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Abstract
Sentence extractive summarization shortens a
document by selecting sentences for a sum-
mary while preserving its important contents.
However, constructing a coherent and informa-
tive summary is difficult using a pre-trained
BERT-based encoder since it is not explicitly
trained for representing the information of sen-
tences in a document. We propose a nested
tree-based extractive summarization model on
RoBERTa (NeRoBERTa), where nested tree
structures consist of syntactic and discourse
trees in a given document. Experimental re-
sults on the CNN/DailyMail dataset showed
that NeRoBERTa outperforms baseline mod-
els in ROUGE. Human evaluation results
also showed that NeRoBERTa achieves signifi-
cantly better scores than the baselines in terms
of coherence and yields comparable scores to
the state-of-the-art models.

1 Introduction

Document summarization is a task of creating a
concise summary from a given document while
keeping the original content. In general, sentence
extraction methods, which select sentences in a doc-
ument to create its summary, have the advantages
of truthfulness compared with abstractive methods
(Cao et al., 2018) and of fluency compared with
word extraction methods (Xu et al., 2020).

Neural networks have achieved great success in
sentence extraction-based document summariza-
tion (Cheng and Lapata, 2016; Zhou et al., 2018).
Recently, Liu and Lapata (2019) proposed BERT-
SUM, which utilizes BERT (Devlin et al., 2019)
for sentence representations to create a summary.
Although the use of BERT resulted in significant
performance improvement, this method decides
the selection for each sentence independently. Xu
et al. (2020) proposed DISCOBERT by consider-
ing inter-sentence information through discourse
graphs to construct a coherent summary. Although
they achieved remarkable scores in ROUGE, it was

⋯
𝑤!"⋯𝑤!!𝑤!#

⋯
𝑤#"⋯𝑤#!𝑤##

𝑟𝑜𝑜𝑡#

⋯
𝑤$"⋯𝑤$!𝑤$#

𝑆#

𝑟𝑜𝑜𝑡! 𝑟𝑜𝑜𝑡$⋯
⋯

0 1 0

⋯

Intra 

𝑆! 𝑆$

(D
iscoB

E
R
T)

Inter

(N
eR
oB
E
R
Ta)

N
ested

(1: select, 0: delete)

Figure 1: Different from the previous work, DIS-
COBERT (Xu et al., 2020), NeRoBERTa selects sen-
tences by considering both intra- and inter-sentence re-
lationships as a nested tree structure.

still difficult to construct a coherent summary com-
pared to BERTSUM in human evaluation. Zhong
et al. (2020) attempted to change the paradigm
by formulating summary-level extraction with a
RoBERTa encoder and achieved the state-of-the-
art results on the CNN/DailyMail dataset.

In spite of the successful results of the above
BERT-related methods, their sentence representa-
tions have room for improvement. As Liu et al.
(2019) reported, “[CLS]”, a pre-defined token for
indicating sentence representations on BERT, is
insufficient to express sentence information. Even
in RoBERTa, it is also a problem due to the lack
of next sentence prediction in its pretraining step.
Therefore, for further improving summarization
performance, we need to consider how to repre-
sent sentences in a BERT-related model and how to
capture relationships between such sentence repre-
sentations. It is a key to create a coherent and infor-
mative summary with sentence extraction methods.

To tackle this problem, we propose a nested
tree-based extractive summarization model on
RoBERTa (NeRoBERTa). NeRoBERTa can extract
coherent sentences for a summary of a given doc-
ument by utilizing nested tree structures1 of two

1Kikuchi et al. (2014) considered the nested tree struc-
ture in the traditional non-neural tree-trimming method. Their
method extracted words by tracking their parent words and
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different trees, syntactic and discourse dependency
trees (Zhao and Huang, 2017). Figure 1 shows the
proposed NeRoBERTa to select sentences from
a given document. Different from the previous
works that focused on inter-sentence information
using discourse graphs (Ishigaki et al., 2019; Xu
et al., 2020), NeRoBERTa considers both intra- and
inter-sentence information (syntactic and discourse
graphs) together as a nested tree. The nested tree is
encoded as a vector space representation through a
graph attention network (Veličković et al., 2018) on
a BERT-based encoder. In this tree, we can explic-
itly represent sentence information at “root” words
for each syntactic dependency tree without relying
only on “[CLS]” tokens.

This representation is useful to extract informa-
tive and coherent sentences in that it can capture
keywords in a sentence for considering textual co-
herence to other sentences. Furthermore, based
on the representation, we can also capture inter-
actions between sentences through discourse de-
pendency trees, succeeding in extracting coherent
sentences. It is also possible to consider even long-
distance relationships as higher-order dependency
relationships in this structure, such as relation-
ships between children and their ancestors. Thus,
NeRoBERTa considers textual coherence through
both syntactic and discourse trees to capture long-
distance interactions between sentences.

Experimental results on the CNN/DailyMail
dataset showed that our NeRoBERTa outperforms
RoBERTa-based strong baselines in ROUGE. Un-
like the previous work (Xu et al., 2020), NeR-
oBERTa successfully constructs a coherent sum-
mary and is comparable to the state-of-the-art meth-
ods in human evaluation.

2 Nested Tree Structure

In this section, we describe how we construct two
different types of graphs for a nested tree structure:
a discourse graph and a syntactic graph.

We obtain discourse dependency relationships
between sentences in a document through an RST
parser. A given document can be parsed into a tree
format with the RST parser, where each leaf node
is an EDU, a text span in the document. Each text
span has two types, nucleus and satellite. While
the nucleus spans contain semantically salient in-
formation, the satellite spans support and modify
the nucleus ones.

sentences to construct a summary for a given document.

We use the recent state-of-the-art RST
parser2 (Kobayashi et al., 2020) to build an
RST discourse tree (RST-DT) for all documents
and convert it to an Inter-Sentential RST-DT
(ISRST-DT). The ISRST-DT is first converted
into a dependency-based discourse tree (ISDEP-
DT) using the method described in (Hirao
et al., 2013). Then, parent-child dependency
relationships for each sentence can be formed.
We construct a directed graph for the discourse
dependencies (Ishigaki et al., 2019).

A dependency parser is used to build up
the syntactic dependency relationships between
words (Manning et al., 2014). We construct an
undirected graph for the syntactic dependencies
by following the previous settings (Marcheggiani
and Titov, 2017).

3 Our Model

Ishigaki et al. (2019) consider dependency informa-
tion through hierarchical attention modules (Kami-
gaito et al., 2018) trained in supervised attention
for dependency heads (Kamigaito et al., 2017). Un-
like the previous work, our model uses constructed
graph information through graph encoder layers
that directly focus on the relationships between
nodes defined by edges in the graph. We explain
the details of our model in this section.

Let wi be the i-th token in a document D =
{w1, w2, ..., wn}. Our model predicts p(1|D, k),
the probability of the k-th sentence in D being
kept in a summary through the following modules.

3.1 Pre-trained Document Encoder

We append “[CLS]” and “[SEP]” tokens between
sentences to encode a whole document (Liu and
Lapata, 2019). Then, BERT is used to build up a
representation hi for each token wi as follows:

{h1, h2, ..., hn} = BERT({w1, w2, ..., wn}).

Instead of BERT, we consider RoBERTa as well.
However, RoBERTa cannot be directly used in
place of BERT for sentence-level extraction be-
cause RoBERTa does not consider the two types
of tokens for the segment boundaries. To address
this issue, we use randomly initialized segment
embeddings, Wtype ∈ R2,768, instead of the orig-
inal embeddings for keeping the same condition
as BERT. The number comes from the pre-trained

2We used the RST-parser using the RoBERTa embeddings
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segment embedding weights of the original BERT,
which indicate the next sentence prediction step.
Then, the encoded hidden states, {h1, h2, ..., hn},
are fed into our graph encoders.

3.2 Graph Encoders
Graph Notation: Let Vd and Vs be nodes for sen-
tences and words, and Es and Ed be edges be-
tween the nodes in Vs and Vd, respectively. We
denote constructed discourse and syntactic graphs
as Gd = (Vd, Ed) and Gs = (Vs, Es), respectively.
We append undirected edges between “[CLS]” and
“root” tokens in each sentence to Es because the
parent of a “root” token would be a sentence repre-
sentation.
GAT Networks: We use Graph Attention Net-
works (GAT) (Veličković et al., 2018) to encode
each graph G on hidden states of BERT as follows:

fi = F2(hi), hi ∈ Rd,n, (1)

ni = N(drop(fi) + hi), (2)

αi,j = Softmaxj(L(F
1[Wnnnl ‖Wnnnl])), (3)

h′i = ‖Kk=1T(
∑
j∈Ni

αk
i,jW

k
a hj), h

′
i ∈ RK×d,n, (4)

h′′i = ReLU(M(h′i)), h
′′
i ∈ Rd,n, (5)

hGi = N(drop(h′′i ) + ni), (6)

where Fi indicates i-th times stacked feed-forward
networks. N is layer normalization.Wn andWa are
learnable weights. L and T denote a non-linearity
activation function, LeakyReLU, and a hyperbolic
tangent, respectively. αi,j indicates normalized at-
tention coefficients through a softmax function.
‖ indicates concatenation, and ni represents con-
nected nodes to node i in graph G. ReLU is an
activation function. M is a learnable weight. Af-
ter hi is fed into the graph encoder, we obtain hGi ,
which contains either syntactic or discourse graph
information based on all tokens.

The syntactic and discourse graphs are indepen-
dently encoded. Then, they are concatenated as
hrootk =ReLU(W (hGs

r(k) ‖ h
Gd

r(k))), where r(k) indi-
cates the position of a root in the k-th sentence. For
the final representations to predict labels, we use
hrootk to represent the k-th sentence.

3.3 Objective Function & Inference
We define p(1|D, k) = σ(WM(hrootk )+ b), where
M is a two-stacked multi-head attention, σ is a
sigmoid function, and W and b are weight parame-
ters (Liu and Lapata, 2019). Let yi ∈ {1, 0} be an

oracle label and Y = {y1, y2, ..., yn} be its set for
a document. We use −

∑
yk∈Y log(yk|x, k) as our

objective function. In the inference step, we score
the k-th sentence with p(1|D, k) and sort the sen-
tences in descending order. Then, we keep the top
m sentences as a summary, where m is the number
of sentences to be extracted.

4 Experiments

4.1 Experimental Settings
Dataset: We used the non-anonymized
CNN/DailyMail dataset (Hermann et al., 2015).
Based on the standard split, we divided the dataset
into 287,226, 13,368 and 11,490 articles for
training, validation, and test datasets, respectively.
Parameter Settings: We used PyTorch with the
Torch Geometric (Fey and Lenssen, 2019) to build
up entire architectures with graph encoders. The
“bert-based-uncased” and “roberta-based” models
in transformers3 were used to encode maximum
768 tokens of each tokenized document. The best
model was selected based on the lowest “loss”
score on the validation dataset. A greedy search
was used to construct the oracle summary by maxi-
mizing the sum of ROUGE-1-F and ROUGE-2-F
against the gold summary.

For the syntactic graph encoder, we stacked GAT
Networks. To track n-order dependency informa-
tion, we simply added n-order nodes and edges to
Gd and Gs. The number of attention heads was
set to 6 in each graph encoder. To represent each
word vector, we used a first sub-word vector. We
employed a traditional method of selecting top 3
sentences to construct a summary (Liu and Lap-
ata, 2019). Trigram blocking was used to reduce
redundancy and to improve informativeness for all
models (Paulus et al., 2018).
Compared Methods: We compared our proposed
methods with some baselines. The proposed meth-
ods are as follows:
NeRoBERTa considers our nested tree structure
for both syntactic and discourse information.
SynRoBERTa and DiRoBERTa independently
consider only either syntactic or discourse tree
structure, respectively.
The baselines, which include state-of-the-art mod-
els, are as follows:
BERTSUM introduces a method for learning a sen-
tence boundary in a BERT-based model for the doc-
ument summarization task (Liu and Lapata, 2019).

3https://github.com/huggingface/transformers
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DISCOBERT constructs a summary based on
EDU-level extraction, incorporating discourse and
coreference information (Xu et al., 2020).
MatchSum attempts to shift the paradigm
from sentence-level to summary-level extraction
during the extractive document summarization
task (Zhong et al., 2020).
RoBERTa encodes input documents using a
“roberta-based” model.

4.2 Automatic Evaluation

We utilized ROUGE-metrics for the evaluation. The
experimental results on the CNN/DailyMail dataset
are shown in Table 1. The first block contains Lead-
3 and Oracle scores. The second block includes
BERT-based previous studies including state-of-
the-art models. The last block includes scores for
our models and for re-implemented BERTSUM.

Our strong baseline RoBERTa outperformed
BERTSUM. The gain might be from using a bigger
dataset with the dynamic masking pattern applied
in the pre-trained RoBERTa. SynRoBERTa and
DiRoBERTa show that considering syntactic or dis-
course information was beneficial. NeRoBERTa
(ns = {1, 2}, nd = {1}) (in bold), that considers
syntactic and discourse information simultaneously,
further improved the performance. It outperformed
RoBERTa with a clear margin, specifically, 0.31
points in the R-1-F score.

As can be seen in Figure 2, RoBERTa can im-
prove the prediction loss compared with BERT-
SUM. SynRoBERTa (ns = {1, 2}), which explic-
itly incorporates keywords information through
syntactic information, can further improve the per-
formance of RoBERTa. This shows that consider-
ing keywords information through syntactic struc-
tures is beneficial to construct the sentence rep-
resentations for considering textual coherence to
other sentences.

4.3 Human Evaluation and Analysis

Human evaluation was conducted for randomly
sampled 100 documents from the test dataset.
“Amazon Mturk” was used for the experiments,
and human evaluators graded scores from 1 to 5
(5 is the best) in terms of four evaluation crite-
ria.5 Because summaries from DISCOBERT were
worse than ones from BERTSUM in their human

4The paired-bootstrap-resampling (Koehn, 2004) was used
(p < 0.05).

540 human evaluators who obtained both US high school
and US bachelor degrees participated in the experiments.

Model R-1-F R-2-F R-L-F

Lead3 40.12 17.52 36.44
Oracle 55.05 32.72 51.38

BERTSUM 43.25 20.24 39.63
DISCOBERT 43.77 20.85 40.67
MatchSum 44.41 20.86 40.55

BERTSUM 43.28 20.11 39.68
RoBERTa 43.55 20.40 39.94
SynRoBERTa (ns = {1}) 43.73 20.58 40.10
SynRoBERTa (ns = {1, 2}) 43.63 20.51 40.02
DiRoBERTa (nd = {1}) 43.64 20.45 40.02
NeRoBERTa (ns = {1}, nd = {1}) 43.74 20.53 40.13
NeRoBERTa (ns = {1, 2}, nd = {1}) 43.86† 20.64† 40.20†

Table 1: Experimental results on the CNN/DailyMail
dataset. ns and nd indicate the order of dependency
relationships considered for syntactic and discourse
graphs, respectively. † indicates the improvement is sig-
nificant with a 0.95 confidence interval estimated with
the ROUGE script compared to RoBERTa.

Figure 2: Validation losses for BERTSUM, RoBERTa,
and SynRoBERTa (ns = {1, 2}) . “[CLS]” and
“[ROOT]” indicate the tokens of sentence representa-
tions for predicting labels.

evaluation (Xu et al., 2020), we evaluated only
summaries from RoBERTa, NeRoBERTa (ns =
{1, 2}, nd = {1}), and MatchSum. Table 2 shows
the results. Coh, Infor, Read, and Redun indicate
coherence, informativeness, readability, and redun-
dancy, respectively. As we expected, the proposed
NeRoBERTa, which considers a nested tree struc-
ture, could capture coherence better than our strong
baseline, RoBERTa. In addition, NeRoBERTa was
comparable to the current state-of-the-art model,
MatchSum. The informativeness score for Match-
Sum was lower than RoBERTa and NeRoBERTa.

Table 3 shows example extracted sentences from
a document and their discourse graph. In this ex-
ample, the discourse information alone was not
enough in that S3 and S10 have the same dis-
course information, while S3 is more similar to
the third sentence in the gold summary. RoBERTa
and DiRoBERTa constructed the same summary in-
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Model Coh Infor Read Red

MatchSum 4.06 4.11 4.09 4.17
RoBERTa 4.02 4.14 4.09 4.12

NeRoBERTa 4.08† 4.14 4.10 4.16

Table 2: Human evaluation results. † indicates that the
improvement with NeRoBERTa from RoBERTa was
statistically significant.4

S1 Barcelona club president josep maria bartomeu has insisted that the la liga
leaders have no plans to replace luis enrique and they’re ’very happy’ with him.
S3 Despite speculation this season that enrique will be replaced in the summer,
bartomeu refuted these claims and says he’s impressed with how the manager
has performed.
S4 Luis enrique only took charge at the club last summer and has impressed
during his tenure.
S5 Barcelona president josep maria bartemou says the club are ’very happy’
with enrique’s performance.
S10 Enrique’s side comfortably dispatched of champions league chasing
valencia on saturday, with goals from luis suarez and lionel messi.
S11 luis suarez opened the scoring for barcelona [...] flying Valencia
Gold Barcelona president josep bartomeu says the club are happy with enrique.
barca are currently top of la liga and closing in on the league title.
enrique’s future at the club has been speculated over the season.
click here for all the latest barcelona news.

Table 3: Example extracted sentences from RoBERTa,
DiRoBERTa (nd = {1}), NeRoBERTa (ns =
{1, 2}, nd = {1}), and MatchSum models. Arrows in-
dicate the discourse graphs. The sentences in red are
selected by all models. The sentence in blue is selected
by NeRoBERTa and the sentence in purple is selected
by RoBERTa and DiRoBERTa. S1 is the first sentence
of the document. Gold denotes the gold summary.

cluding S10. On the other hand, NeRoBERTa could
extract S3, which is coherent to S4 and S5, shar-
ing important keywords “enrique” and “bartomeu”.
This is because our GAT network for syntactic in-
formation can capture keywords in the sentence to
consider textual coherence to other sentences. Al-
though NeRoBERTa constructed a summary with
three sentences, MatchSum extracted only two sen-
tences of S4 and S5. In this case, MatchSum might
be less informative than NeRoBERTa.

5 Conclusion

In this paper, we proposed NeRoBERTa, which in-
corporates syntactic and discourse information as a
nested tree structure to create an informative and
coherent summary. The experimental results on the
CNN/DailyMail dataset showed that our method
improves the performance over the baseline meth-
ods both in the automatic and human evaluations.
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