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Abstract

A currently popular research area in end-to-
end speech translation is the use of knowledge
distillation from a machine translation (MT)
task to improve the speech translation (ST) task.
However, such scenario obviously allows only
a one way transfer, limiting the overall effec-
tiveness of the approach by the performance of
the pre-trained teacher model. Therefore, we
pose that in this respect knowledge distillation-
based approaches are sub-optimal. We propose
an alternative—a trainable mutual-learning sce-
nario, where the MT and ST models are collab-
oratively trained and are considered as peers,
rather than teacher/student. This allows us
to improve the performance of end-to-end ST
more effectively than with a teacher-student
paradigm. As a side benefit, performance of
the MT model also improves. Experimental
results show that in our mutual-learning sce-
nario, models can effectively utilise the auxil-
iary information from peer models and achieve
compelling results on MuST-C datasets.

1 Introduction

Speech translation (ST) aims to translate speech sig-
nals into a foreign language. It is a multi-modality
task, closely related to automatic speech recogni-
tion (ASR) and machine translation (MT). ST has
a wide range of applications, such as video subti-
tling (Saboo and Baumann, 2019), real-time lecture
translation (Müller et al., 2016), and protection of
endangered languages (Bansal et al., 2017).

Despite the recent success in end-to-end (E2E)
models, currently such systems still face the issue
of labelled training data insufficiency (Sperber and
Paulik, 2020). A recent popular advance in E2E ST
is the use of knowledge distillation (KD), which
can provide an effective paradigm for transfer-
ring knowledge from rich-resource to low-resource

∗ Majority of this work was conducted during Jiawei
Zhao’s research internship at DAMO Academy, Alibaba.

tasks (Liu et al., 2019; Gaido et al., 2020). Un-
der such paradigm the MT model is considered
a teacher that guides the ST model, considered a
student learning from the teacher. We pose that one-
way knowledge transfer in a strict teacher-student
relationship maybe sub-optimal for the following
reasons: 1. Since the MT model is frozen in this
one-way knowledge transfer scenario, the success
of knowledge transfer and hence the performance
of the ST task is constrained by the performance
of the pre-trained MT model; 2. There is a modal-
ity gap between speech and text inputs of the two
models, with speech input also containing inherent
speaker variability.

Motivated to address the issues mentioned above,
we set out to improve ST and MT tasks by training
them jointly. Instead of freezing teacher model,
we introduce a mutual-learning paradigm, which
regards ST and MT models as peers that learn col-
laboratively, aiming to iteratively learn and share
the knowledge between the two models. Origi-
nally, mutual-learning was proposed to leverage
information from multiple models and allow ef-
fective dual knowledge transfer in image process-
ing tasks (Zhang et al., 2018; Zhao et al., 2021).
We leverage this idea and adapt it to sequence
tasks. Our main contributions are: 1. We pro-
pose a jointly-trainable mutual-learning paradigm,
which improves the distillation method by training
together. The search space of MT and ST are both
enlarged, providing the potential for a more robust
local optima. 2. We further improve our mutual-
learning method by integrating cyclical annealing
schedule, which alleviates the KL vanishing prob-
lem suffered by many time-series tasks (Fu et al.,
2019; Bowman et al., 2016; Higgins et al., 2017). 3.
We implement extensive experiments on MuST-C
En-Fr, En-Es datasets and illustrate the advantage
of our model by empirically comparing with a cas-
caded model, a knowledge distillation (KD) model
and a multi-task learning (MTL) model. The ex-
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perimental results show our model can effectively
leverage the transcript and the auxiliary MT task,
and we provide competitive results in all experi-
ments. In addition, as a side benefit, the perfor-
mance of the MT model also improves.

2 Model Description

2.1 End-to-End Speech Translation
E2E ST learns a single model, which directly maps
features extracted from speech signal to a target
language text sequence (Duong et al., 2016; Weiss
et al., 2017). More concretely, given a sample
pair (x, y) from the training set D corresponding
to speech signal features and translated target sen-
tence, the ST model is trained by minimising the
negative log likelihood (NLL) loss, L:

L = −
∑

(x,y)∈D

logP (y|x; θ) (1)

E2E models consist of an encoder that encodes
speech input as an intermediate representation, and
a decoder that decodes this intermediate representa-
tion to a probability distribution over the target text
feature space. In the past, the encoder and decoder
were based on recurrent neural network architec-
ture, but most recent work utilises Transformer-
based architecture (Berard et al., 2016; Weiss et al.,
2017; Di Gangi et al., 2019b; Zhang et al., 2019;
Vila et al., 2018).

2.2 Mutual-Learning
Model definition: Given a parallel data sample
(xi, si, yi) from input speech features X , input lan-
guage text features S and target text features Y ,
and an ST model Mst and an MT model Mmt, the
output probabilities are given by:

pst =Mst(xi) (2)

pmt =Mmt(si) (3)

Our training loss has two components: a
traditional supervised reconstruction loss and a
mimicry loss that aligns the output posterior dis-
tributions between the two models. We adopt
Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951) as the mimicry loss, aiming to re-
duce the distance of outputs of ST and MT systems,
effectively encouraging them to mimic each other.
Since KL divergence is asymmetric, we include it
calculated in both directions:

KL1 = KL(pmt||pst) =
N∑
j=1

pjmt ln
pjmt

pjst
(4)

KL2 = KL(pst||pmt) =

N∑
j=1

pjst ln
pjst

pjmt

(5)

where N represents the length of the output sen-
tence. We adopt NLL loss as the reconstruction
loss, denoted by LCst for ST and LCmt for MT:

LCst = −
N∑
i=1

yi ln (p
i
st|yi) (6)

LCmt = −
N∑
i=1

yi ln (p
i
mt|yi) (7)

where yi denotes the ith token in the target sen-
tence. The overall mutual-learning training loss is
a combination of the weighted mimicry loss and the
reconstruction losses, as described by Eq. 8. The
proposed mutual-learning scenario is illustrated in
Figure 1.

Lml = β(KL1 +KL2) + LCst + LCmt (8)

2.3 Training Strategy

Algorithm 1 Training Strategy
Input: training set, ST network parameters
θst (with ASR pre-trained encoder), pre-trained
MT network parameters θmt

repeat
t = t+ 1
1. Compute pst and pmt for one mini batch
2. Freeze θmt, compute the gradient and up-
date θst

θst ←− θst + lr ∗ ∂Lml

∂θst
(9)

3. Upate pst and pmt

4. Freeze θst, compute the gradient and update
θmt

θmt ←− θmt + lr ∗ ∂Lml

∂θmt
(10)

until convergence
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Figure 1: Illustration of the proposed deep mutual-learning paradigm. The training objective contains four separate
components, the reconstruction losses of ST and MT (LCst and LCmt) and KL divergence between outputs of ST
and MT (KL1 and KL2).

The training process is described by Algorithm 1.
We propose to train ST and MT models iteratively
until convergence. In each iteration, there are two
steps: 1. MT model is frozen and the parameters of
ST model are updated; 2. ST model is frozen and
the parameters of MT model are updated.

KL vanishing issue: Leveraging KL divergence
for mimicry loss in our mutual-learning strategy
can suffer from the vanishing issue, which has been
observed in other applications, for example in vari-
ational auto-encoders (Fu et al., 2019). We mitigate
this by adopting a cyclical annealing schedule for
β, which has been proposed for this purpose in
the context of variational auto-encoders (Fu et al.,
2019). More concretely, β in Eq. 8 changes peri-
odically during training iterations, as described by
Eq. 11:

βt =

{
r

RC , r <= RC
1, r > RC

(11)

where t represents the current training iteration and
r is defined as:

r = mod(t− 1, C) (12)

The training process is effectively split into many
cycles with each cycle lasting C iterations. In each
cycle βt progressively increases from 0 to 1 during
RC iterations and then stays at 1 for the remaining
(1−R)C iterations. With R = 0.5 and C = 5000,
we are able to mitigate KL vanishing issue and
train.

3 Experiments

3.1 Dataset
We evaluate the proposed framework on the pop-
ular MuST-C multilingual speech translation cor-

pus1 (Di Gangi et al., 2019a), using the two most-
used language pairs: English-to-French (En-Fr)
and English-to-Spanish (En-Es). En-Fr dataset con-
tains 500 hours of speech and 280k sentences. En-
Es dataset contains 504 hours of speech and 270k
sentences.

Pre-processing We implement the same data
pre-processing steps as described in fairseq speech-
to-text framework (Wang et al., 2020). Specifi-
cally, we extract 80-channel log Mel-filterbank fea-
tures. The training samples that are larger than
3000 frames are removed. For both, input and
target texts, we employ newly proposed subword
regularisation method (Kudo, 2018) to build a vo-
cabulary with a size of 8000. We also experiment
with a jointly-trained shared vocabulary of size
8000.

3.2 Architecture and Evaluation Details

For ST task we use a stack of 2 1D convolutional
layers (kernel size 5, stride 2), followed by 12
Transformer layers of size 2048 as the encoder.
We use 6 stacked Transformer layers with size 512
as the decoder. For MT task we use 12 stacked
Transformer layers with size 2048 as the encoder
and 6 stacked transformer layer with size 2048 as
the decoder. Evaluation is based on the standard im-
plementation of BLEU score, SACREBLEU (Post,
2018), with beam size of 5. The maximum number
of tokens in each batch is set to 40000.

1https://ict.fbk.eu/must-c/
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4 Results and Analysis

4.1 Comparison with a Cascaded Model

To form a cascaded model, we first train a
Transformer-based E2E ASR model using speech
inputs and English transcripts. We then train an
MT model using English transcripts and target sen-
tences. In inference mode, we first use ASR to
generate intermediate text representation, then we
pass this to the MT system and calculate the output
probabilities on the target language vocabulary.

As shown in Table 1, our mutual-learning-based
ST model provides competitive results comparing
to a cascaded model. Our model achieves 0.6 and
0.5 BLEU score improvement in En-Fr and En-
Es datasets respectively. The results illustrate that
our mutual-learning paradigm provides an effective
method for leveraging the additional information
available via transcript.

Method En-Fr En-Es
Cascaded 34.9 28.0
E2E 32.8 27.2
E2E + MTL 33.5 27.5
E2E + KD 34.5 27.9
E2E + ML 35.5 28.5
E2E + ML? 36.3 28.7

Table 1: A comparison of ST task evaluation results
for different approaches: cascaded model, vanilla end-
to-end, end-to-end with multi-task learning, end-to-end
with knowledge distillation, and end-to-end with mutual-
learning (ML). "?" denotes training with a joint vocabu-
lary.

4.2 Comparison with a Knowledge
Distillation Model

Knowledge distillation (KD) is a conceptually sim-
ilar approach to the proposed framework. KD pro-
vides a one way transfer from a trained teacher
model to a student model. We provide a focused
comparison with this method: we pre-train an MT
model using input language and target language
sentences, freeze it and use it to guide an ST model
by minimising Eq. 13:

Loss = β ∗ (KL1 +KL2) + LC (13)

where KL1 and KL2 are described by Eqs. 4 - 5
and LC is the reconstruction loss (Eq. 6). The main
difference between KD and our approach is that
the MT model is pre-trained, frozen and used in

inference mode only to guide the ST model train-
ing, which is performed separately form MT model
training. From table 1 it can be seen that the pro-
posed mutual-learning approach outperforms one
way knowledge distillation strategy (E2E+KD) by
1.0 and 0.6 BLEU score on the En-Fr and En-Es
datasets, respectively.

4.3 Comparison with a Multi-Task Learning
Model

Multi-Task Learning (MTL) is also a collabora-
tive learning strategy. In contrast to the proposed
mutual-learning scenario, in MTL we train all tasks
in parallel: ST model and MT model are trained
separately with the average of the NLL loss from
MT and ST models:

Loss =
1

2
∗ (LCst + LCmt) (14)

Evaluation of ST task after training using the
MTL strategy is shown in Table 1 (E2E + MTL).
These results show that our mutual-learning strat-
egy is a more effective way of joint learning: gain-
ing 0.7, 0.3 BLEU score increase over MTL in ST
task.

4.4 Joint vocabulary training

Vanilla E2E ST model uses separate vocabularies
for source and target languages. We also utilised a
jointly-trained byte pair encoding (BPE) to build
the vocabulary and achieved a surprising improve-
ment on what was already a state-of-the-art result
(see the last row of Table 1).

4.5 Evaluation of the MT task

Method En-Fr En-Es
MT 45.1 35.4
MT+MTL 45.6 35.3
MT+ML 45.8 35.7

Table 2: A comparison of MT task evaluation results for
different approaches: independently-trained, multi-task
learning and the proposed mutual-learning.

In addition, we evaluate the performance of
the MT task and compare our proposed mutual-
learning scenario with an independently trained
MT model and also the multi-task learning sce-
nario. The architecture of MT model and the hyper-
parameters’ values used in each training scenario
are identical, as described in Sec.3.2.
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From the results in Table 2 we can conclude
that mutual-learning also improves the MT model’s
performance. Our system gains 0.7 and 0.3 BLEU
score in En-Fr and En-Es datasets, respectively,
compared to the independently trained MT system.
Our system also exceeds a typical MTL approach
by 0.2 and 0.4 BLEU score in the MT task. These
results suggest that our mutual-learning leads to a
more robust minima than the MTL paradigm.

5 Conclusion

We proposed a mutual-learning paradigm for end-
to-end speech translation to effectively transfer
knowledge between ST and MT models. Exper-
imental results demonstrate that our proposed ap-
proach outperforms knowledge distillation, the typ-
ical one-way transfer paradigm, as well as, multi-
task learning, a typical dual knowledge transfer
paradigm. We also provide a competitive result
compared to a cascaded model, which has thus far
been outperforming E2E ST models.
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