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Abstract

The copying mechanism has had considerable
success in abstractive summarization, facili-
tating models to directly copy words from
the input text to the output summary. Exist-
ing works mostly employ encoder-decoder at-
tention, which applies copying at each time
step independently of the former ones. How-
ever, this may sometimes lead to incomplete
copying. In this paper, we propose a novel
copying scheme named Correlational Copying
Network (CoCoNet) that enhances the stan-
dard copying mechanism by keeping track
of the copying history. It thereby takes ad-
vantage of prior copying distributions and,
at each time step, explicitly encourages the
model to copy the input word that is rele-
vant to the previously copied one. In ad-
dition, we strengthen CoCoNet through pre-
training with suitable corpora that simulate
the copying behaviors. Experimental results
show that CoCoNet can copy more accu-
rately and achieves new state-of-the-art per-
formances on summarization benchmarks, in-
cluding CNN/DailyMail for news summariza-
tion and SAMSum for dialogue summariza-
tion. Our code is available at https://
github.com/hrlinlp/coconet.

1 Introduction

Text summarization techniques (Rush et al., 2015;
Chopra et al., 2016; Zhou et al., 2017; Li et al.,
2018; Zhang et al., 2018; Li et al., 2019, 2020a,b;
Xu et al., 2020a; Yuan et al., 2020) aim to gener-
ate a condensed and cohesive version of the input
text, enabling readers to grasp the main points with-
out reading the full text. There are two types of
summarizers: extractive and abstractive. Extractive
methods produce a summary by taking important
sentences from the original text and combining
these extracts, while abstractive methods involve
interpreting and paraphrasing the input when gen-
erating a summary. The latter is more similar to

Dialogue
Ernest: hey Mike , did you park your car on

our street?
Mike: no, took it into garage today
Ernest: ok good
Mike: why?
Ernest: someone just crashed into a red Hon-

da looking just like yours
Mike: lol lucky me
Summary
Mike took his car into garage today. Ernest
is relieved as someone had just crashed into
a red Honda which looks like Mike’s.

Table 1: An example from the dialogue summariza-
tion task. Highlighted words are copied consecutively
from the input. Previously copied words (such as “just
crashed”) can guide the following copying operations
(such as“into a red Honda”).

how humans would summarize a text, but it is far
more challenging to achieve.

Currently, the sequence-to-sequence (Seq2Seq)
framework has become the mainstream for per-
forming abstractive summarization tasks. However,
it suffers from handling out-of-vocabulary words
(OOV). As it has been observed that some words in
the input text reappear in the summary, one way of
coping with the OOV issue is by extracting words
from the input text and incorporating them into the
abstractive summary. Following this strategy, exist-
ing works (Gulcehre et al., 2016; Gu et al., 2016;
See et al., 2017) propose the copying mechanism,
which copies words from the input sequence to
form part of the summary. These models generally
regard the encoder-decoder attention as the copying
distribution, which we call “attentional copying”.
They perform copying at each time step indepen-
dently of the former ones, neglecting the guidance
of the copying history. Our work demonstrates that
the copying history can provide crucial clues of the
copying behaviors for the following time steps and
thereby encourage the summarizer to copy more
accurately. For example, in Table 1, assuming the
source words “a red” have been copied, the next

https://github.com/hrlinlp/coconet
https://github.com/hrlinlp/coconet
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copying operation for the following word “Honda”
can be explicitly induced.

In this paper, we propose a novel copying ar-
chitecture named Correlational Copying Network
(CoCoNet) that can learn to copy from the copy-
ing history. We build CoCoNet based on the
Transformer-based Seq2Seq architecture (Vaswani
et al., 2017) , which has shown superiority in var-
ious text generation tasks, such as machine trans-
lation and text summarization. More specifically,
CoCoNet copies from the input text at each time
step by selecting what is relevant to the previously
copied word. It keeps track of the prior copying
distribution and explicitly models the correlation
between different source words by integrating se-
mantic and positional correlations. We obtain the
semantic correlations based on the encoder self-
attention matrix as Xu et al. (2020b). Inspired by
Yang et al. (2018), we represent positional correla-
tions as a Gaussian bias, which considers the rela-
tive distances between source words and the scope
of the local context when copying. The framework
of our model is shown in Figure 1.

Furthermore, we enhance CoCoNet through pre-
training with a self-supervised objective of text
span generation with copying on the raw text cor-
pora. Motivated by the work of Zhang et al.
(2020), which has proven that pre-training resem-
bling the downstream task leads to better and faster
fine-tuning performances, we make sure our pre-
training simulates the copying behaviors desired
for the downstream summarization tasks. We di-
vide each sequence in the corpora into two spans
with some overlapping words, and the first span
is used to generate the second in pre-training. We
measure the overlap between the two spans based
on ROUGE scores (Lin, 2004) to ensure that there
are enough words to be generated by copying.

Our main contributions are as follows:

• We propose a Correlational Copying Network
(CoCoNet) for abstractive summarization. It
tracks the copying history and copies the next
word from the input based on its relevance
with the previously copied one.

• We further enhance CoCoNet’s learning of
copying through self-supervised pre-training
on text span generation with copying.

• CoCoNet achieves new state-of-the-art perfor-
mances on news summarization and dialogue

summarization tasks, and experimental results
show that CoCoNet can copy more accurately.

2 Related work

2.1 Copying Mechanism
The copying mechanism is widely used in abstrac-
tive summarization. It allows models to directly
copy words from the input to the output. Vinyals
et al. (2015) present the pointer network that uses
attention distribution to select tokens in the input
sequence as the output. Luong et al. (2015) pro-
pose to copy source words to the target sentence
by a fixed-size softmax layer over a relative copy-
ing range. Gulcehre et al. (2016) leverage the at-
tention mechanism to predict the location of the
word to copy and apply a copying gate to determine
whether to copy or not. Gu et al. (2016) propose
to predict output words by combining copying and
generating modes through a shared softmax func-
tion. See et al. (2017) introduce a copying probabil-
ity to incorporate copying and generating distribu-
tions dynamically. Bi et al. (2020) adopt the copy
mechanism in the language model pre-training. Ex-
isting works do not attempt to calculate the copying
distributions based on the copying history, which
is our focus.

2.2 Temporal Attention Mechanism
Our proposed copying mechanism is partially
inspired by the temporal attention mecha-
nism (Sankaran et al., 2016) that keeps track of
previous attention scores and adjusts the future at-
tention distribution by normalization with historical
attention scores. This model has been proven ef-
fective in the text summarization task (Nallapati
et al., 2016). Similar ideas are also adopted by the
coverage mechanism for image caption (Xu et al.,
2015), machine translation (Tu et al., 2016), and
text summarization (See et al., 2017), maintaining
a coverage vector to record the attention history to
compute future attention distributions. Temporal
attention mechanism is designed to avoid repetitive
or insufficient attentions. While our work aims to
learn a better copying mechanism from the copying
history.

3 Model

3.1 Overview
The input of the text summarization task is a longer
text, x = (x1, x2, ..., xS) of S tokens, and the out-
put is a condensed summary, y = (y1, y2, ..., yT )
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Figure 1: The framework of our model that keeps track of the copying history and copies what is relevant to the
previously copied word. The solid lines in Semantic and Positional Correlation denote stronger correlations than
the dashed lines.

of T tokens. The hypothesis of our proposed
CoCoNet is that the standard attentional copying
mechanism can be enhanced by the copying his-
tory. For example, a source word that is relevant
to the previously copied one is more likely to be
copied at the current time step. We further pre-train
CoCoNet with the objective of text span genera-
tion with copying, which aims to strengthen the
learning of the copying mechanism.

3.2 Transformer-based Seq2Seq Model
We adopt Transformer-based Seq2Seq architec-
ture (Vaswani et al., 2017). The encoder of Trans-
former is a stack of N identical blocks, and each
of them consists of two sublayers: a self-attention
layer and a feed-forward layer. The encoder reads
and converts the input sequence into the encoder’s
hidden states, henc, as follows:

henc = fenc(x) (1)

The decoder has similar structures as the encoder,
stacking M identical blocks consisting of a self-
attention attention layer, an encoder-decoder atten-
tion layer, and a feed-forward layer. The decoder’s
hidden states, henc, are generated given the en-
coder’s hidden states and the previously generated
words, and then we get the generation distribution
based on henc:

hdect = fdec(h
enc, yt−1) (2)

P gent (w) = softmax(WDh
dec
t ) (3)

The maximum likelihood (ML) training objec-
tive aims to minimize the negative log-likelihood
of the parameters as follows:

LML = −
T∑
t=1

log(P gent (yt)) (4)

3.3 Attentional Copying Mechanism
The copying mechanism facilitates the model in
predicting output words by integrating copying and
generating distributions as follows:

Pt(yt) = λt · P gent (w) + (1− λt) · P attCopyt (w)
(5)

where λt denotes the copying probability, and
P attCopyt (w) denotes the exiting copying distribu-
tion that is generally represented as the decoder-
encoder attention by existing works as follows:

Qt,Ki, Vi = hdect WQ, h
enc
i WK , h

enc
i WV (6)

et,i =
QtK

T
i√

dk
(7)

αt = softmax(et) (8)

P attCopyt (w) =
∑

i:xi=w
αt,i (9)

λt = sigmoid(Wλ

∑
i
(αt,i · Vi))

(10)

where dk denotes the number of columns of the
query matrix Qt. Note that for the multi-head at-
tention, we can obtain the copy distributions with
the average of multiple heads.
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3.4 Correlational Copying Mechanism
We propose a correlational copying mechanism that
takes advantage of prior copying distributions and,
at each time step, explicitly encourages the model
to copy the input word that is relevant to the pre-
viously copied one. Our hypothesis comes from
the observation that a cohesive summary typically
has a reasonable language modeling for copying,
especially for some important contents. For exam-
ple, a source word that is relevant to the previously
copied one is more likely to be copied at the cur-
rent time step. As illustrated in Table 1, previously
copied words “just crashed” are indicative for the
following copied words “into a red Honda”. There-
fore, we propose to explicitly learn the language
modeling for copying. We maintain a correlational
copying distribution transferred from the last copy-
ing distribution based on the correlation between
different source words:

P coCopyt (w) =∑
i:xi=w

∑
j:xj∈x

P finalCopyt−1 (xj) · relt(xj , xi)

(11)

relt(xj , xi) = ut · sj,i + (1− ut) · pj,i (12)

ut = sigmoid(WuQt) (13)

where P coCopyt (w) denotes the correlational copy-
ing distribution, and P finalCopyt is the final copy-
ing distribution to predict output words, served as
P attCopyt in Equation 5. relt(xj , xi) denotes the
correlation score between source word xj and xi,
integrating semantic correlation sj,i and positional
correlation pj,i, which we will introduce later. The
above process can be regarded as one step of tran-
sition in the Markov chain, where the correlation
matrix is analogous to the transition matrix. Note
that there is no self-transferring for the correla-
tional copy distribution, and thus, the word already
obtaining a high copy score will not be copied
repetitively.

Then, the correlational copying distribution is
used to adjust the current copying distribution,
which informs the model of the previously copied
one when determining which word to copy now.

P finalCopyt (w)

= gt · P attCopyt (w) + (1− gt) · P coCopyt (w)
(14)

gt = sigmoid(Wg

∑
i
(αt,i + P coCopyt (xi)) · Vi))

(15)

P coCopyt is initialized as a zero vector. In the
next time step, P finalCopyt in Equation 14 serves
as P finalCopyt−1 in Equation 11. In this way, the
copying history is maintained recurrently.

3.4.1 Semantic Correlation
Xu et al. (2020b) propose to obtain the centrality
score for each source word based on the last en-
coder self-attention layer. Following this work, we
represent the semantic correlation between source
words by the encoder self-attention weight:

QEj ,K
E
i = hencj WE

Q , h
enc
i WE

K (16)

ej,i =
QEj (K

E
i )

T

√
dk

(17)

αj = softmax(ej) (18)

sj,i = αj,i (19)

3.4.2 Positional Correlation
Inspired by Yang et al. (2018), we represent the
positional correlation as a Gaussian bias, which
considers the relative distances between different
source words and range of local context suitable
for copying:

pj,i =
1√
2πδj

e

−(pstj−psti)
2

2δ2
j (20)

δj =
|x|
2
sigmoid(WδQj) (21)

where pstj and psti denote the positions for source
word xj and xi, respectively. δj denotes the stan-
dard deviation that conditions on the length of the
source sequence, i.e., |x|.

Different from Yang et al. (2018), we do not ap-
ply the predicted central position, because we argue
that the information of relative position is strongly
associated with the word correlations. In addition,
following Shaw et al. (2018), we perform a relative
distance clipping to improve the generalization of
our model.

3.5 Correlational Copying Pre-training
(CoCoPretrain)

Pre-training with self-supervised objectives on raw
text corpora has demonstrated the effectiveness of
a broad range of text generation tasks (Song et al.,
2019; Dong et al., 2019; Lewis et al., 2020; Zhang
et al., 2020). In this paper, we enhance CoCoNet
through correlational copying pre-training (CoCo-
Pretrain) on text span generation. The process of
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Figure 2: The process of constructing the pre-training data. Given a piece of text, we divide it into an input span
and an output span, and we calculate the overlap score of them by Equation 22. The top-K scored span pairs are
selected.

constructing the pre-training data suitable for cor-
relational copying is as follows, and an example is
shown in Figure 2.

We first divide each sequence in the raw corpora
into two continuous spans, and the first longer span
is used to generate the second in pre-training. We
elaborately select the input text span followed by
the output span by maximizing the overlap between
the input and output. In this way, our CoCoPretrain
objective can be also called overlapped text span
generation.

As a measure for overlap, we adopt ROUGE
F1 score (Lin, 2004) between the input and output
text span. When calculating the ROUGE score, we
consider ROUGE-1, ROUGE-2, ROUGE-L, and
combinations of them such as:

λ1 ·ROUGE−1+λ2 ·ROUGE−2
+ λ3 ·ROUGE−L (22)

Specifically, for fair comparison, we use the
same pre-training data as BART (Lewis et al., 2020)
as our source corpus for CoCoPretrain. We set the
length of the input text span and output span to
128 and 32, respectively, After ranking with the
ROUGE score, we select the top 20M samples as
our final pre-training data.

We believe this data selection strategy towards
pre-training can make sure that there are enough
output words that can be generated by copying
from the input, which resembles the downstream
task and learns our proposed correlational copying
mechanism better.

4 Experiments

4.1 Dataset
For downstream applications, we conduct ex-
periments on the news summarization task with
CNN/DailyMail dataset and on the dialogue sum-
marization task with SAMSum dataset.

CNN/DailyMail dataset (Nallapati et al., 2016)
contains 312K news articles paired with multi-

sentence summaries. We use the non-anonymized
version used in See et al. (2017), which has
287,226 training samples, 13,368 validation sam-
ples and 11,490 test samples.

SAMSum dataset (Gliwa et al., 2019) contains
16K chat dialogues with manually annotated sum-
maries, splited into 14,732 training samples, 818
validation samples, and 819 test samples. We use
the version of the dataset with artificial separa-
tor (Gliwa et al., 2019), in which utterances are
separated with “|”.

4.2 Experimental Settings

For simplicity, we warm-start the model parame-
ters with the publicly released pre-trained BART
(large) model1 with 12 layers in both the encoder
and decoder, and the hidden size is 1024. The
learning rate is set to 3e-5, and learning decay is
applied. We use Adam optimizer with β1 = 0.9,
β1 = 0.999, and ε = 10−8. We use the dropout
with a probability of 0.1 and the gradient clipping
of 0.1. The hyper-parameters are set to the values
used in BART. We use a clipping distance of 16
when computing positional correlation, Our experi-
ments are conducted with 8 NVIDIA A100 GPUs.
We continually pre-train our model with CoCoPre-
train, which converges within 1M steps using a
batch size of 8000. During decoding, we use beam
search with a beam size of 4.

4.3 Experimental Results

We evaluate our model with the official ROUGE
toolkit (Lin, 2004). We report the F1 score of
ROUGE-1, ROUGE-2, and ROUGE-L. Table 2
and Table 3 show the results on CNN/DailyMail
and SAMSum dataset, respectively.

4.3.1 Results on CNN/DailyMail
The first block in Table 2 displays the results of
models without pre-training.

1https://github.com/pytorch/fairseq/tree/master/examples/bart
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Models RG-1 RG-2 RG-L

Methods without Pre-training

Lead-3 40.34 17.70 36.57
PGNet 39.53 17.28 36.38
DRM 39.87 15.82 36.90
Bottom-Up 41.22 18.68 38.34
DCA 41.69 19.47 37.92

Methods with Pre-training

MASS 41.38 19.11 38.42
UniLM 43.33 20.21 40.51
BERTSUMEXTABS 42.13 19.60 39.18
SAGCopy 42.53 19.92 39.44
PEGASUS 44.17 21.47 41.11
T5 43.52 21.55 40.69
ProphetNet 44.20 21.17 41.30
PALM 44.30 21.12 41.41
BART (Reported) 44.16 21.28 40.90
BART (Our implement) 44.12 21.21 40.85
BART + Cont. Pre-train 44.15 21.21 40.87

Pre-trained Models + Copying

BART + AttnCopy 44.26 21.31 40.98
BART + SAGCopy 44.31 21.35 41.00
CoCoNet 44.39 21.41 41.05
CoCoNet - SemCorrelation 44.30 21.33 41.01
CoCoNet - PosCorrelation 44.19 21.27 40.89
CoCoNet + CoCoPretrain 44.50 21.55 41.24

Table 2: ROUGE F1 scores on the CNN/DailyMail
dataset. For a fair comparison, we continue pre-
training BART with the same pre-training data but with-
out copying mechanism (i.e., BART + Cont. Pre-
train).

• Lead-3 baseline that simply selects the first
three sentences in the input document.

• PGNet (See et al., 2017) is a hybrid pointer-
generator model applying an attentional copy
mechanism.

• DRM (Paulus et al., 2018) is a deep reinforced
model with an intra-attention mechanism.

• Bottom-Up (Gehrmann et al., 2018) intro-
duces a content selector that identifies which
phrases in the document should be included in
the summary. The copying is then constrained
to the selected phrases.

• DCA (Celikyilmaz et al., 2018) is a reinforce-
ment learning model with deep communicat-
ing agents, each of which encodes a subsec-
tion of the input text.

The second block are the results of models with
pre-training.

• MASS (Song et al., 2019) pre-trains the
Seq2Seq language model (LM) to predict a
span of masked tokens.

• UniLM (Dong et al., 2019) unifies bidirec-
tional, unidirectional, and Seq2Seq LM pre-
training.

• BERTSUMEXTABS (Liu and Lapata, 2019)
applies BERT in text summarization. It is
a two-stage fine-tuned model that first fine-
tunes the encoder on the extractive summa-
rization task and then on the abstractive sum-
marization task.

• SAGCopy (Xu et al., 2020b) fine-tunes
MASS by incorporating the importance score
for source words into the copying module.

• PEGASUS (Zhang et al., 2020) adopts gap-
sentence generation as the pre-training objec-
tive.

• T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020) are models with denoising
Seq2Seq pre-training.

• ProphetNet (Qi et al., 2020) proposes to si-
multaneously predict the future n-gram at
each time step for pre-training.

• PALM (Bi et al., 2020) incorporates the copy
mechanism into the pre-training model.

First, we can find that the models with pre-
training outperform most of the models without
pre-training, which shows the effectiveness of pre-
training. Second, fine-tuning the BART model with
attentional copying (i.e., BART + AttnCopy) im-
prove the results over the original BART model we
implemented (+ 0.14%/0.10%/0.13% for ROUGE-
1/ROUGE-2/ROUGE-L). To evaluate the self-
attention guided copy model (SAGCopy) (Xu
et al., 2020b), we apply the SAGCopy mech-
anism to the BART model, obtaining superior
results over BART (+ 0.19%/0.14%/0.15% for
ROUGE-1/ROUGE-2/ROUGE-L). By comparison,
the improvement for our proposed CoCoNet model
is larger (+ 0.27%/0.20%/0.20% for ROUGE-
1/ROUGE-2/ROUGE-L), which proves the neces-
sity of the copying mechanism and superiority of
the correlational copying over the attentional copy-
ing (paired t-test, p-value<0.05). Third, continue
pre-training the CoCoNet model (i.e., CoCoNet
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+ CoCoPretrain) leads to the best performance
(+ 0.38%/0.34%/0.39% for ROUGE-1/ROUGE-
2/ROUGE-L over the BART model). When we
continue pre-training BART with the same pre-
training data but without copying mechanism (i.e.,
BART + Cont. Pre-train), the result outperforms
BART with a small margin, indicating that gen-
eral pre-training with selected data is not effec-
tive, and correlational copying is essential for pre-
training. Fourth, we study the effectiveness of se-
mantic and positional correlation between source
words (i.e., SemCorrelation and PosCorrelation,
respectively), we can observe that semantic and po-
sitional correlation are both useful, and depriving
positional correlation decreases the performance
larger.

4.3.2 Results on SAMSum
The results on the SAMSum dataset are shown in
Table 3.

• Longest-3 takes three longest utterances as
the summary.

• Fast Abs RL (Chen and Bansal, 2018) is a
hybrid extractive-abstractive model with the
policy-based reinforcement learning.

• TransformerABS (Vaswani et al., 2017) is
the basic Transformer-based Seq2Seq model
without pre-training.

• DynamicConv (Wu et al., 2018) is a dynamic
convolution model based on lightweight con-
volutions.

• D-HGN (Feng et al., 2020) is a dialogue het-
erogeneous graph network modeling the utter-
ance and commonsense knowledge.

• TGDGA (Zhao et al., 2020) is a topic-word
guided dialogue method based on the graph
attention model.

First, we can find that the models with pre-
training outperform the models without pre-
training to a significant extent, possibly due to the
small size of the dataset. Second, similar to the re-
sults on the CNN/DailyMail dataset, the CoCoNet
has better performances than attentional copying
and self-attention guided copying. Third, continue
pre-training the CoCoNet model (i.e., CoCoNet
+ CoCoPretrain) achieves the best performance
(+ 1.15%/1.41%/1.45% for ROUGE-1/ROUGE-
2/ROUGE-L over the BART model). We can find

Models RG-1 RG-2 RG-L

Baseline Methods

Longest-3 32.46 10.27 29.92
PGNet 37.27 14.42 34.36
Fast Abs RL 41.03 16.93 39.05
TransformerABS 42.37 18.44 39.27
DynamicConv 45.41 20.65 41.45
D-HGN 42.03 18.07 39.56
TGDGA 43.11 19.15 40.49
BART (Our implement) 51.53 26.48 47.22
BART + Cont. Pre-train 51.58 26.49 47.11

Pre-trained Models + Copying

BART + AttnCopy 52.03 26.69 47.55
BART + SAGCopy 52.12 26.82 47.80
CoCoNet 52.28 26.97 48.14
CoCoNet - SemCorrelation 52.21 26.87 48.01
CoCoNet - PosCorrelation 52.16 26.79 47.94
CoCoNet + CoCoPretrain 52.68 27.89 48.67

Table 3: ROUGE (RG) F1 scores on the SAMSum
dataset.

that the improvement is larger than that on the
CNN/DailyMail dataset. Looking into the datasets,
we observe that the copying phenomenon is more
common in the SAMSum dataset, with 14.4% of
the source words reappearing in the target sum-
mary, as opposed to 10.7% in the CNN/DailyMail
dataset. Thus, our proposed CoCoNet can work
more remarkably on the SAMSum dataset.

4.4 Human Evaluation

Since the readability (how easy it is to understand)
and informativeness (how much important infor-
mation is captured) are difficult to measure auto-
matically, three expert annotators are involved to
conduct manual evaluation. They rate the read-
ability and the informativeness of 100 instances
sampled from the test set on a scale of 1 to 5 (with
5 being the best). Results in Table 4 show that
CoCoNet outperforms PGNet and BART models.
For informativeness, CoCoNet receives compar-
ative results as BART, but it shows a significant
increase in readability comparing to BART, sug-
gesting that correlational copying mechanism is
crucial to reducing reading difficulty.

4.5 Effect of Pre-Training Data Selection

We compare various strategies to select pre-training
data according to Equation 22 with different values
of λ1, λ2, and λ3. The results are shown in Figure 3.
Note that the y-axes are normalized by the result
of strategy only using ROUGE-1.

First, we find that strategies based on ROUGE
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CNN/DailyMail Informativeness Readability

PGNet 3.81 3.79
BART 3.97 4.18
CoCoNet + CoCoPretrain 4.01 4.43

SAMSum Informativeness Readability

PGNet 3.78 3.25
BART 4.37 4.25
CoCoNet + CoCoPretrain 4.42 4.56

Table 4: Human Evaluation. Two-tailed paired t-test
p-value<0.01.
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Figure 3: Results of CoCoNet + CoCoPretrain model
with different pre-training data selection strategies.
“RG” is short for “ROUGE”.

are significantly better than Random. Second,
among single ROUGE measurements, ROUGE-1
and ROUGE-2 are slightly better than ROUGE-
L. Third, combining ROUGE-1 and ROUGE-2
with“λ1=1 and λ2=2” achieves the best perfor-
mance. We can conclude that fitting strategies for
pre-training data selection will benefit downstream
summarization tasks, and we adopt “ROUGE-1 +
2 * ROUGE-2” in our work.

4.6 Can Our Model Copy More Accurately?

We have demonstrated that CoCoNet improves the
summarization model qualitatively and quantita-
tively. But has our model learned to copy more ac-
curately (especially for the consecutive copying)?
Figure 4 shows that the summaries generated by our
CoCoNet+CoCoPretrain model contain a higher
rate of “correct” n-grams (i.e., those that appear
both in the input text and reference summary), in-
dicating that learning to copy from the copying
history is beneficial to consecutive copies.

On the other hand, we investigate whether our
model triggers the over-copying problem (when
source words are unnecessarily copied). We find
that the average numbers of over-copied words for
BART and CoCoNet + CoCoPretrain are 35.29
and 33.19 on CNN/DailyMail, 8.21 and 7.84 on
SAMSum, showing that our model can alleviate
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(a) Results on CNN/DailyMail
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(b) Results on SAMSum

# model copied
# reference copied

# model copied
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Figure 4: The rate of correctly copied n-grams.

Dialogue
Ernest: hey Mike , did you park your car on our street?
Mike: no, took it into garage today
Ernest: ok good
Mike: why?
Ernest: someone just crashed into a red Honda looking

just like yours
Mike: lol lucky me
Reference
Mike took his car into garage today. Ernest is relieved
as someone had just crashed into a red Honda which
looks like Mike’s.
Result of BART
Mike took his car to the garage today. Someone crashed
into his car.
Result of CoCoNet
Mike took his car into the garage today. Someone
crashed into a red Honda looking like his car.

Table 5: Case study.

over-copying.

4.7 Case Study

Table 5 illustrates an example from the SAMSum
dataset. BART generates a summary that is con-
tradictory to the dialogue, saying “Mike’s car is
crashed”. In fact, the crashed car just looks like
Mike’s. By contrast, CoCoNet successfully cap-
tures the correlation between “crashed into” and
“a red Honda looking like”. As a result, CoCoNet
copies the correct information (highlighted) from
the source text through correlational copying and
expresses exactly the same idea as the reference.

5 Conclusion

We propose CoCoNet that can take advantage of
prior copying distributions and encourage the de-
coder to copy the source word that is relevant to
the previously copied one. We further enhance the
copying ability through pre-training with the objec-
tive of text span generation. Our model gains new
state-of-the-art results on the news summarization
and dialogue summarization tasks.
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