the number of WHERE
clauses in the ground truth logical form (also ob-
served by (Guo et al., 2018)), see Appendix A.
Table 5, shows that performance improvement by
“Reranker" is significantly higher for more than 1
WHERE clause. This might have happened be-
cause TaBERT+MAPO prefers to decode shorter
logical forms, whereas the reranker prioritizes log-
ical forms with more linked entities present from
the question.
WikiSQL question types: Table 4 breaks down
the performance of TaBERT+MAPO+QG based
on the question types labels obtained from the
dataset ground truth only for analysis. The im-
provement, viewed from the lens of question types
is more significant with average gain in SELECT-
style queries at 9.76%. Aggregate (count, min/max,
sum, avg) questions are more challenging to gener-

ate as the answer is not present in the table. Conse-
quently, the performance improvement with QG is
less significant for these question types.
WikiTQ-TS: WikiTQ-TS is a smaller dataset and
contains more complex questions (negatives, im-
plicit nested query) compared to WikiSQL-TS. Cor-
respondingly, there is also less topic specific text
to pretrain the TaBERT encoder. Despite these lim-
itations, we observe in Table 7 that TaBERTt with
vocabulary extension and pretraining shows overall
improvement. We resort to using synthetic ques-
tions generated from QG model of WikiSQL-TS,
due to unavailability of ground truth SQL queries
in WikiTQ. Hence, the generated questions are
often different in structure from the ground truth
questions. Samples of real and generated questions
are in Table 8 of Appendix C. Despite this differ-
ence in question distribution we see TaBERT+QG
consistently performs better than the baseline. We
provide an analysis of the perplexity scores from
TaBERT and TaBERTt on the generated questions
in Appendix G. Ultimately, the proposed T3QA
framework significantly improves performance in
all target domains.

5 Conclusion

This paper introduces the problem of TableQA
for unseen topics. We propose novel topic split
benchmarks over WikiSQL and WikiTQ and high-
light the drop in performance of TaBERT+MAPO,
even when TaBERT is pretrained on a large open
domain corpora. We show that significant gains
in performance can be achieved by (i) extending
the vocabulary of BERT with topic-specific tokens
(ii) fine-tuning the model with our proposed con-
strained question generation which transcribes SQL
into natural language, (iii) re-ranking logical forms
based on features associated with entity linking
and logical form structure. We believe that the pro-
posed benchmark can be used by the community
for building and evaluating robust TableQA models
for practical settings.
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Topic Transferable Table Question Answering
(Appendix)

A TaBERT performance on WikiSQL

We analyse accuracy of TaBERT model on Wiki-
SQL in terms of the number of WHERE clauses,
which are skewed as shown in Fig. 4(a). In
Fig. 4(b), we observe that accuracy decreases when
ground truth SQL has a larger number of WHERE
clauses. Interestingly, we observe in Fig. 4(c) and
(d) that even though the model achieves 30% to
40% accuracy for 2–4 WHERE clauses, the pre-
dicted logical form still produced one WHERE
clause. This shows that, for many questions, wrong
or incomplete logical forms can produce correct
answers.

(a) (b)

(c) (d)

Figure 4: WHERE clause analysis on TaBERT+MAPO
performance on SELECT questions in WikiSQL test
set (not topic shift): (a) Frequency of questions in dif-
ferent number of WHERE clauses buckets; (b) Accu-
racy achieved in each WHERE bucket; (c) Average
number of conditions in predicted logical forms; (d) Av-
erage number of conditions in predicted logical forms
which produces correct answers.

B Topic-shift benchmark details

Continuing from Section 3.1, this section provides
more details about the creation of the topic shift
benchmark datasets. Each Wikipedia article is
tagged with a set of categories and each category is
further tagged with a set of parent categories, and
those to their parent categories, and so on. The
whole set of Wikipedia categories are organized in

a taxonomy-like structure called Wikipedia Cate-
gory Graph (WCG) (Zesch and Gurevych, 2007).
These categories range from specific topics such as
"Major League Soccer awards" to general topics
such as "Human Nature". To have categories of
similar granularity, we use the 42 categories listed
in Wikipedia Category:Main topic articles4 as top-
ics.

To assign a unique category to a Wikipedia arti-
cle, we proceed as follows:

• For each Table T , we extract the Wikipedia Arti-
cle A which contains Table T .
• We start with the category of A and traverse
the hierarchical categories till we reach one (or
more) of the 42 categories listed in Wikipedia Cat-
egory:Main topic articles.
• If multiple main topic categories can be reached
from A, we take the category which is reached via
the shortest path (in terms of number of hierarchi-
cal categories traversed from A) and assign that as
the category for table T .
• If there are multiple main topic categories which
can be reached with the same length of shortest
path, we consider the number of different paths
between the main topic category and A as the tie
breaker to assign the topic for A.

Now we describe the method used to cluster
categories into topics. For every article we identify
five categories closest to the article in Wikipedia
Category Graph. We then compute the Jaccard
similarity between two topics as the ratio of number
of common articles between topics (in the first-
5 list) to the total number of articles assigned to
both topic. Using this similarity, we apply spectral
co-clustering (Dhillon, 2001) to form five topic
groups.

To verify the coherence of the five topic groups,
we performed a vocab overlap exercise. For ques-
tions in WikiTQ, we find the 100 most frequent
words in the test set of each of the topics. Then
we measure how many of these frequent words
appeared in the train set of each of these topics.
Table 9 shows the that word overlap is large within
clusters.

4https://en.wikipedia.org/wiki/
Category:Main_topic_articles

https://en.wikipedia.org/wiki/Category:Main_topic_articles
https://en.wikipedia.org/wiki/Category:Main_topic_articles
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Gold questions in the dataset Generated Questions
- how many v8 engines competed in the 1982 British
formula one season?

- which constructor has an Entrant of Colin Bennett racing,
and a no smaller than 7.0?

- how many entrants have names that contain the word
"team"?

- what is the average number that has a constructor of
Ensign?

- name an entrant with no cosworth engines. - who is the driver with a no of 14.0?
- how many drivers use v8 engines? - what is the average number of FW07 chassisassis?
- what is the total number of drivers listed? - what engine has a driver of Steveo’rourke?
- who is the only driver to use a v12 engine? - name the most number for Chassis being N180b.
- Are there any other engines listed besides cosworth or
brm?

- what is the lowest number that has a constructor of
Ensign?

- Which is the only driver whose vehicle used a brm 202
v12 engine?

- what is the total number that has a constructor of
Williams?

- What is the last chassis listed? - what is the largest number for teamensign?

Table 8: Real questions and generated questions for table csv/203-csv/1.tsv from WikiTQ-TS dataset.
Observe that generated questions (finetuned on WikiSQL-TS) have different semantics than the real questions.

Test/Train Politics Culture Sports People Misc
Politics 88 73 74 72 64
Culture 79 87 89 85 69
Sports 67 72 100 81 50
People 66 78 88 93 55
Misc 74 73 74 72 68

Table 9: Percent vocabulary match within and across
topics (category groups/clusters).

C Questions generation for target topics

Table 8 compares ground truth questions with that
of generated questions for the same table from
WikiSQL-TS. One can see that even template of
questions in real dataset is very different and often
tougher than the generated ones. Question gen-
erator being trained on WikiSQL-TS dataset with
much simple questions might be the reason for this
phenomenon.

D Performance when topics are seen

We further analyse the performance of the model
in both seen-topic training (when the topic specific
train set is available), against the unseen topic train
(when the topic specific train set is not used during
training). In Table 10, we present results in both
training setups.

Topic Seen Topic Unseen Topic
Politics 65.52 61.71
Culture 67.26 64.88
Sports 63.14 62.10
People 64.07 60.34
Misc 63.14 61.85

Table 10: Drop in performance due to topic shift in
WikiSQL-TS. (Numbers are percentages.)

E Additional Experiments

Table 11 shows the absolute values correspond-
ing to Table 6. in the paper. The performance
of both models is lower for questions with larger
WHERE clauses. Table 12 summarizes the answer
accuracy of TaBERTt+MAPO +QG +Reranker and
TaBERT+MAPO across number of where clauses
in the ground truth logical forms.

Topic Number of WHERE clauses
1 2 3 4

Politics 75.78/73.67 58.36/46.12 51.66/45.0 40.0/25.0
Culture 77.52/76.67 61.23/52.30 52.44/47.55 55.0/50.0
Sports 71.26/70.30 57.62/50.81 56.26/51.06 48.05/51.94 ↓
People 77.61/75.96 61.37/51.85 58.82/47.79 25.0/18.75
Misc 75.17/73.46 57.0/44.0 54.0/44.0 66.67/33.33

Table 11: WikiSQL-TS performance
for TaBERTt+MAPO +QG+Reranker and
TaBERTt+MAPO+QG (seperated by ‘/’) across
number of WHERE clauses in the ground truth logical
forms. All numbers are in %.

Topic Number of WHERE clauses
1 2 3 4

Politics 75.78/67.61 58.36/46.94 51.66/48.33 40.0/40.0
Culture 77.52/71.36 61.23/46.46 52.44/51.05 55.0/35.0
Sports 71.26/67.78 57.62/50.66 56.26/53.9 48.05/44.16
People 77.61/69.55 61.37/44.62 58.82/45.59 25.0/37.5↓
Misc 75.17/70.58 57.0/40.5 54.0/46.0 66.67/66.67

Table 12: WikiSQL-TS performance for
TaBERTt+MAPO +QG +Reranker and
TaBERT+MAPO (separated by ‘/’) across num-
ber of WHERE clauses in the ground truth logical
forms.
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F Training details

We train all TaBERT+MAPO variants for 10
epochs on 4 Tesla V100 GPUs using mixed pre-
cision training5. For training TaBERT+MAPO ,
we set batch size to 10, number of explore sam-
ples 10 and other hyperparameters are kept same
as (Yin et al., 2020a). We build upon codebase6 re-
leased by (Yin et al., 2020a). The hyper-parameters
(where not mentioned explicitly) are the same are
the original code. We include all the data splits and
predictions from our best model as supplementary
material with the paper. These will be released
publicly upon acceptance. The experimentation
requires for 5 topics, we performed 6 variations
of the model. We performed search over 4 sets of
hyper-parameters, primarily on the composition of
generated vs. real questions.

G TaBERT vs. TaBERTt perplexity of
generated questions for WikiTQ-TS

We compute the perplexity scores over a subset of
50 generated questions used in the experiments us-
ing both TaBERT and TaBERTt language models.
Note that TaBERT is pretrained on large open do-
main set whereas TaBERTt was further fine-tuned
on topic specific documents closely related to the
tables of target domain. As shown in Table 13, the
average perplexity score from TaBERTt is larger
than TaBERT. This indicates that the generated
questions are not aligned to the topic in the case of
WikiTQ-TS. This is due to the lack of any training
examples for specific to the dataset, as mentioned
in Section 4.3. Future work on topic-specific ques-
tion generation may address this issue.

Topic TaBERT TaBERTt

Politics 1.088 1.112
Culture 1.099 1.142
Sports 1.084 1.134
People 1.109 1.164
Misc 1.104 1.153

Table 13: The average perplexity scores of a subset
of generated questions from TaBERT and TaBERTt for
WikiTQ-TS

We suspect that this might be the reason why
TaBERTt+QG does not outperform TaBERT+QG

5https://github.com/NVIDIA/apex
6https://github.com/pcyin/pytorch_

neural_symbolic_machines

in the case of WikiTQ-TS (Table 7). However,
we obtain best performance via the overall T3QA
framework.

https://github.com/NVIDIA/apex
https://github.com/pcyin/pytorch_neural_symbolic_machines
https://github.com/pcyin/pytorch_neural_symbolic_machines

