
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 416–428
November 7–11, 2021. c©2021 Association for Computational Linguistics

416

Efficient Multi-Task Auxiliary Learning:
Selecting Auxiliary Data by Feature Similarity

Po-Nien Kung Yi-Cheng Chen Sheng-Siang Yin Tse-Hsuan Yang Yun-Nung Chen
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan
{b06902012, b06902011, b06902103, b06902032}@csie.ntu.edu.tw y.v.chen@ieee.org

Abstract

Multi-task auxiliary learning utilizes a set of
relevant auxiliary tasks to improve the perfor-
mance of a primary task. A common usage is
to manually select multiple auxiliary tasks for
multi-task learning on all data, which raises
two issues: (1) selecting beneficial auxiliary
tasks for a primary task is nontrivial; (2) when
the auxiliary datasets are large, training on
all data becomes time-expensive and imprac-
tical. Therefore, this paper focuses on ad-
dressing these problems and proposes a time-
efficient sampling method to select the data
that is most relevant to the primary task. The
proposed method allows us to only train on
the most beneficial sub-datasets from the auxil-
iary tasks, achieving efficient multi-task auxil-
iary learning. The experiments on three bench-
mark datasets (RTE, MRPC, STS-B) show that
our method significantly outperforms random
sampling and ST-DNN. Also, by applying our
method, the model can surpass fully-trained
MT-DNN on RTE, MRPC, STS-B, using only
50%, 66%, and 1% of data, respectively.1

1 Introduction

In recent years, language model pre-training has
achieved great success in almost all NLP fields (De-
vlin et al., 2019; Lan et al., 2019; Liu et al., 2019c;
Lewis et al., 2020; Radford et al.; Yang et al., 2019).
By learning from large corpus text segments with-
out supervision, the models are able to learn the
general representation of word tokens and can be
further fine-tuned on downstream tasks. Moreover,
many downstream tasks have their related tasks,
which may benefit from the shared information
in the training signal. To better utilize the shared
knowledge, multi-task learning (MTL) is a com-
mon technique. The recent work (Liu et al., 2019a;
Raffel et al., 2020; Aghajanyan et al., 2021) fo-
cused on capturing the shared knowledge by learn-

1The source code is available at: https://github.
com/MiuLab/FastMTL/.

ing multiple tasks simultaneously between the pre-
training and fine-tuning stage, in order to benefit
the downstream tasks. Even though the massive
MTL scheme is demonstrated to achieve the im-
provement in terms of performance, it is either time
or computing costly; for example, Aghajanyan et al.
(2021) used over 4.8 million total labeled examples
for MTL.

On the other hand, in numerous cases, MTL
is applied but we only aim at a single task per-
formance. It is usually addressed as multi-task
auxiliary learning, which targets to introduce aux-
iliary tasks and datasets to boost the performance
of the primary task (Chen et al., 2018; Du et al.,
2018; Guo et al., 2019). In this scenario, how to
wisely select the auxiliary tasks plays the most
important role. One straightforward method is to
select the auxiliary tasks according to their relat-
edness to the primary task. However, selecting
the “related” tasks is non-trivial. To address to
this, Guo et al. (2019) proposed AutoSem, which
learns to automatically select auxiliary tasks and
decide the mixing ratio of auxiliary data via a Beta-
Bernoulli multi-armed bandit with Thompson Sam-
pling and Gaussian Process, respectively. However,
their method cannot decide the specific data sam-
ples to use in one auxiliary task, and the sampling
approach is extremely time-consuming due to the
numerous steps needed to solve the non-stationary
multi-armed bandit problem, failing to address the
issue of efficiency in MTL.

In this paper, we propose a similarity-based sam-
pling method, along with a two-stage MTL pipeline
for efficient multi-task auxiliary learning. The ex-
periments on the GLUE (Wang et al., 2018) bench-
mark show that the proposed method outperforms
single-task models, MT-DNN with random sam-
pling, and even fully-trained MT-DNN with full
auxiliary data. The analysis also demonstrates the
effectiveness and efficiency of our proposed two-
stage MTL pipeline. This paper has three-fold

https://github.com/MiuLab/FastMTL/
https://github.com/MiuLab/FastMTL/

417

contributions:
• We propose a time-efficient sampling method

to speed up auxiliary MTL learning.
• We propose an automatic auxiliary data sam-

pling method that focuses on deciding the spe-
cific data samples instead of the mixing ratio.

• The experiments demonstrate that the pro-
posed approach outperforms the single-task
and random-sampling MT-DNN. Furthermore,
the model using less data also surpasses the
fully-trained MT-DNN.

2 Related Work

2.1 Multi-Task Learning (MTL)

Multi-task learning (MTL) (Caruana, 1997) is an
inductive transfer mechanism for improving gener-
alization performance by learning tasks in parallel
while using the shared representation. The main
idea is that the model can take advantage of infor-
mation extracted from one task to benefit training
on another.

Liu et al. (2019a) proposed a multi-task deep
neural network (MT-DNN), which combines MTL
and language model pre-training to achieve SOTA
results comparing to the original single-task deep
neural network (ST-DNN) setting for many natural
language understanding tasks. In the framework, a
pre-trained model, BERT (Devlin et al., 2019), is
trained with multiple tasks (ex. all tasks of GLUE
(Wang et al., 2018)) in parallel before fine-tuning.

Recently, massive multi-task learning, which ac-
quires much more tasks for MTL, is gaining pop-
ularity. MUPPET (Aghajanyan et al., 2021) pro-
posed an additional stage called pre-finetuning be-
tween language model pre-training and fine-tuning.
Pre-finetuning is similar to large-scale MTL, which
contains around 50 datasets, over 4.8 million la-
beled examples in total. This method encourages
the learning of general representations across dif-
ferent tasks, showing better performance on a wide
range of tasks.

In addition, Raffel et al. (2020) proposed text-
to-text transfer Transformer (T5), where each NLP
task can be formulated as a “text-to-text” problem.
Hence, we can leverage all tasks into the same
training and decoding procedure while applying a
shared model. However, such massive MTL meth-
ods required tremendous computation resources
and training data, resulting in poor efficiency.

2.2 Multi-Task Auxiliary Learning

When training data is scarce, using auxiliary tasks
can provide additional generality and improve the
performance of the primary task. However, choos-
ing highly correlated tasks and applying delicately
chosen weights are essential.

Chen et al. (2018) balanced task influence by
using gradient normalization, which prevents over-
fitting on single auxiliary tasks. In Shi et al. (2020),
the auxiliary tasks are automatically re-weighted
to minimize data usage and retain performance on
the primary tasks.

In addition to the methods of weighting training
gradient or loss, another way to clinch improve-
ment on the primary task is to select tasks deli-
cately. For example, Du et al. (2018) used cosine
similarity to decide whether the auxiliary task is
beneficial to the training.

Moreover, AutoSem (Guo et al., 2019) is a
pipeline combining both aspects of task selection
and the ratio of data from each task. It first mea-
sures the utility of each candidate task through
solving a multi-armed bandit problem and decides
the used data ratio among the chosen tasks via
the Gaussian process. The method, however, is
extremely time-consuming due to the complex op-
timization of the multi-armed bandit problem.

2.3 Data Sampling

In MTL scenarios, using large datasets is getting
prevailing, so data sampling has been widely dis-
cussed in many machine learning fields, either to
reduce the label data or training time. To reduce
the usage of labeled data, active learning focuses
on sampling the most beneficial data without know-
ing the labels. The selection mechanisms can be
categorized into three types, including uncertainty-
based approaches (Xue et al., 2007; Joshi et al.,
2009; Wang et al., 2016; Yoo and Kweon, 2019;
Gal and Ghahramani, 2016; Gal et al., 2017),
expected-change-based approaches (Roy and Mc-
callum, 2001; Settles et al., 2007; Freytag et al.,
2014), and diversity-based approaches (Sener and
Savarese, 2018; Nguyen and Smeulders, 2004; Guo,
2010).

Active learning aims to choose the most effec-
tive data for training, which is similar to our goal.
Nonetheless, under the active learning scheme, the
query strategy does not access the labels of the
data, while we have full access to them. Moreover,
many active learning and core-set sampling meth-

418

MNLI
RTE
MRPC
STS-B
QQP
QNLI
SST-2
CoLA

(a) Toy MT-DNN Model

MNLI
RTE
MRPC
STS-B
QQP
QNLI
SST-2
CoLA

(b) TD-MTDNN Model – BCE

MNLI
RTE
MRPC
STS-B
QQP
QNLI
SST-2
CoLA

(c) TD-MTDNN Model – CE

Figure 1: T-SNE Visualization of model’s last hidden state features. We train these toy models using 500 data from
each task’s training set and visualize the unused training data using T-SNE clustering. In all figures, we only plot
2000 random sample data points from each task to improve visibility.

ods also face the problem of overwhelming time
consumption, which needs additional effort to deal
with (Kirsch et al., 2019; Ni et al., 2015; Coleman
et al., 2020).

To better address the issue about time-efficiency,
we propose a method that can efficiently sample
the most beneficial data by utilizing hidden-state
similarity. Our idea is inspired by the fact that
information in hidden states has been proven to
be beneficial for measuring data similarity. For
instance, Manhattan LSTM (Mueller and Thya-
garajan, 2016) measures the exponential of L1 dis-
tance between the last LSTM hidden states of 2
sentences to learn sentence similarity. Moreover,
pair-wise distillation encourages a student model
to learn to generate a feature map similar to that of
the teacher (Liu et al., 2019b) for semantic segmen-
tation. Recently, Gonzalez et al. (2019) analyzed
the embedding of an auto-encoder to optimize data
for faster training in single-task scenarios.

3 Proposed Method

This paper proposes a two-stage MTL pipeline for
efficient multi-task auxiliary learning. In the first
stage, we introduce similarity sampling, a simple
and time-efficient sampling strategy to select the
most beneficial data samples from the auxiliary
tasks to benefit the primary task. In the second
stage, we train the MT-DNN model using the se-
lected auxiliary data similar to Liu et al. (2019a).
After training, we fine-tune the model on the pri-
mary task to further optimize the performance.

3.1 Motivation

The idea of similarity sampling is based on the as-
sumption that the more similar to the primary task
an auxiliary data is, the more benefit it can con-
tribute to the primary task. To verify this assump-
tion, we train a toy MT-DNN (Liu et al., 2019a)
and visualize the last hidden states of all data in
Figure 1a, which shows that most tasks are mix-
ing and confusing, but the brown (SST-2) and pink
(CoLA) points are more separate from the other six
tasks. The observation aligns with the results in
Table 1, where the performance in these two tasks
degrades while MTL on all GLUE tasks.

Furthermore, to better distinguish between the
tasks, we borrow the idea from Du et al. (2020) and
train a task-aware toy MT-DNN model by multi-
task training an additional task-discrimination ob-
jective, using the binary cross entropy (BCE) loss
and the cross entropy (CE) loss, and the data is
visualized in Figure 1b and 1c. We name this task-
aware toy MT-DNN as TD-MTDNN. By training
the model to distinguish between tasks, the scat-
ter points of each task are more diverse. The QQP,
QNLI, SST-2, and CoLA are nearly entirely divided
from other tasks but MNLI, RTE, MRPC, and STS-
B have some overlap between areas, implying that
these four tasks have a degree of similarity to each
other and can benefit more from MTL. The finding
matches the results in Table 1, where RTE, MRPC,
and STS-B are the most MTL-benefit datasets in
all tasks. The reason that MNLI is not improved by
MTL may be its large training set (393k shown in
Table 2), which is hard to further benefit from the
other 3 tiny tasks with a total of 13.2k data.

Inspired by the above findings, the proposed

419

MNLI-m/mm RTE MRPC STS-B QQP QNLI SST-2 CoLA
ST-DNN 83.61 / 83.05 64.97 87.05 / 82.56 84.65 / 82.74 70.44 / 88.91 90.49 93.95 53.32
MT-DNN 83.42 / 82.59 75.57 88.67 / 84.83 86.23 / 85.42 70.38 / 88.97 90.60 93.43 46.44

Table 1: The test results of 8 datasets in GLUE. ST-DNN is a BERT-Base model with fine-tuning for a single task,
and MT-DNN model is a multi-task model learned on all tasks and further fine-tuned on each single task. The
reported scores are the average over 10 runs.

Corpus Task #Train #Test Metrics Domain
MNLI NLI 393k 20k Matched / Mismatched Acc. Misc.
RTE NLI 2.5k 3k Acc. News, Wikipedia
MRPC Paraphrase 3.7k 1.7k Acc./F1 News
STS-B Sentence Similarity 7k 1.4k Pearson/Spearman Corr. Misc.
QQP Paraphrase 364k 391k Acc./F1 Social QA
QNLI QA/NLI 105k 5.4k Acc. Wikipedia
SST-2 Sentiment 67k 1.8k Acc. Movie Review
CoLA Acceptability 8.5k 1k Matthews Corr. Misc.

Table 2: 8 datasets in GLUE benchmark used in our experiments.

method uses the last hidden state as features to
determine whether the data samples are similar to
the data of the primary task and may benefit its per-
formance. Here we use the task-discriminator to
predict the similarity value that indicates whether a
data sample is similar to the data in each task, and
the top-ranked data samples are used for multi-task
auxiliary learning. In this paper, we extend the
original MT-DNN training process to a two-stage
multi-task auxiliary learning pipeline illustrated in
Figure 2.

3.2 Stage 1: Task-Discriminative MT-DNN &
Similarity Ranking

In the first stage, our goal is to build a model that
can efficiently measure the similarity between the
auxiliary data and the primary data. As shown
in the left of Figure 2, we first train a task-
discriminative MT-DNN (TD-MTDNN) by using
small sets of all datasets (500 samples for each),
which is a tiny MT-DNN model with an additional
task-discriminator. In TD-MTDNN, the primary
task, all auxiliary tasks, and a task discriminator
are learned in an MTL setting. The reason for us-
ing MTL for all tasks instead of only training the
discriminator is to allow the model to encode the
task information into the model weights, which
is the knowledge of the primary task and all aux-
iliary tasks.2 Without learning the task informa-
tion, the model may learn how to discriminate tasks
only based on the data context instead of the task-

2The claim is validated though the experiments in 5.3.

specific knowledge. The trained task discriminator
is to determine how much similar to each task a
data sample is, and such prediction results can be
viewed as the similarity for the following sampling
process (Coleman et al., 2020).

To better describe our proposed method, we
define notations as follows. In multi-task
auxiliary learning, T p denotes a primary task
with training data Dp and N auxiliary tasks
TAi, i ∈ {1, 2, ..., N} with training data DAi, i ∈
{1, 2, ..., N}. To train TD-MTDNN, we randomly
sample 500 training data from all tasks to form sub-
datasets Dp

sub500 ⊂ Dp and DAi
sub500 ⊂ DAi, i ∈

{1, 2, ..., N}. These sub-datasets are used for train-
ing a TD-MTDNN model via MTL similar to Liu
et al. (2019a).

After training TD-MTDNN, we input all remain-

ing auxiliary data DA
unused =

N⋃
i=1

DAi \ DAi
sub500

and allow the task discriminator to predict which
task a data sample belongs to. The output of the
discriminator is a N + 1 dimension vector, where
each element indicates how much similar to a task
and can be viewed as the similarity to a task for the
input data.

As illustrated in Figure 2, we can easily rank
all auxiliary data samples by their similarity to
the primary task, and the top-ranked data samples
are selected as DA

best, the subset of auxiliary data
that can benefit the primary task most. Hence, the
second stage only needs to utilize the relatively
small set DA

best instead of the full sets to achieve
efficient multi-task auxiliary learning.

420

Task-Discriminative MT-DNN

Task
Discriminator

0.8 0.4 … 0.4

0.1 0.9 … 0.9

0.2 0.1 … 0.1

…

Top-Ranked
Data Selection

Auxiliary Tasks

Small Set of
All Data

Full Set of
Auxiliary Data

Task-Oriented MT-DNN

1 2

Task-Oriented Predictors

Training Similarity
Measuring

Subset of
Auxiliary Data

Primary
Task

Sample 1

Sample 2

Sample N

…

Full Set of
Primary Data

Task-Oriented Predictors

3 Training Fine-
Tuning

Stage 2: Task-Oriented MT-DNN &
Fine-Tuning

Stage 1: Task-Discriminative MT-DNN & Similarity Ranking

4

Figure 2: The proposed two-stage multi-task auxiliary learning pipeline.

3.3 2nd Stage: Task-Oriented MT-DNN &
Finetuning

In the second stage, we use the DA
best acquired in

the previous stage with the full primary task data
Dp to train a primary task-oriented MT-DNN (TO-
MTDNN). The training process is basically the
same as Liu et al. (2019a), which alternately trains
all tasks. Note that this model is different from the
one in the first stage and the auxiliary data used in
this model is significantly less than the prior work.
After training TO-MTDNN, we further fine-tune
the model on Dp to boost the performance of the
primary task.

4 Experiments

To evaluate the proposed method, we conduct the
experiments detailed below.

4.1 Data

Following the setting in MT-DNN (Liu et al.,
2019a), we used eight datasets (MNLI, RTE,
MRPC, STS-B, QQP, QNLI, SST-2, CoLA) from
GLUE (General Language Understanding Evalu-
ation Benchmark) (Wang et al., 2018) in our ex-
periment. The data statistics can be found in Table
2.

In our multi-task auxiliary learning setting, we
first select primary tasks and use other datasets as
auxiliary tasks. According to the results in Table 1,
it is seen that only RTE, MRPC, and STS-B sig-
nificantly benefit from multi-task learning, so we
choose these three datasets as our primary tasks
to evaluate the usefulness of our proposed MTL
method.

4.2 Experimental Setup

For all experiments, we use BERT-Base as the back-
bone structure and add a linear layer for each task-
oriented predictor or a task-discriminator. We con-
duct the following experiments in different settings.

TD-MTDNN When training TD-MTDNN, two
loss functions are applied for task discrimination,
Binary Cross Entropy Loss (BCE) and Cross
Entropy Loss (CE), the former of which learns
to discriminate tasks as a multi-label classification
problem, and the prediction of task similarity will
be inclusive, and the latter learns to predict task
similarity exclusively.

TD-MTDNN provides the similarity scores for
all auxiliary data (excluding the data for training
TD-MTDNN), and we further sample the N ∈
{500, 1000, ..., 512000} top-ranked data samples
for training TO-MTDNN.

TO-MTDNN The data amount N for training
TO-MTDNN starts from 500, and double each
time until reaching 512,000. Considering that
the size of full auxiliary data is about 900,000,
we also perform on the settings with N =
{600000, 700000, 800000}.

We provide the detail of the used model struc-
ture, evaluation metrics, hyperparameter search,
and other training details in Appendix A B.

4.3 Baselines

• ST-DNN is the single-task deep neural net-
work fine-tuned on each task separately, which
is a weak baseline to show the overall effi-
ciency of MTL.

• Random sampling baselines follow the simi-
lar setting as our proposed method but without

421

500

1000

2000

4000

8000

16000

32000

64000

128000

256000

512000
600000
700000
800000

Data Amount

64

66

68

70

72

74

76

78
Ac

cu
ra

cy
RTE

Proposed(BCE)
Proposed(CE)
Random
MT-DNN
ST-DNN

Figure 3: RTE Accuracy with different sampling data
amount for all methods.

selecting auxiliary data by a task discrimina-
tor. Here we randomly sample the auxiliary
data samples and use them for TO-MTDNN.
This method has been proved to be a strong
baseline in the scenarios of multi-task learn-
ing GLUE benchmark (Glover and Hokamp,
2019).

• Fully-trained MT-DNN uses all auxiliary
data at the multi-task training stage, which
is regarded as the performance upper-bound
but suffers from its poor efficiency.

4.4 GLUE Results

We show the performance of three primary tasks in
Figure 3, 4, and 5.3 ST-DNN performs worst com-
pared to other MTL methods. Compared to random
sampling baselines, our approaches perform signif-
icantly better, reaching the highest performance
for all primary tasks. In RTE, our methods are
consistently better for all sampling amounts. Also,
when sampling sufficient data (50%, 60%, 1%),
our method can even outperform the fully-trained
MT-DNN, which is the strong baseline trained on
full auxiliary datasets. The finding indicates the
effectiveness of our sampling method in multi-task
auxiliary learning settings. Parenthetically, the fact
that our proposed method achieves better perfor-
mance than fully-trained MT-DNN tells that using
too much data may not benefit the model perfor-
mance due to noises. When there exists some data
causing negative transfer, our method can distin-

3Readers can refer to Appendix D for more concrete scores
and scores of other metrics.

500

1000

2000

4000

8000

16000

32000

64000

128000

256000

512000
600000
700000
800000

Data Amount

85

86

87

88

89

90

F1

MRPC
Proposed(BCE)
Proposed(CE)
Random
MT-DNN
ST-DNN

Figure 4: MRPC F1 with different sampling data
amount for all methods. We only plot the F1 curve
since the Accuracy curve is nearly identical.

guish valuable data samples from distracting ones.
To explicate the strengths of our method, we

further investigate the distribution of the sampled
data and show the results in Figure 6. Rather than
sampling in the same proportion for each task, our
method has a preference to sample data from spe-
cific tasks. For RTE and MRPC, we can see that
both BCE and CE focus on MNLI and STS-B. The
distribution conforms to the similarity of tasks pre-
sented in Figure 1b, suggesting RTE, MRPC, and
MNLI data or tasks are more alike. This can also
explain the performance progress of our method.

In all three tasks, the performances of BCE-
trained TD-MTDNN are more satisfied and stable
than CE-trained ones. We conjecture the reason is
due to the properties of those two loss functions.
CE leads to exclusive prediction, causing the pre-
dicted similarity affected by any other. On the
contrary, using BCE allows the model to predict
the similarity of each task independently, which
meets our desire that the discriminator focuses on
which data are more related to the primary task.

4.5 Time Efficiency

The main goal is to efficiently perform multi-task
auxiliary learning, so we show the time consump-
tion of each stage of all methods in Table 3. The
results are based on TD-MTDNN trained with 500
training instances and TO-MTDNN with 10,000
sampled data run on the same machine. In the sec-
ond stage for TO-MTDNN, the time consumption
of our method is much less than that of fully-trained

422

Stage 1: TD-MTDNN Stage 2: TO-MTDNN Total Runtime(s)
Training Ranking Training Fine-Tuning

MT-DNN
- - - -

15,801
90 / 120 / 190

15,891 / 15,921 / 15,991
Random

200 / 220 / 260
290 / 340 / 450

Proposed 95 775 1160 / 1210 / 1320

Table 3: Runtime(s) of different models on each training stage. The three numbers separated by slash refers to the
consumption of RTE / MRPC / STS-B, respectively.

500

1000

2000

4000

8000

16000

32000

64000

128000

256000

512000
600000
700000
800000

Data Amount

82

83

84

85

86

87

88

Pe
ar

so
n-

Sp
ea

rm
an

 c
or

re
la

tio
n

STS-B
Proposed(BCE)
Proposed(CE)
Random
MT-DNN
ST-DNN

Figure 5: STS-B Pearson Correlation with different
sampling data amount for all methods. We only plot
the Pearson Correlation curve since the Spearman Cor-
relation curve is nearly identical.

MT-DNN, because only a subset of auxiliary data
is utilized. Furthermore, the additional cost for the
first stage of TD-MTDNN is negligible compar-
ing to the reduced time in TO-MTDNN. From the
above results, we demonstrate that the proposed ap-
proach is able to achieve comparable performance
with fully-trained MT-DNN while using less data
(27% in RTE, 53% in MRPC, and 1.7% in STS-B),
which is approximately proportional to the total
training time. Generally, the outcomes also align
with our theoretical analysis of time complexity in
Appendix C.

5 Discussion

To better investigate whether the selected samples
are more beneficial than others, we investigate the
in-task efficacy of our method. Also, considering
that multi-task learning often benefits more the low-
resource tasks by preventing overfitting through
learning other tasks, we analyze the performance of
the proposed method in the low-resource scenarios.
Furthermore, we conduct ablation experiments to

MNLI MRPC STS-B QQP QNLI SST-2 CoLA
0.00

0.01

0.02

R
TE

 u
se

d
da

ta
 (%

)

BCE
CE

MNLI RTE STS-B QQP QNLI SST-2 CoLA
0.00

0.20

0.40

M
R

PC
 u

se
d

da
ta

 (%
)

BCE
CE

MNLI RTE MRPC QQP QNLI SST-2 CoLA
Tasks

0.00

0.01

0.02

0.03

ST
S-

B
us

ed
 d

at
a

(%
)

BCE
CE

Figure 6: The sampled data distribution in our exper-
iments when sampling 10,000 data for TO-MTDNN.
The y-axis is the percentage of the sampled data in an
auxiliary dataset. Dotted lines denote the data distribu-
tion sampled by random sampling.

RTE MRPC STS-B
2

1

0

1

2

3
In-task efficacy

BCE
CE

Figure 7: In-task efficacy (performance gain) of us-
ing the selected samples on RTE, MRPC, and STS-B.
The unit of the y-axis is the percentage of the eval-
uation metrics, which are accuracy, F1, and Pearson-
Spearman Corr, respectively.

justify that multi-task learning GLUE (Wang et al.,
2018) tasks in the TD-MTDNN stage does help the
discriminator to learn the relation between tasks
better.

423

5.1 In-Task Efficacy

For multi-task auxiliary learning, the prior
work (Guo et al., 2019; Glover and Hokamp, 2019)
focused on deciding the mixing ratios of all auxil-
iary tasks. Different from it, our proposed method
not only decides the mixing ratio but also selects
the specific data to use in each auxiliary task. That
leads to a further question: Does our method pick
out the most beneficial data samples in one auxil-
iary task, or does the improvement only come from
the proper mixing ratio?

To answer this question, we evaluate the use-
fulness of the sampled data in each auxiliary task.
Here we first apply our similarity sampling to select
10,000 auxiliary data samples, and then we obtain
the mixing ratios for auxiliary tasks. In order to
check whether our selected data samples are better,
we fix the mixing ratio and resample data in each
auxiliary task. We train TO-MTDNN with 10,000
data samples in these two settings and show the
results in Figure 7. In-Task Efficacy is defined as
the performance gain when training on our selected
data compared to the re-sampled data, so larger
in-task efficacy indicates that the selected data is
more beneficial.

For BCE, the results show that in both RTE and
STS-B, the performance drops significantly when
using the resampled data. However, in MRPC,
there is no in-task efficacy of our sampling method.
The model can achieve similar performance us-
ing either our selected data or the resampled data,
which is not surprising considering that the BCE
method does not improve much on MRPC when
training on only 10,000 auxiliary data samples. For
CE, there is nearly no in-task efficacy in all three
tasks, probably because of its relatively poor per-
formance compared to BCE.

These results show that when using our proposed
method with BCE-TD, our method reveals in-task
efficacy on some tasks and can sample the most
beneficial data in those tasks.

5.2 Few-Shot on Primary Tasks

We conduct experiments in a few-shot scenario
to evaluate our method. The data amount of pri-
mary tasks is restricted in every stage. For the first
stage for TD-MTDNN, we use 500 samples for
each auxiliary tasks and min(500, |Dp|) samples
for primary tasks. We apply the weighted loss to
balance the ratio between tasks if the data amount
of the primary task is less than 500. We show the

R
TE

Low Target Task

M
R

PC

50 100 500 1000 2000
Data Amount

ST
S-

B

64

66

68

70

84

86

88

50

60

70

80

Random
Proposed (BCE)

Figure 8: The performance of the proposed method and
random sampling baseline with restricted data amount
of the primary task. The result with original amount of
data is demonstrated at the rightmost.

performance of the proposed method and the ran-
dom sampling baseline with different data sizes
of primary tasks in Figure 8. The results show
that in few-shot settings, our work outperforms the
random sampling baseline with a greater margin
compared to the original setting. That indicates
when the primary task data is scarce, our proposed
method can better utilize the auxiliary task knowl-
edge to improve the primary task more. Also, Table
3 tells that our method can efficiently reduce the us-
age of auxiliary data, implying that time reduction
of multi-task auxiliary learning using our method
is more significant when the primary task is small.
Considering the advantage of our method in both
performance and computation aspects, our method
is highly suitable for multi-task auxiliary learning
in a low primary task resource setting.

5.3 Multi-Task Learning in TD-MTDNN

In the proposed method described in 3.2, we multi-
task learn all GLUE (Wang et al., 2018) tasks and
the task-discriminative loss together to train a Task-
Discriminative MT-DNN. The hypothesis here is
that the model can better predict the similarity
scores for all data points when knowing both se-
mantics (text information) and task information. To
further verify the above hypothesis, we compare
the performance of two models, the proposed one
and one without multi-task learning on all GLUE
tasks when training TD-MTDNN.

424

R
TE

M
R

PC

50
0

10
00

20
00

40
00

80
00

16
00

0
32

00
0

64
00

0

12
80

00

25
60

00

51
20

00

60
00

00

70
00

00

80
00

00

Data Amount

ST
S-

B

65

70

75

87

88

89

84

86

TD-MTDNN
TD-MTDNN w/o MTL

Figure 9: The performance of the proposed method
(TD-MTDNN) and MTL-ablation version (TD-
MTDNN w/o MTL).

Figure 9 shows the results of the ablation study.
Overall, two methods (TD-MTDNN with & w/o
MTL) obtain similar performance curves, espe-
cially for RTE. For MRPC, TD-MTDNN performs
better than TD-MTDNN w/o MTL when we use a
larger amount of data for TO-MTDNN. In contrast,
the same trend is observed with a smaller amount of
data for STS-B. Among three tasks, all best scores
are performed by TD-MTDNN, showing the useful-
ness of multi-task learning on all GLUE tasks in
the TD-MTDNN training stage.

6 Conclusion

This paper introduces a novel two-stage multi-task
auxiliary learning framework that utilizes similarity
sampling to select the most beneficial auxiliary
data for efficiently training an MT-DNN model.
Our experiments on benchmark GLUE datasets
demonstrate that our proposed method outperforms
random sampling and further surpasses the fully-
trained MT-DNN with significantly fewer data and
time. Moreover, we show that our selected samples
are the most beneficial data in the auxiliary task
and that the proposed method works much better
when few-shot scenarios, proving the strong in-task
efficacy and the great potential of practical usage.

Acknowledgments

We thank reviewers for their insightful comments.
This work was financially supported from the

Young Scholar Fellowship Program by Ministry
of Science and Technology (MOST) in Taiwan,
under Grant 110-2636-E-002-003.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-

tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International Conference on
Machine Learning, pages 794–803. PMLR.

C Coleman, C Yeh, S Mussmann, B Mirzasoleiman,
P Bailis, P Liang, J Leskovec, and M Zaharia. 2020.
Selection via proxy: Efficient data selection for deep
learning. In International Conference on Learning
Representations (ICLR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi, and
Jianxin Liao. 2020. Adversarial and domain-aware
bert for cross-domain sentiment analysis. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4019–
4028.

Yunshu Du, Wojciech M Czarnecki, Siddhant M
Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. 2018. Adapting aux-
iliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224.

Alexander Freytag, Erik Rodner, and Joachim Denzler.
2014. Selecting influential examples: Active learn-
ing with expected model output changes. In Euro-
pean conference on computer vision, pages 562–577.
Springer.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani.
2017. Deep bayesian active learning with image
data. In International Conference on Machine
Learning, pages 1183–1192. PMLR.

425

John Glover and Chris Hokamp. 2019. Task selec-
tion policies for multitask learning. arXiv preprint
arXiv:1907.06214.

Santiago Gonzalez, Joshua Landgraf, and Risto Mi-
ikkulainen. 2019. Faster training by selecting sam-
ples using embeddings. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–7.
IEEE.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2019. Autosem: Automatic task selection and
mixing in multi-task learning. arXiv preprint
arXiv:1904.04153.

Yuhong Guo. 2010. Active instance sampling via ma-
trix partition. Advances in Neural Information Pro-
cessing Systems, 23:802–810.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ajay J Joshi, Fatih Porikli, and Nikolaos Pa-
panikolopoulos. 2009. Multi-class active learning
for image classification. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages
2372–2379. IEEE.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal.
2019. Batchbald: Efficient and diverse batch acqui-
sition for deep bayesian active learning. Advances
in neural information processing systems, 32:7026–
7037.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In International
Conference on Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496.

Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin,
Zhenbo Luo, and Jingdong Wang. 2019b. Struc-
tured knowledge distillation for semantic segmenta-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2604–2613.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019c.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 30.

Hieu T Nguyen and Arnold Smeulders. 2004. Ac-
tive learning using pre-clustering. In Proceedings of
the twenty-first international conference on Machine
learning, page 79.

Chongjia Ni, Cheung-Chi Leung, Lei Wang, Nancy F
Chen, and Bin Ma. 2015. Unsupervised data se-
lection and word-morph mixed language model for
tamil low-resource keyword search. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4714–4718.
IEEE.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Nicholas Roy and Andrew Mccallum. 2001. Toward
optimal active learning through monte carlo estima-
tion of error reduction.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Burr Settles, Mark Craven, and Soumya Ray. 2007.
Multiple-instance active learning. Advances in neu-
ral information processing systems, 20:1289–1296.

Baifeng Shi, Judy Hoffman, Kate Saenko, Trevor Dar-
rell, and Huijuan Xu. 2020. Auxiliary task reweight-
ing for minimum-data learning. arXiv preprint
arXiv:2010.08244.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang,
and Liang Lin. 2016. Cost-effective active learn-
ing for deep image classification. IEEE Transac-
tions on Circuits and Systems for Video Technology,
27(12):2591–2600.

426

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Kr-
ishnapuram. 2007. Multi-task learning for classifi-
cation with dirichlet process priors. Journal of Ma-
chine Learning Research, 8(1).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Donggeun Yoo and In So Kweon. 2019. Learning loss
for active learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 93–102.

427

A Training Details

We use Adam (Kingma and Ba, 2015) as the opti-
mizer with a learning rate 2e-5. The training batch
size is 32, and we train the model for 5, 3, and 5
epochs for these three stages respectively.

We have done the hyperparameter search
on Batch_Size ∈ {4, 8, 16, 32, 64}, Epoch ∈
{3, 5, 10}, lr ∈ {2e−5, 5e−5} on the fully-trained
MT-DNN. For the model selection strategy in each
stage, we use the last epoch of TD-MTDNN and
TO-MTDNN. For the last fine-tuning stage, we se-
lect the best epoch by the score of Dev-set and then
use the model to predict the Test-set and submit the
results to GLUE Benchmark. For all experiments,
a machine with CPU - AMD R7 3700X(8 cores);
GPU - RTX2080S; 16GB RAM is used.

B Evaluation

We follow the standard GLUE metrics to evaluate
the performance of our models. These include
accuracy, F1, Pearson-Spearman correlation (PSC),
and Mathews correlation coefficient (MCC).

Accuracy The basic evaluation metric for a clas-
sification task, which is simply the proportion of
correct predictions. It is used in SST-2, MRPC,
QQP, MNLI, QNLI, and RTE.

F1 The metric penalizes models which tend to
predict the class with a higher probability to obtain
high accuracy but fail to predict the minor class
correctly. It is used in MRPC and QQP.

PSC The correlation to evaluate the relationship
between prediction and ground truth values in a
regression task, ranging from −1 to 1. Pearson
correlation coefficient assesses linear relationships,
whilst Spearman’s assesses monotonic relation-
ships which is not limited to linear one. It is used
in STS-B.

MCC The correlation ranging from −1 to 1 to
evaluate a classification task. Similar to F1, it re-
quires correct predictions on both classes. Nonethe-
less, it is independent of which class is defined as
positive. It is used in CoLA.

C Time Complexity Analysis

Table 4 shows our analysis of the time complexity
of each stage and method, and the denotation is
described in detail in the caption. For AutoSem
(Guo et al., 2019), the first term Ts1 ·(K+Ns1 ·CT)

Method / Stage Time Complexity
Stage 1: TD-MTDNN

Training O(TTD ·NTD · CT)
Ranking O(Nall · CP)

Stage 2: TO-MTDNN
Training O(TTO ·NTO · CT)
Fine-Tuning O(TFT ·Npri · CT)

AutoSem
O(Ts1 · (K +Ns1 · CT)
+Ts2 ·Ns2 · CT + T 3

s2)

Table 4: Time complexity analysis of each
stage/method. T ’s: steps/epochs. N ’s: number
of instances/mini-batches. C’s: cost of train-
ing/prediction. K: number of tasks. Note that a
fully-trained MT-DNN uses Nall data in the TO-
MTDNN stage, much larger than NTO in our proposed
method.

is the cost of stage-1 (non-stationary multi-armed
bandit), the second term Ts2 ·Ns2 · CT is the cost
of drawing samples for stage-2 (Gaussian Process),
and the last term T 3

s2 is the cost of solving Gaussian
Process. We recommend readers refer to the paper
for more details.

For a fully-trained MT-DNN, NTO = Nall,
making the TO-MTDNN stage dominant term and
training-expensive. Our proposed method selects
only a few data for the TO-MTDNN stage, substan-
tially decreasing NTO and significantly alleviating
training cost. In exchange, it costs the additional
TD-MTDNN stage for our proposed method. Nev-
ertheless, the training instances used in the TD-
MTDNN training phase (NTD) are further fewer,
and on the other hand, the cost of prediction (CP)
is much less than that of training (CT). These
make the additional cost still dominated by the TO-
MTDNN stage with full data, resulting in a worthy
trade-off. Our experimental results in 4.5 also ver-
ify our analysis.

The method proposed in AutoSem is similar
in complexity terms to the stages of our method.
However, it takes many steps to steadily solve a
non-stationary multi-armed bandit problem, lead-
ing to heavy training cost as Ts1 becomes much
larger than other T ’s. This forces some trade-offs
to make the algorithm feasible, such as using a
few mini-batches to train then observe the reward
(reducing Ns1), and using a simpler model like
LSTM (Hochreiter and Schmidhuber, 1997) (re-
ducing CT)4. In comparison, our method not only

4Again the readers can check these details in the original
paper of AutoSem.

428

Data RTE MRPC STS-B
BCE CE Random BCE CE Random BCE CE Random

500 68.0 66.3 67.6 88.0 / 83.4 87.9 / 83.5 86.2 / 81.8 82.7 / 81.0 83.2 / 81.8 83.0 / 81.4
1,000 68.4 68.7 68.1 87.1 / 87.7 87.7 / 83.6 88.1 / 83.5 83.0 / 81.4 83.5 / 82.0 83.7 / 82.1
2,000 68.0 69.0 67.8 86.9 / 82.7 87.7 / 83.7 87.2 / 82.8 84.8 / 83.0 83.8 / 82.1 84.4 / 82.9
4,000 69.0 68.6 69.1 87.4 / 82.7 87.8 / 83.5 87.7 / 83.4 86.9 / 85.7 84.0 / 82.5 85.5 / 84.0
8,000 69.1 70.3 68.9 87.7 / 83.4 87.4 / 83.1 87.5 / 83.2 87.4 / 86.4 83.3 / 81.7 86.7 / 85.5
16,000 71.0 70.1 70.7 87.8 / 83.4 87.7 / 83.6 86.5 / 82.2 86.5 / 85.5 87.0 / 86.1 85.7 / 84.5
32,000 72.1 72.0 70.7 87.8 / 83.1 87.2 / 83.0 86.9 / 82.5 86.6 / 85.8 86.4 / 85.8 86.6 / 85.5
64,000 73.3 73.2 72.4 87.7 / 83.7 86.9 / 82.3 86.0 / 81.2 86.8 / 86.2 86.9 / 86.4 86.8 / 85.9

128,000 74.1 73.9 72.3 87.3 / 83.1 87.3 / 83.1 87.7 / 83.7 86.8 / 86.3 86.7 / 86.2 87.2 / 86.5
256,000 75.1 75.4 73.1 88.1 / 84.2 87.8 / 83.9 87.9 / 83.9 86.4 / 85.9 86.8 / 86.3 86.9 / 86.0
512,000 75.9 74.9 74.4 88.2 / 84.0 88.8 / 85.0 87.9 / 83.9 86.6 / 85.9 86.6 / 85.8 86.4 / 85.7
600,000 75.5 75.2 75.2 89.3 / 85.7 88.7 / 84.9 88.2 / 84.4 86.3 / 85.8 86.0 / 85.1 86.6 / 85.9
700,000 75.5 75.9 74.9 89.3 / 85.6 88.1 / 84.3 87.3 / 83.4 86.4 / 85.6 86.4 / 85.8 86.4 / 85.8
800,000 75.7 75.9 75.4 88.2 / 84.4 89.2 / 85.7 88.1 / 84.3 85.8 / 85.2 85.8 / 84.9 86.5 / 85.8

Table 5: Detailed performance with different amounts of data. For MRPC, the two scores correspond to accu-
racy/F1. For STS-B, the two scores correspond to Pearson/Spearman correlation coefficient.

runs in favorable time but also successfully scales
to more complicated models (BERT).

D Experiment Results in Details

We show our detailed experiment results in Table
5. We use these scores to plot the line graphs in
Figure 3, Figure 4, and Figure 5.

