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Abstract

Sentence fusion is a conditional generation
task that merges several related sentences into
a coherent one, which can be deemed as a sum-
mary sentence. The importance of sentence fu-
sion has long been recognized by communities
in natural language generation, especially in
text summarization. It remains challenging for
a state-of-the-art neural abstractive summariza-
tion model to generate a well-integrated sum-
mary sentence. In this paper, we explore the ef-
fective sentence fusion method in the context
of text summarization. We propose to build
an event graph from the input sentences to ef-
fectively capture and organize related events
in a structured way and use the constructed
event graph to guide sentence fusion. In ad-
dition to make use of the attention over the
content of sentences and graph nodes, we fur-
ther develop a graph flow attention mechanism
to control the fusion process via the graph
structure. When evaluated on sentence fusion
data built from two summarization datasets,
CNN/DaliyMail and Multi-News, our model
shows to achieve state-of-the-art performance
in terms of Rouge and other metrics like fusion
rate and faithfulness.

1 Introduction

Sentence fusion aims to combine several related
sentences into a single coherent text. It is impor-
tant in many NLP tasks such as text summariza-
tion, question answering and retrieval-based dia-
logue. In text summarization, it is a common prac-
tice for a proficient editor to fuse the information
from several related sentences, however, it remains
challenging for a state-of-the-art neural abstrac-
tive summarization model to achieve effective sen-
tence fusion. As pointed out in (Lebanoff et al.,
2019a), the human-written summaries contain 32%
fusion sentences on the CNN/DailyMail dataset,

1These authors contributed equally to this work.

Fused Sentence:
Johnny Kemp is “believed to have drowned at a beach in Montego
Bay,” police say. 

Source Sentences:
(A) Bahamian R&B singer Johnny Kemp, best known for the 1988
party anthem “Just Got Paid,” died this week in Jamaica.
(B) The singer is believed to have drowned at a beach in Montego Bay
on Thursday, the Jamaica Constabulatory Force said in a press release.

Disparate Sentence Fusion 

Similar Sentence Fusion

Source Sentences:
(A) Meng Wanzhou, Huawei’s chief fifinancial offificer and deputy
chair, was arrested in Vancouver.
(B) Canadian officials have arrested Meng Wanzhou on Dec. 1
Fused Sentence:
Meng was arrested in Vancouver on Dec. 1 by Canadian officials.

Figure 1: Examples of two types of sentence fusion in
text summarization.

while only 6% of the summary sentences gener-
ated by the Pointer-Generator model (See et al.,
2017) are shown to fuse the information spread
over sentences. Besides, without proper guidance,
many sentences generated by fusion contain fac-
tual errors. Therefore, it is worthwhile to explore
effective sentence fusion methods in the context of
text summarization.

In fact, the importance of sentence fusion has
long been recognized by researchers in the text
summarization community. As shown in Figure 1,
the researchers have been concerned with two types
of sentence fusion task in the past. One is similar
sentence fusion and the other one is disparate sen-
tence fusion. For similar sentence fusion, a word
graph or a dependency tree is often explored to
find a coherent fusion path (Marsi and Krahmer,
2005; Filippova and Strube, 2008; Thadani and
McKeown, 2013). For disparate sentence fusion,
the coreference relations are typically considered
as the key to tie the sentences together (Lebanoff
et al., 2020b,a). Although both types of sentence
fusion benefit text summarization, especially multi-
document summarization, the solutions are rarely



4076

proposed to deal with the two types together. In this
paper, we propose to apply the structured event in-
formation to guide the two types of sentence fusion
in a unified framework.

We address the challenge of sentence fusion by
building an event graph to capture the semantic
relationships among the input sentences. The event
graph is a directed graph composed of the nodes
representing the predicate and event arguments and
the edges that connect these event components to-
gether. Compared to the word graph or the depen-
dency tree, the event graph provides more informa-
tive event-level (or to say entity-level) information.
Meanwhile, it maintains the semantic integrity of
each node, which allows us to add additional edges
to represent some crucial relationships in disparate
sentence fusion like co-reference. Such a struc-
tured representation is capable of preserving inher-
ent event information and meanwhile formulating
cross-sentence information such as entity interac-
tions and proximity of relevant concepts.

With the target to guide sentence fusion, we de-
velop a decoder that utilizes the information from
both the sentence sequence and the event graph
equipped with different attention mechanisms. We
employ sequence attention and graph attention to
determine what information is important to be se-
lect to generate the appropriate word token at each
decoding step. Note that sentence fusion requires
not only selecting the right salient information but
also organizing the selected information logically
and orderly. Otherwise, the models may tend to
randomly combine the key event components or
simply copy the most important text span. To this
end, we develop a graph flow attention to explore
potential fusion paths via the graph structure and
control the fusion process. Moreover, how to avoid
factual errors in a fused sentence is also a critical is-
sue in sentence fusion. Inspired by (Scialom et al.,
2020), we incorporate faithful beam search at the
inference stage to reduce possible factual errors.
This allows the model to remove the unfaithful
candidate output sequence during the generation
process by refining the generation probability with
a faithful score.

Since there is no available dataset to evaluate the
effectiveness of the sentence fusion models in the
context of text summarization, following previous
work (Lebanoff et al., 2020b), we automatically
generate sentence fusion data from summarization
datasets including CNN/DaliyMail (Hermann et al.,

2015) and Multi-News (Fabbri et al., 2019). The
experiments show that our proposed model indeed
improves Rouges and the other metrics like faith-
fulness and the fusion rate. The contribution of our
work can be summarized as follows:

(1) We propose a model to address both simi-
lar sentence fusion and disparate sentence fusion,
which are critical for abstractive summarization.

(2) We build an event graph to guide sentence
fusion, which allows our model to utilize the struc-
tural event information and various cross-sentence
relations.

(3) We innovatively apply a graph flow attention
to control the fusion process via the graph structure.

2 Related Work

2.1 Sentence Fusion in Text Summarization

Sentence fusion has been considered as an essen-
tial step for generating abstractive summaries. Its
importance has long been recognized in the tradi-
tional text summarization research (Barzilay et al.,
1999). The early attempts mainly focus on fusing a
set of similar sentences (Marsi and Krahmer, 2005;
Filippova and Strube, 2008; Elsner and Santhanam,
2011; Thadani and McKeown, 2013). They of-
ten build a dependency graph or a word graph
from multiple similar sentences, and then adopt
linear programming to generate the fused sentence
from the graph. Recently, (Lebanoff et al., 2019a)
conducts a comprehensive analysis of sentence fu-
sion in neural abstractive summarization and finds
that it remains a challenge for current state-of-the-
art models. To address this problem, (Lebanoff
et al., 2020a,b) propose to utilize points of corre-
spondence between sentences to fuse disparate sen-
tences, and develop a transformer enhanced with
the links between the co-referred entities. Simi-
lar to above-mentioned works, our research also
focuses on the research of sentence fusion in the
context of text summarization.

Moving beyond sentence fusion alone, (Mehdad
et al., 2013; Lebanoff et al., 2019b) discusses the
potential application scenarios for enhancing text
summarization with sentence fusion. Their models
follow a similar framework that first extracts a few
related sentences from the source document and
then fuses them to obtain a summary sentence. Our
model can be considered as a better replacement of
the fusion model in such a framework.
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Figure 2: The framework of our proposed sentence fusion model. The various colors in the left refer to nodes and
corresponding event components, while dotted lines represent how information disseminates in the BERT attention
layer. In the middle part, different gray scales stand for different levels of attention on the tokens or nodes.

2.2 Event-aware Generation Model
Currently, in the conditional generation tasks like
text summarization and question answering, most
of the source documents are usually composed of
a series of events. Understanding how to leverage
event information in these generation models be-
comes crucial. (Moryossef et al., 2019) learns to
generate a fluent sentence with an input subject-
verb-object triple that describes an event. (Huang
et al., 2020) transfers event triples extracted with
OpenIE to an event graph to acquire semantic in-
terpretation over input to assist text summariza-
tion. (Zheng and Kordjamshidi, 2020) adopts an
event graph to understand the path of multi-hop
reasoning in question answering. To control the
generation process and avoid factual errors, (Cao
et al., 2017) proposes an additional event relation
encoder to produce representations of event triples.
Considering the importance of the relations be-
tween events in sentence fusion and inspired by
the above-mentioned works, we adopt the event
graph to guide sentence fusion.

3 Method

Our sentence fusion model follows the typical
encoder-decoder architecture, as shown in Figure 2.
It is composed of a joint encoder that produces both
source sentences and event graph representations,
and a decoder that incorporates the information
from the source sentences and the event graph to
generate a fused sentence.

3.1 Event Graph Construction
The event graph is built to capture the semantic
relationships in the source sentences. We utilize

AllenNLP-OpenIE (Stanovsky et al., 2018) to ex-
tract a set of events, where each event is composed
of a predicate and an arbitrary number of argu-
ments. When there is an overlap between two
events, only the longer one is retained. These pred-
icates and arguments are represented as the nodes
in the event graph. When two nodes share the same
content, we merge them into one. The graph is a
directed graph. Two types of edges are considered.
(1) Directional edges connect a predicate and its
corresponding arguments in an event and the direc-
tion follows the order of subject to predicate and
predicate to other arguments. (2) Bi-directional
edges connect two nodes if they share the same
entity or there is a coreference relation between
them.

3.2 Encoder

We apply a BERT-based encoder to jointly gener-
ate contextualized representations of the tokens in
concatenated input sentences and the nodes in the
event graph. Each node is represented by a special
[cls] token and the output representation of this to-
ken is considered as the representation of the node.
The input of our encoder is the concatenation of
sentence tokens and a set of graph node tokens.
Since each node only corresponds to several words
in the input sentences, one node token will only be
attended by the sentence tokens that belong to this
node in the attention layer of BERT. To distinguish
the two kinds of tokens, we assign two different
segment embeddings to sentence tokens and node
tokens. Since there is no sequential relationship
between nodes, we initialize the positional embed-
ding for node tokens as a special pad embedding.
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We use an additional mask matrix M similar to
the one presented in (Yuan et al., 2020) to control
the attention of the BERT-based encoder. Mij =
0 means token i is allowed to attend to j, while
Mij = −∞ prohibits i from attending to j. In our
model, three possible situations can happen: (1) a
sentence token attends to all other sentence tokens;
(2) a sentence token attends to its corresponding
graph node token; (3) a node token attends to other
adjacent nodes on the event graph. After defining
the mask matrix M , we calculate attention with
Equation (1) below, where Q, K and V refer to the
query matrix, the key matrix and the value matrix,
respectively, dk is a scaling factor.

Attention(Q,K, V ) = softmax(
QKT +M√

dk
)V

(1)
In our preliminary study, we have also consid-

ered using the graph neural network as the encoder
for the event graph, but we find that the current
approach achieves a better result.

3.3 Decoder

Overview of the Decoder. The decoder aims to
generate the fused sentence utilizing both the (sen-
tences) sequence information and the (event) graph
information. We employ a one-layer LSTM as the
decoder with the hidden state st at step t. The de-
coder generates tokens recurrently based on three
types of attentions, i.e., the sequence attention, the
graph attention and the graph flow attention.

Sequence Attention. At each decoding step t,
we calculate the context vector cst over a sequence
of input sentences using the attention mechanism
proposed in (Bahdanau et al., 2014). We also em-
ploy a coverage mechanism to avoid redundancy.

cst =
∑
k

ast,khk (2)

ast,k = softmax(Wktanh(W1st +W2hk +W3Cov))

(3)
where hk represents the token representation ob-
tained from the encoder, Cov refers to the coverage
vector generated at the last step.

Graph Attention. The graph attention applies
the mechanism analogous with the sequence at-
tention but to the node embedding vi and current
hidden state st to compute the attention score. The
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Figure 3: Calculation process of graph flow attention.

graph vector cgt is computed over the node embed-
dings with attentions.

cgt =
∑
i

agt,ivi (4)

agt,i = softmax(Wvtanh(W4st +W5vi)) (5)

Graph Flow Attention. When the graph struc-
ture is ignored during the decoding process, the
graph attention tends to reflect the importance of
individual nodes rather than the connections be-
tween nodes. We thereby propose a novel graph
flow attention to explore potential fusion paths by
capturing the content coherence embedded in the
graph structure. The graph flow attention is de-
signed to inherit the attention tendency of nodes
from the previous decoding step and focuses on
neighboring nodes at the current step.

The attention tendency of nodes is expected to
be strongly correlated to the output of the decoder.
In this way, the model can maintain the coherence
between the generated tokens and the nodes fo-
cused by the graph flow attention. Considering the
graph attention is not fully synchronized with the
decoding process, the following situation may hap-
pen. It first focuses on one node, and then teleport
to another one far from the current node across
the two consecutive decoding steps. Therefore, we
choose to compute the distribution of attention ten-
dency of nodes in the last step apt−1 based on the
sequence attention in the last decoding step. Sup-
pose Map ∈ i× j is the mapping matrix between
tokens and nodes, where Mapij = 1 denotes that
the i token in the source sequence is in the j node
of the event graph. The apt−1 is then calculated
based on the following equation.

apt−1 = softmax(MapTast−1) (6)
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Given the adjacent matrix A of the event graph,
the i row refers to the normalized in-degree of the
node i. As shown in Figure 3, the graph flow atten-
tion transmits apt−1 in the following three ways:

(1) Remain in the previous node ft,0 = apt−1.
Since one node usually contains multiple tokens,
the model may focus on the same node in several
steps.

(2) Move one step ft,1 = Aapt−1. For example,
the attention moves from one node to its neighbor.

(3) Move two steps ft,2 = A2apt−1. The atten-
tion is allowed to skip a middle connection node.

The graph flow attention is then the weighted
sum of the scores of the three flows controlled by a
dynamic gate Gatet ∈ 1× 3. And the graph flow
vector cft is computed by the following equation.

cft =
∑
i

aft,ivi (7)

aft =
2∑

h=0

ft,hGatet,h (8)

Gatet = softmax(Wf tanh(W6st +W7
∑
i
apt−1,ivi))

(9)

Token Prediction. After obtaining the three vec-
tors from the input sequence and the graph, we re-
gard them as the representations of the information
summarized from different points of view. Then
they are concatenated with the decoder hidden state
st to produce the vocabulary distribution Dvocab as
follows.

Dvocab = softmax(Wout[st; c
s
t ; c

g
t ; c

f
t ]) (10)

We add a copy mechanism to directly copy words
from source text based on the sequence attention.
The copy probability is:

pcopy = sigmoid(Wcopy[yt−1; st; c
s
t ; c

g
t ; c

f
t ])

(11)
where yt−1 denotes the embedding of the token
predicted at step t− 1.

3.4 Training
Generation Loss. With the generation loss, the
training goal is to maximize the estimated proba-
bility of the reference sequence. Following most
current works, we adopt the maximum likelihood
training objective function that minimizes the fol-
lowing loss.

Lseq = −
1

|D|
∑

(x,y,g)∈D
logp(y|x, g; θ) (12)

where θ represents model parameters and D stands
for the training data including source sentences x,
reference sequence y, and event graph g.

KL Loss. Our preliminary study reveals that sim-
ply concatenating the graph vector and graph flow
vector in the decoding process fails to achieve a
good performance. We figure out that it is difficult
for a model to obtain effective information from
two disparate vectors. Therefore, we introduce an-
other training objective that computes the KL loss
between the graph attention and the graph flow
attention. In this way, the two attentions take ad-
vantage of each other. The KL loss is shown below
and T is the total number of decoding steps.

Lkl = −
1

|D|T
∑
D

∑
t∈T

KL(agt ||a
f
t ) (13)

Node Salience Labeling. We further enhance
the node representation via the third objective that
models the salience of nodes. The goal of it is to
identify whether the non-stop words in a node are
mentioned in the reference fused sentence. We in-
corporate a classification layer over each node vi
above the joint encoder to predict a probability mi

ranged in [0,1]. During training, the gold label ni
is set to 1 if the node contains at least one non-stop
word in the reference, and 0 otherwise. The loss
function is shown below.

Lnode = −
1

Nv

∑
i

(nilog(mi)+(1−ni)log(1−mi))

(14)
where Nv is the number of the nodes in the graph.
To summarize, the full training objective function
consists of three terms: L = Lseq + Lkl + Lnode.

3.5 Faithful Beam Search
Inspired by (Scialom et al., 2020), we propose faith-
ful beam search to reduce possible factual errors
at the inference stage. Given a factual consistency
checking model F and a sentence fusion model G,
the goal is to re-rank every generated token based
on both the generation probability calculated by
G and the faithful score derived from F . In our
work, we adopt the FactCC model developed by
(Kryscinski et al., 2020), a BERT-based faithful-
ness checking model, to evaluate faithfulness. The
input to FactCC consists of a hypothesis sentence
and several source sentences, while the output from
FactCC is a probability that refers to whether the
hypothesis sentence is faithful to the source sen-
tences. Since what we need here is to verify the
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faithfulness of an incomplete fused sentence dur-
ing the decoding process, we made a corresponding
change when training FactCC with sentence fusion
data. We truncate all the fused sentences in pos-
itive samples to random length. For the negative
samples, we remove the tokens after the position of
the error in fused sentences. At the inference stage,
the objective function aims to maximize the cumu-
lative probability of the output tokens. At each
decoding step, the top-b sequence with the highest
probability is carried into the next step, where b
stands for the beam size. We add an additional
faithful score to refine the generation probability
during beam search, such that:

S(yt) = S(yt−1)+αlogF (x, y)+logG(x, y1:t−1)
(15)

where y refers to the generated sequence, x rep-
resents the source sentences and α is a weighting
factor. F and G stand for the consistency checking
model and the sentence fusion model respectively.
In the experiments, the α is set to 0.05.

4 Experiments

4.1 Experimental Set-Up
Datasets: We follow the practice of (Lebanoff
et al., 2019b) to sample the sentence fusion data
from summarization datasets. We choose the well-
known single-document summarization dataset
CNN/DaliyMail and multi-document summariza-
tion dataset Multi-News for the purpose of evalua-
tion. With the CNN/DaliyMail dataset, the fusion
data is directly obtained according to the set of
heuristics suggested in (Lebanoff et al., 2020a),
which we call CNN/DaliyMail Fusion. With the
Multi-News dataset, we use a strategy similar to
the one proposed in (Lebanoff et al., 2020a) to gen-
erate the fusion data, which we call Multi-News
Fusion. Note that there is a 60-70% compression
rate on both sentence fusion datasets. Hence, they
are different from the one proposed by (Geva et al.,
2019) where the compression rate is lower than 5%.
This explains why we create the sentence fusion
data generated from summarization datasets rather
than using the existing one.

Evaluation Metrics: Sentence fusion can be ap-
proximately regarded as multi-sentence summa-
rization. Following the common practice, we adopt
ROUGE F1 as the basic evaluation metric. We
also apply FactCC (Kryscinski et al., 2020) to
evaluate faithfulness (Fai) automatically. FactCC

CNN/DaliyMail Fusion Train Validate Test

Number 107347 5948 5100
Source length 53.8 53.5 53.2
Target length 16.3 16.3 16.4

Multi-News Fusion Train Validate Test

Number 19984 2496 2512
Multi / Single 9402/10582 1184/1312 1124/1388
Source length 72.5 71.5 72.4
Target length 28.5 28.6 28.6

Table 1: Statistic of CNN/DaliyMail Fusion dataset
and Multi-News Fusion dataset. Multi/Single indicates
whether the source sentences are from multiple docu-
ments or a single document.

is trained on the CNN/DaliyMail Fusion dataset
and the Multi-News Fusion dataset following the
method presented in the original paper. It achieves
90% of accuracy on the test set of two sentence
fusion datasets and we believe that it is reasonably
good for our evaluation. Note that it is distinct from
the one used in our faithful beam search, where the
fused sentences are not modified in the training.
Besides, we also report the results of another two
metrics, including (1) fusion rate (Fus), which is
the percentage of the fused sentence that contain
at least two unique non-stop words from multiple
source sentences; and (2) length (Len), which is
the average length of the fused sentences.

Implementation Details: We build the encoder
using the BERT-base-uncased version of BERT. We
employ the LSTM models with 768-dimensional
hidden states as the decoder. We truncate the input
sentences to 150 tokens and limit the decoder to
a maximum of 60 steps. The batch size is set to
32 and we train the model for 20 epochs. After
training, we select top-3 checkpoints on the valida-
tion dataset, and report the one with the best record
on the test set among the three. For inference, the
beam size is set to 5 in CNN/DaliyMail Fusion and
2 in Multi-News Fusion.

4.2 Automatic Evaluation

To examine the effectiveness of our model, we com-
pare our model with two widely adopted seq2seq
baseline models. They are Pointer-Generator
(See et al., 2017) and BERT+LSTM, which is
our basic encoder-decoder architecture before in-
tegrating the graph information. We also imple-
ment the state-of-the-art sentence fusion model
for comparisons. Tranformer-Linking (Lebanoff
et al., 2020a) is a BERT based model proposed
for disparate sentence fusion. It utilizes coref-
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CNN/DaliyMail Fusion Rouge-1 Rouge-2 Rouge-L %Fai %Fus #Len

Concat-Baseline 37.29 20.06 28.77 100 100 53.07
Random-Baseline 36.25 17.64 30.72 100 - 26.10

Pointer-Generator 33.37 16.29 29.51 80.13 31.37 13.79
BERT+LSTM 37.56 19.50 33.59 88.77 45.66 16.65
BERTSUMABS 37.96 19.32 33.36 86.17 60.24 16.34
Transformer-linking 39.79 21.08 35.35 90.68 59.42 15.78

Our Model 39.30 21.03 35.12 91.56 61.30 15.12

Multi-News Fusion Rouge-1 Rouge-2 Rouge-L %Fai %Fus #Len

Concat-Baseline 48.63 32.95 36.56 100 100 71.28
Random-Baseline 44.60 27.04 37.16 100 - 31.48

Pointer-Generator 49.01 31.57 40.65 81.45 44.39 29.28
BERT+LSTM 50.93 33.99 43.00 85.84 48.30 26.16
BERTSUMABS 51.85 31.60 44.62 78.32 56.48 26.32

Our Model 53.06 36.02 45.40 89.31 59.82 25.36

Table 2: Automatic evaluation on Rouge, faithfulness(Fai), fusion rate(Fus), and generated sentence length (Len).

erence relationships between entities to enhance
sentence fusion. Since our data can be approx-
imately regarded as multi-sentence summariza-
tion, we also adopt BERT based document summa-
rization model, BERTSUMABS (Liu and Lapata,
2019), for comparisons. Most of these models are
trained on the two sentence fusion datasets by our-
selves except that the output result of Transformer-
Linking is directly obtained from its author.

As shown in Table 2, our proposed model ob-
tains the highest Rouge scores on the Multi-News
Fusion dataset and the competitive Rouge scores
on the CNN/DaliyMail Fusion dataset. Meanwhile,
our model achieves the best performance in fu-
sion rate and faithfulness on both datasets. These
suggest the effectiveness of our model in fusing
sentences and its ability to reduce factual errors.
We also notice that the transformer decoder has a
clear advantage over the LSTM decoder in fusion
rate. One possible reason is that the transformer
decoder can generate a more abstractive sentence,
which makes fusion a lot easier. Considering our
model adopt a LSTM based decoder, we believe the
event graph effectively assists the fusion process
by providing cross-event connections and reduce
the shifting distance between event components.

4.3 Ablation Study
To look into more detail, we design an experiment
to understand how different components contribute
to our model. We remove the KL loss, the graph at-
tention and the graph flow attention independently
from the full model and report the results in Ta-

Model R-1 R-2 R-L %Fai %Fus

Our Model 53.06 36.02 45.40 89.31 59.82
- KL loss 52.63 35.63 45.42 87.10 55.52
- Flow Attention 52.71 35.97 45.37 88.79 51.42
- Graph Attention 52.81 35.94 45.22 86.62 56.13

Table 3: The results of ablation study on Multi-News
Fusion test set.

ble 3. On the one hand, we find that the graph flow
attention boosts the fusion rate. We believe that the
flow attention indeed benefits the fusion process
when utilizing the graph structure to find possible
fusion paths. On the other hand, the graph attention
leads to relatively high Rouge scores but a lower
fusion rate. This suggests that although the graph
attention does not contribute to sentence fusion, it
assists to select important information from source
sentences. More importantly, when the KL loss
is taken out, the model performance drops more
compared to the other two reductions. It indicates
that the KL loss is essential for our model to take
advantage of both attentions.

4.4 Human Evaluation

Automatic evaluation results are often not enough
to fully reflect the quality of the generated fused
sentence. We further conduct human evaluation to
analyze unfaithful errors and fusion quality. We
randomly extract 50 samples from the Multi-News
Fusion test set and invite three fluent English speak-
ers as human judges. Given a sentence fusion in-
stance, the judges are asked to answer yes or no to
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Source:
(1) Police identified the rite aid shooter as Snochia Moseley,
26, who lived in the marsh neighborhood of Baltimore.
(2) The shooter was found with a self-inflicted gunshot
wound and died at an area hospital.
(3) The woman died at a nearby hospital after shooting
herself in the head.

BERT+LSTM: Police say the shooter as Snochia Moseley,
26, was found with a self-inflicted gunshot wound and died
at an area hospital.

BERTSUMABS: The woman, who died at a hospital, was
found with a self-inflicted gunshot wound and died at an
area hospital.

Our: Snochia Moseley was found with a self-inflicted gun-
shot wound and died at a nearby hospital after shooting
herself in the head.

Reference: Police say the 26-year-old woman, who has not
been identified, died of a self-inflicted gunshot wound to
the head.

Table 4: Examples from the Multi-News Fusion test
dataset.

Model %Fluency %Fusion %Faithful

BERT+LSTM 85.3 51.3 56.7
BERTSUMABS 81.3 56.7 40.0
Our Model 88.7 58 58.6

Table 5: The results of the human evaluation on Multi-
News Fusion test set.

the following three questions. (1) Fluency: whether
the generated sentence is grammatically correct and
readable. (2) Fusion: whether the generated sen-
tence is generated through sentence fusion. (3)
Faithful: whether the generated sentence is faithful
to the source sentences. Table 5 shows the percent-
age of yes on the three questions. We adopt Fleiss’
kappa (Fleiss, 1971) to conduct the inter-annotator
agreement test and the result is 0.53. The result
shows a similar trend to the automatic evaluation,
where our model achieves the best result in both
fusion rate and faithfulness. The performance of
BERTSUMABS further indicates that sentence fu-
sion will lead to the decline of fluency and more
faithful errors if there is no proper guidance.

We illustrate a sentence fusion example that con-
tains both similar and disparate sentence fusion in
Table 4. As shown, BERT+LSTM tends to fuse
sentences by directly copying the text spans from
the source text. BERTSUMABS attempts to utilize
the coreference relations between "the shooter" and
"the woman" to fuse the last two source sentences,
but generates redundancy when merging similar

Rouge-1 Rouge-2 Rouge-L

Oracle 51.67 29.12 48.06
Oracle_all 48.92 26.43 45.42
Fusion 52.14 29.19 48.62

Table 6: The result of sentence fusion application on
CNN/DaliyMail test set.

content. On the contrary, our model successfully
fuses the information from all source sentences. It
shows that our model can effectively handle both
types of sentence fusion at the same time.

4.5 Application in Text Summarization

We further design an experiment to investigate the
effectiveness of the sentence fusion model in text
summarization using a framework from (Lebanoff
et al., 2019b). It aims to extract a single sentence
(no need for fusion) or a pair of sentences (need
fusion), then rewriting them to produce a summary
sentence. Each sentence pair consists of a pri-
mary sentence and a secondary sentence provides
complementary information. We use the oracle
extractive results as input to conduct the genera-
tion experiment. Table 6 shows the summarization
results with three different strategies: (1) Oracle:
concatenating oracle single sentences and primary
sentences in oracle pairs as the summary; (2) Ora-
cle_all: concatenating oracle single sentences and
both sentences in oracle pairs as the summary; (3)
Fusion: concatenating oracle single sentences and
fused sentences as the summary, where the fused
sentences are generated by our model using oracle
pairs as input. All the summaries are truncated
to 100 words. The result shows that the sentence
fusion model has the potential to improve the per-
formance of summarization models by fusing in-
formation from multiple sentences.

5 Conclusion

In this paper, we investigate the sentence fusion
problem in the context of text summarization by
exploring the event graph. Our model captures
both node representations and the structural infor-
mation embodied in the event graph to guide the
fusion. We further propose a faithful beam search
to reduce the possible faithful errors. The experi-
ment results suggest that event graph is crucial for
effective sentence fusion and both node represen-
tations and graph structure play important roles in
sentence fusion. In the future, we would like to
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further explore the direct incorporation of event
information and the sentence fusion model to text
summarization.
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