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Abstract

As an important task in opinion mining, com-
parative opinion mining aims to identify com-
parative sentences from product reviews, ex-
tract the comparative elements, and obtain
the corresponding comparative opinion tuples.
However, most previous studies simply re-
garded comparative tuple extraction as com-
parative element extraction, which ignored the
fact that many comparative sentences may
contain multiple comparisons. The compar-
ative opinion tuples defined in these studies
also failed to explicitly provide comparative
preferences. To address these issues, in this
work we first introduce a new Comparative
Opinion Quintuple Extraction (COQE) task,
to identify comparative sentences from prod-
uct reviews and extract all comparative opin-
ion quintuples (Subject, Object, Comparative
Aspect, Comparative Opinion, Comparative
Preference). Secondly, based on the existing
comparative opinion mining corpora, we make
supplementary annotations and construct three
datasets for the COQE task. Finally, we bench-
mark the COQE task by proposing a new
multi-stage neural network approach which
significantly outperforms the baseline systems
extended from previous comparative opinion
mining methods. The datasets and source code
are publicly released at https://github.
com/NUSTM/COQE.

1 Introduction

Fine-grained opinion mining from product re-
views has received considerable attention in the
last decade. As around 10% of product reviews
contain at least one comparison (Kessler and
Kuhn, 2013), it is therefore crucial to extract and
analyze these comparative sentences to detect pub-
lic opinions towards the compared entities and as-
pects.

∗Equal contribution.
† Corresponding author.

As the pioneering work for this direction, Jin-
dal and Liu (2006b) proposed the Comparative
Sentence Mining (CSM) task which first identifies
comparative sentences from reviews, and extracts
pre-defined comparative quintuples, i.e., (Subject,
Object, Comparative Aspect, Relation Word, Com-
parison Type), from the identified comparative sen-
tences. For example, given a sentence “G6 has a
worse zoom than G7, but G6’s battery was more
reliable than G7”, one comparative quintuple is
(G6, G7, battery, more, Non-Equal Gradable). In
their work they assumed that a comparative sen-
tence contains only one comparative relation, and
treated the comparative quintuple extraction task
as a comparative element extraction (CEE) prob-
lem.

However, in real scenarios, a large number of
comparative sentences contain more than one com-
parative relation. For example, 17.6% of the com-
parative sentences in the camera domain (Kessler
and Kuhn, 2014) have at least two comparative
relations. In this situation, simply applying CEE
cannot extract comparative quintuples effectively.
Moreover, in their definition, the relation word
sometimes fails to explicitly reflect the compara-
tive preference. For example, “more” in the above
sentence is ambiguous, since it may refer to “more
reliable” or “more expensive”.

Some recent studies (Panchenko et al., 2019;
Ma et al., 2020) proposed a new task named Com-
parative Preference Classification (CPC), to iden-
tify the explicit comparative preferences (e.g., Bet-
ter, Worse, None) between the subject entity and
the object entity. However, the CPC task requires
that the subject and object entities have been anno-
tated, which largely hinders its applications in real
scenarios.

To address the limitations of CEE and CPC, we
introduce a new Comparative Opinion Quintuple
Extraction (COQE) task, with the emphasis on the
identification of comparative sentences, and the

https://github.com/NUSTM/COQE
https://github.com/NUSTM/COQE
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G6 has a worse zoom than G7, but G6’s
battery was more reliable than G7.

E
le

m
en

ts
subject: G6

object: G7

comparative aspect: {zoom, battery}

comparative opinion: {worse, more reliable}

COQE {(G6, G7, zoom, worse, Worse),
(G6, G7, battery, more reliable, Better)}

Table 1: An example of the Comparative Opinion Quin-
tuple Extraction (COQE) task.

extraction of all the comparative opinion quintu-
ples from the comparative sentence. We define
the comparative opinion quintuple as (sub, obj ,
ca , co, cp), where sub, obj , ca , co and cp refer
to Subject, Object, Comparative Aspect, Compar-
ative Opinion and Comparative Preference, respec-
tively. Based on Subject, Object and Compara-
tive Aspect which were defined in previous work,
we further define Comparative Opinion as an opin-
ion expression, in terms of a continuous textual
span. It is similar to the relation word defined in
(Jindal and Liu, 2006b) but including more nec-
essary context, e.g., adjectives/adverbs after the
relation word “more” or “less” and the negations.
We also include Comparative Preference as a part
of the comparative quintuple, and jointly extract
the comparative elements and classify the compar-
ative preference. As shown in Table 1, the output
of COQE contains a set of two comparative opin-
ion quintuples: {(G6, G7, battery, more reliable,
Better), (G6, G7, zoom, worse, Worse)}.

Secondly, we construct three datasets for this
COQE task based on three existing comparative
opinion mining corpora. On the basis of the
camera-domain corpus proposed by Kessler and
Kuhn (2014), we further annotate the comparative
opinion and preference for each comparative sen-
tence. We also add the comparative opinion anno-
tation to the datasets from the car and electronic
domains released by COAE 2012/2013 (Tan et al.,
2013). In addition, we annotate all the valid com-
parative quintuples and provide the starting and
end position of each element in the quintuples.

Finally, we benchmark the task by proposing a
new multi-stage neural network approach, includ-
ing the stages of 1) Joint Comparative Sentence
Identification and Comparative Elements Extrac-
tion, 2) Comparative Element Combination and
Filtering, and 3) Comparative Preference Classi-
fication. The new approach significantly outper-

forms the baseline systems extended from tradi-
tional comparative opinion mining methods on
three datasets.

The contributions of this work can be summa-
rized as follows:

• We propose a new Comparative Opinion Quin-
tuple Extraction (COQE) task, aiming to extract
all the comparative quintuples from each review
sentence.

• We construct three new datasets for the task, on
the basis of the existing comparative opinion
mining corpora.

• We benchmark the task by proposing a multi-
stage neural network approach which signifi-
cantly outperforms baseline systems extended
from traditional methods.

2 Related Work

As a branch of aspect-based sentiment analysis,
Comparative Sentence Mining was first proposed
by Jindal and Liu (2006b) to first identify compar-
ative sentences (CSI) from reviews, and extracts
pre-defined comparative quintuples, i.e., (Subject,
Object, Comparative Aspect, Relation Word, Com-
parison Type) from the identified comparative sen-
tences. They assumed that a comparative sentence
contains only one comparative relation, and re-
garded comparative quintuple extraction as a com-
parative element extraction (CEE) problem. This
ignored the fact that a large percentage of compar-
ative sentences contain more than one comparison.

For the CSI task, (Ganapathibhotla and Liu,
2008; Huang et al., 2008; Park and Blake, 2012)
designed keyword-based or syntactic-based rules
to identify comparative sentences in product re-
views and scientific articles. (Jindal and Liu,
2006a,b; Huang et al., 2008; Liu et al., 2013) em-
ployed a Class Sequential Rule (CSR) method to
mine sequence rules and use them as features of
statistical classifiers.

For the CEE task, Jindal and Liu (2006b) and
He et al. (2012) employed a Label Sequential Rule
(LSR) method to extract comparative elements.
(Hou and Li, 2008; Song et al., 2009; Huang et al.,
2010; Wang et al., 2015a) extracted comparative
elements based on conditional random field (CRF).
Wang et al. (2010) and Kessler and Kuhn (2013)
further employed semantic role labeling (SRL) to
extract comparative elements. Arora et al. (2017)
proposed a LSTM-CRF neural network to extract
comparative elements.
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In recent years, Panchenko et al. (2019) pro-
posed a Comparative Preference Classification
(CPC) task, to predict the preference (Better,
Worse, None) between two annotated entities. Ma
et al. (2020) further proposed a Graph Attention
Network for this task. However, CPC requires to
annotate two compared entities in advance, which
greatly limits its application in real scenes.

In comparison, the COQE task proposed in
this work focuses on identification of compara-
tive sentences, and the extraction of all the com-
parative opinion quintuples from the comparative
sentence, rather than comparative element extrac-
tion only. We support comparative quintuple ex-
traction when a sentence contains multiple com-
parisons. Secondly, we re-define the compara-
tive quintuple by incorporating comparative pref-
erence, and jointly perform comparative tuple ex-
traction and comparative preference classification.
Finally, most of the previous models for compara-
tive opinion mining were based on rule methods or
traditional machine learning methods. We estab-
lish a multi-stage deep learning approach for our
task and significantly improved the performance
of both CEE and COQE.

It is also worth noting that some recent studies
on opinion tuple extraction (Liao et al., 2016; Peng
et al., 2020) and quadruple extraction (Cai et al.,
2021) have been proposed in traditional aspect-
based sentiment analysis. Our work can be viewed
as their extension from absolute opinion mining to
comparative opinion mining.

3 Task and Datasets

3.1 Task Definition
Given a product review sentence containing n
words X = [x1, · · · , xn], the goal of COQE is to
first identify whether it is a comparative sentences,
and then extract the set of quintuples (sub, obj , ca ,
co, cp) if it is a comparative sentence as follows:

SCOQE = {· · · , (sub, obj, ca, co, cp)i, · · · } ,
(1)

where sub and obj refer to the subject and ob-
ject entities being compared, ca denotes the com-
parative aspect (i.e., feature attribute) of the enti-
ties, co denotes the comparative opinion which is
an opinion expression indicating the comparative
preference between two entities, and cp ∈ {Worse,
Equal, Better, Different} is the comparative pref-
erence denoting whether sub is worse than, equal
to, better than, or different from obj .

Note that the first four elements of the compar-
ative opinion quintuple need to be extracted from
the sentence, while the fifth element needs to be
classified from the pre-defined categories. There-
fore, COQE is a challenging task that involves
extracting four elements, classifying one element,
and combining all the five elements into valid quin-
tuples.

3.2 Dataset Construction

In addition to the comparative sentence min-
ing corpus proposed by Jindal and Liu (2006b),
Kessler et al. (2010) proposed a JDPA corpus,
which consists of blog posts about cameras and
cars where the camera domain contains 506 com-
parative sentences, and the car domain contains
1100 comparative sentences. However, the corpus
only reflects the comparative elements and can not
capture the comparative relation.

Kessler and Kuhn (2014) proposed a camera
domain corpus containing 1707 comparative sen-
tences, which explicitly annotated the compara-
tive quintuple and supported the case where a
sentence contains multiple comparative relations.
They defined the quintuple as (Subject, Object, As-
pect, Scale, Predicate), where Predicate is the syn-
tactic marker that introduces a comparison (e.g.,
“better”, “more”) and Scale, a modified adjec-
tive/adverb, is added when predicate do not by
themselves fully describe a comparison (e.g, “re-
liable” after “more”). The joint annotation Scale
and Predicate can solve the shortcoming of Rela-
tion Word in (Jindal and Liu, 2006b), but it did
not contain some necessary context that describes
a comparative relation, e,g., negation and contrast.

The Chinese Opinion Analysis Evaluation
(COAE) 2012/2013 (Tan et al., 2013) provided
two Chinese comparative sentence mining cor-
pora, in the domains of Car and Electronics, re-
spectively. They annotated the comparative rela-
tion as a pair of triples, i.e., (subject, aspect, abso-
lute sentiment) and (object, aspect, absolute senti-
ment).

We construct three datasets for our COQE task,
on the basis of the above corpora.

• Camera-COQE: On basis of the Camera do-
main corpus released by Kessler and Kuhn
(2014), we completed the annotation of Com-
parative Opinion and Comparative Preference
for 1705 comparative sentences, and introduc-
ing 1599 non-comparative sentences.
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Car- Ele- Camera-
COQE COQE COQE

#S
en

te
nc

e

#Comparative 1747 1800 1705
#Non-Comparative 1800 1800 1599

#Multi-Comparisons 550 361 500
#Comparison Per Sent 1.5 1.3 1.4

Percentage 31.5% 20.1% 29.3%

#E
le

m
en

t Subject Entity 1520 950 1649
Object Entity 2121 1980 1316

Comparative Aspect 1917 1602 1368
Comparative Opinion 2171 2089 2163

Comparative Preference 2695 2289 2442

Table 2: Statistics of three comparative quintuple cor-
pora.

• Car-COQE: Based on the COAE 2012/2013
(Tan et al., 2013) Car domain corpus, we sup-
plemented with the annotation of Comparative
Opinion and Comparative Preference.

• Ele-COQE: Similar to Car-COQE, we con-
struct the Ele-COQE dataset based on the
COAE 2012/2013 Electronics (Ele) domain cor-
pus.

Table 2 displays basic statistics of three datasets,
where #Comparative, #Non-Comparative and
#Multi-Comparisons denote the number of com-
parative sentences, non-comparative sentences
and comparative sentences with multiple compar-
ative quintuples. #Comparison Per Sent denotes
the average number of comparative quintuples per
sentence and Percentage denotes the percentage
of sentences with multiple comparative quintuples
among all the comparative sentences. As we can
see, at least 20% of the comparative sentences in
each dataset contain multiple comparative opinion
quintuples.

4 Approach

As stated in the task definition, COQE is a chal-
lenging task that includes four-element extraction,
one-element classification, and five-element com-
binations. To tackle the task, we propose a multi-
stage neural network framework, in which the first
stage is to identify comparative sentences and ex-
tract comparative elements, the second stage is to
combine and filter the extracted four comparative
elements (sub, obj , ca , co) to obtain valid com-
parative quadruples, and the third stage is to fur-
ther classify each comparative quadruple into a
pre-defined preference category, and obtain all the
comparative opinion quintuples.

For the sentence in Table 1, in the first stage, we
identify it as a comparative sentence and get the
set of four comparative elements: Ssub = {G6},
Sobj = {G7}, Sca = {zoom, battery} and Sco =
{worse,more reliable}. In the second stage, we
combine the four elements extracted in the first
stage with Cartesian product to form a candidate
set of comparative quadruples, i.e., (G6, G7, zoom,
worse), (G6, G7, zoom, more reliable), (G6, G7,
battery, worse), (G6, G7, battery, more reliable).
Furthermore, we train a classifier to filter invalid
combinations to get two valid comparative quadru-
ples, i.e., (G6, G7, zoom, worse), (G6, G7, battery,
more reliable). Finally, in the third stage, the two
comparative quadruples are classified into the cor-
responding comparative preference category to ob-
tain two valid comparative quintuples as shown in
Table 1.

4.1 Stage 1: Joint Comparative Sentence
Identification and Comparative Elements
Extraction

In the first stage, we proposed a multi-task learn-
ing framework based on BERT to identify compar-
ative sentences and extract comparative elements
simultaneously. Specifically, given an input sen-
tence X = [x1, · · · , xn], we first insert two spe-
cial tokens (i.e., CLS and SEP) at the beginning
and the end respectively, and then feed the trans-
formed sentence to BERT to obtain the hidden rep-
resentations in the last layer:

h = [h[CLS], h1, · · · , hn, h[SEP ]]. (2)

Comparative Sentence Identification. First,
we feed h[CLS] to a softmax layer to predict
whether the input sentence X is a comparative sen-
tence:

yc = softmax(W ch[CLS] + bc), (3)

where W c and bc are weight matrices to learn, and
yc ∈ {0, 1}.

Comparative Element Extraction. For the
identified comparative sentences, we further adopt
four separate linear transformation functions and
CRF layers to extract the four elements sub, obj ,
ca , co, respectively:

ye = CRFe(he1, · · · , hen), (4)

where he = W eh + be and the Begin-Middle-
End-Single-Outside (BMESO) tagging schema is
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Figure 1: The architecture of the BERT-based Multi-Stage Neural Network Approach for COQE.

adopted for sequence labeling, and e refers to sub,
obj , ca , co respectively. It should be noted that we
adopt separate output layers for extracting each el-
ement in order to solve the problem of overlapping
and nesting entities.

During the training stage, Comparative Sen-
tence Identification and Comparative Elements Ex-
traction are optimized simultaneously based on a
multi-task learning framework. The final loss of
the first stage is a weighted sum of Lcsi and Lceei :

L = λcLcsi + λe

∑
i

Lceei . (5)

where Lcsi is the cross-entropy loss for compara-
tive sentence identification, and Lceei is the CRF
loss for each individual element extraction. The
two hyperparameters λe and λc are set to be 1 in
our experiments.

4.2 Stage 2: Comparative Elements
Combination and Filtering

In the first stage, we have obtained four sets of
comparative elements for comparative sentences,
denoted by Ssub = {sub1, ..., subk}, Sobj =
{obj1, ..., objl}, Sca = {ca1, ..., cap}, Sco =
{co1, ..., coq}.

With the four element sets, we perform Carte-
sian product over them to obtain a set of all possi-
ble comparative quadruple candidates:

Squad = {(sub1, obj1, ca1, co1), · · · ,
(subk, objl, cap, coq)}.

(6)

For each quadruple, we obtain the representation
of each element by concatenating its hidden repre-

sentations for comparative sentence identification
and comparative element extraction in Eqn. (2)
and Eqn. (4) as follows:

re = [avg(he[start:end]); avg(h[start:end])], (7)

where start and end denote each element’s start
and end indices in the sentence, and avg denotes
the average pooling operation. We then concate-
nate the representations of the four elements as the
representation of each quadruple below:

r = [rsub; robj ; rca; rco]. (8)

Finally, we stack a softmax layer on top as a
quadruple filter to detect the validity of a quadru-
ple:

yquad = softmax(W qr+ bq), (9)

where yquad ∈ {0, 1} indicates whether the input
quadruple is valid or not.

During training, we employ a class-weighted
cross entropy loss to address the data imbalance
issue between valid and invalid quadruples as fol-
lows:

Lquad = λLinvalid
quad + Lvalid

quad , (10)

where λ is the trade-off hyperparameter, and set to
be 0.4 in our experiments.

4.3 Stage 3: Comparative Preference
Classification

After obtaining all the valid comparative quadru-
ples in the second stage, we then classify each
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quadruple into a pre-defined comparative prefer-
ence category in the third stage. Specifically, we
add another softmax layer over the representation
of each quadruple in Eqn. (8) for comparative pref-
erence classification below:

ys = softmax(W sr+ bs), (11)

where ys ∈ {Worse,Equal,Better,Different}.
During training, the standard cross-entropy loss is
used for optimizing the parameters of the compar-
ative preference classifier.

Finally, we combine the comparative preference
prediction with the valid quadruples predicted in
the second stage to get the final comparative opin-
ion quintuples.

5 Experiments

5.1 Experimental Settings

We evaluate the performance of the multi-stage
neural network approach on three COQE datasets.
For comparison, we also develop two baseline sys-
tems extended from the representative methods in
the previous comparative opinion mining task. We
divide each dataset into a training set, a validation
set and a testing set, with the proportion of 64%,
16% and 20%, respectively.

In Stage 1 of our BERT-based multi-stage ap-
proach Multi-StageBERT, we adopt BERTbase for
the English Camera dataset, and adopt a Chinese
Version of BERT (BERT-Chinese) in the Chinese
Car and Ele datasets. During training for all three
stages, we use the Adam optimizer and set the
batch size to 16 and the dropout to 0.1. The learn-
ing rates for Stages 1, 2 and 3 are set to be 2e-5,
5e-4 and 5e-4, respectively.

5.2 Evaluation Metrics

As Comparative Sentence Identification (CSI) and
Comparative Element Extraction (CEE) are sub-
sets of our approach, we evaluate the performance
on CSI, CEE and COQE respectively. For CSI,
we use the accuracy as the evaluation metric.
For CEE, following (Marasović and Frank, 2018;
Zhang et al., 2019, 2020), we calculate Precision,
Recall and F1 metrics for each element, and their
Micro-average F1. For COQE, we calculate Preci-
sion, Recall and F1 for the whole quintuple.

The calculation of Precision, Recall, and F1

score are as follows:

Precision =
#correct

#predict
, (12)

Recall =
#correct

#gold
, (13)

F1 =
2× Precision×Recall

Precision+Recall
, (14)

where #predict denotes the number of compar-
ative element (or quintuple for COQE) predicted
by the model, #gold denotes the number of com-
parative element (or quintuple) in the dataset,
#correct denotes the number of correct compar-
ative quintuple (or quintuple) in the predictions.

Meanwhile, we consider three matching strate-
gies for measuring the correct predictions: Exact
Match, Proportional Match, and Binary match re-
spectively.

At first, ensure that the predicted quintuple’s
comparative preference is the same as the golden
one, then define #correcte, #correctp and
#correctb for Exact Match, Proportional Match,
and Binary Match as follows:

#correcte =

{
0 ∃ (gk ̸= pk) ;

1 otherwise,
(15)

where gk denotes k-th element in the gold com-
parative quintuple, pk denotes k-th element in the
predicted comparative quintuple. It means that if
all pk and gk match exactly (k = 1, 2, 3, 4), the
count is 1, otherwise 0.

#correctp =

{
0 ∃(gk ∩ pk = ∅);∑

k len(gk∩pk)∑
k len(gk)

otherwise,
(16)

where len(·) denotes the length of the comparative
element. If all pk and gk have overlaps, the count
is

∑
k len(gk∩pk)∑

k len(gk)
, otherwise 0.

#correctb =

{
0 ∃(gk ∩ pk = ∅);

1 otherwise.
(17)

where the count is 1 if all pk and gk have overlaps,
otherwise 0.

5.3 Baseline Systems
In addition to Multi-StageBERT, we also estab-
lished the following baseline systems:

• CSICSR-CEECRF: In Stage 1, we use a SVM
with CSR (Jindal and Liu, 2006a) features to
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Dataset Method CSI CEE COQE
Subject Object Aspect Opinion Micro-Ave Quintuple

Camera-COQE

CSICSR-CEECRF 65.38 30.66 41.48 24.16 53.45 40.04 3.46
(CSI-CEE)CRF 82.14 34.65 40.52 32.96 60.10 45.12 4.88

Multi-StageLSTM 87.14 48.72 48.29 44.27 54.10 49.58 9.05
Multi-StageBERT 93.04 58.15 60.00 59.11 65.61 61.21 13.36

Car-COQE

CSICSR-CEECRF 86.90 25.83 48.46 43.10 54.27 45.05 5.19
(CSI-CEE)CRF 89.85 38.44 56.65 48.16 56.50 51.33 8.65
Multi-StageLSTM 92.68 52.93 69.04 54.71 63.94 60.99 10.28
Multi-StageBERT 97.39 73.51 84.16 76.99 81.03 79.50 29.75

Ele-COQE

CSICSR-CEECRF 88.30 23.40 46.72 39.76 51.46 42.48 4.07
(CSI-CEE)CRF 85.97 14.81 41.73 38.84 53.96 42.27 4.71
Multi-StageLSTM 96.25 38.12 62.37 61.96 68.22 60.90 14.90
Multi-StageBERT 98.31 65.62 75.16 78.86 84.67 77.78 30.73

Table 3: Results of different approaches for CSI, CEE and COQE under the Exact Match metric.

Dataset Metric CSI CEE COQE

Camera-COQE
Exact 93.04 61.21 13.36
Prop 93.04 71.64 23.26

Binary 93.04 76.23 25.25

Car-COQE
Exact 97.39 79.50 29.75
Prop 97.39 85.19 38.46

Binary 97.39 87.32 39.62

Ele-COQE
Exact 98.31 77.78 30.73
Prop 98.31 84.59 40.83

Binary 98.31 86.43 41.87

Table 4: Results of our Multi-StageBERT approach
under three kinds of matching metrics. For CEE, we
report the micro average F1 score.

identify comparative sentences and a CRF with
standard lexical features to extract comparative
elements. Stages 2 and 3 are similar as Multi-
StageBERT.

• (CSI-CEE)CRF: In this approach, we employ
a feature-enhanced CRF (Wang et al., 2015b)
for joint comparative sentence identification and
comparative element extraction, where an all-
“O” labeling sequence indicates the identifica-
tion of non-comparative sentence.

• Multi-StageLSTM: This is a variant of
Multi-StageBERT, where we replace the text
encoder from BERT to LSTM.

5.4 Main Result

In Table 3, we report the performance of all four
approaches on three tasks across three datasets.
For CSI, we report accuracy. For CEE, we re-
port the F1 score for each element (Subject, Ob-
ject, Comparative Aspect, Comparative Opinion)
and their Micro-average (Micro). For COQE, we

report the F1 score for the quintuple. All results
are reported under exact match.

It can be seen that across different tasks and dat-
sets, CSICSR-CEECRF yields generally the low-
est performance. CSICSR-CEECRF is slightly bet-
ter. But their overall performances are relatively
low, especially when dealing with complex tasks
such as COQE (lower than 10%). Two deep learn-
ing approaches achieve much better performance
in all three tasks. The BERT-based Multi-stage
approach shows significant priority over LSTM-
based one, due to its strong representation and gen-
eralization ability.

Among three tasks, the CSI task is the easiest,
where almost all methods obtain satisfactory ac-
curacy. The performances of different approaches
for CEE are also okay, but the gap between differ-
ent approaches increases. The COQE task is the
most difficult. The traditional machine learning
methods generate very poor performance. Even
Multi-StageLSTM fails to achieve satisfactory re-
sults. It is reasonable as the exact match of all five
elements in a quintuple is very challenging.

By contrast, Multi-StageBERT shows strong
ability and greatly improves the performance of
COQE, especially on Car-COQE and Ele-COQE,
even though the task is very difficult.

In Table 4, we also report the performance of
Multi-StageBERT under three kinds of matching
metrics, and that of different approaches in Ta-
ble A1 and Table A2. It can be observed under
Proportional Match and Binary Match, the per-
formances of all models will have significant im-
provements.
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Method Camera-COQE Car-COQE Ele-COQE
CSI CEE COQE CSI CEE COQE CSI CEE COQE

Only CSI Loss 91.53 \ \ 97.75 \ \ 97.64 \ \
Only CEE Loss \ 60.23 12.65 \ 78.91 28.32 \ 76.80 29.17

Multi-Task Learning 93.04 61.21 13.36 97.39 79.50 29.75 98.31 77.78 30.73

Table 5: Ablation study to analyze the importance of different loss strategies in Stage 1.

Method None Filter keep rate

C
am

er
a

-C
O

Q
E

CSICSR-CEECRF 2.98 3.46 88.79
(CSI-CEE)CRF 4.60 4.88 85.93
Multi-StageLSTM 6.77 9.05 84.08
Multi-StageBERT 11.17 13.36 60.66

C
ar

-C
O

Q
E

CSICSR-CEECRF 4.78 5.19 70.03
(CSI-CEE)CRF 8.17 8.65 79.07
Multi-StageLSTM 6.89 10.28 42.92
Multi-StageBERT 23.39 29.75 61.47

E
le

-C
O

Q
E

CSICSR-CEECRF 4.07 4.05 80.55
(CSI-CEE)CRF 4.47 4.71 80.88
Multi-StageLSTM 14.07 14.90 84.08
Multi-StageBERT 27.92 30.73 87.77

Table 6: Results of different approaches on the COQE
task with or without the filter in Stage 2.

5.5 In-depth Analysis

Effects of Different Loss Strategies in Stage 1.
In Table 5, we conduct ablation study of the multi-
learning framework in Stage 1, by comparing only
CSI loss, only CEE loss and multi-task learning.
It can be seen that, CSI performance can be in-
creased by adding the CEE loss, and the CEE per-
formance can be also increased by adding the CSI
loss. It suggests that the CSI and CEE tasks are
mutually indicative. It is therefore reasonable for
us to employ a multi-task learning of SCI and CEE
in Stage 1.
Effects of Comparative Quadruple Filtering in
Stage 2. In Table 6, we investigate the effects
of comparative quadruple filtering in Stage 2, by
comparing the COQE F1 score of different ap-
proaches with or without Filtering, denoted by Fil-
ter and None respectively. The keep rate indicates
the percentages of valid quadruple in all possible
ones. It can be observed in Table 6 that after filter-
ing, the COQE extraction performance increases
significantly across all approaches and datasets.
Effects of Different Comparative Elements
Representation in Stage 3. To investigate the im-
pact of using different comparative element repre-
sentations, we compare the results of using follow-
ing comparative element representations:

Camera Car Ele
-COQE -COQE -COQE

BERT Embedding 12.30 29.40 32.05
High-layer Embedding 9.96 17.41 21.86

Concatenation 13.36 29.75 30.73

Table 7: The effect of different comparative element
representation in Stage 3.

• BERT Embedding: Only the current element’s
BERT embedding is used in Eqn. (7): re =
avg(h[start:end]).

• High-layer Embedding: Only the current el-
ement’s high-layer representation is used in
Eqn. (7): re = avg(he[start:end]).

• Concatenation: The concatenation of the two
representations is used, as defined in Eqn. (7).

Based on the results in Table 7, we can clearly
observe that the performance of only using Ele-
ment Feature as the comparative element represen-
tation is rather limited, and concatenating the Ele-
ment Feature and BERT Embedding achieves sig-
nificant higher performance. This demonstrates
that the two kinds of features can generally com-
plement each other. Therefore, we use their con-
catenation as the comparative element representa-
tion in our experiments.

5.6 Case Study
To validate the effectiveness of our task, we com-
pare our task with the CSM task proposed by Jin-
dal and Liu (2006b) and the CPC task proposed
by Panchenko et al. (2019). The output of three
tasks on two examples are shown in Table 8.

Comparing the outputs on the first example, we
can clearly see that the comparative quintuple de-
fined in our COQE task exactly paraphrases the
input sentence. In contrast, the quintuple defined
in the CSM task is not a paraphrase of the input
sentence, since it is hard to judge whether “G6” or
“G7” is preferred by the user. Moreover, unlike the
CPC task that requires providing the entity pairs
G6 and G7, our task aims to jointly perform entity
pair extraction and preference classification.
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E
xa

m
pl

e
1

The G6 ’s battery was more powerful than
the G7 ’s battery. CSI CEE CPC COQE

CSM (Jindal and Liu, 2006b) {(G6, G7, battery, more, Non-Equal Gradable)} 3 3 7 3

CPC (Panchenko et al., 2019) (G6, G7) ⇒ Better 7 7 3 7

COQE {(G6, G7, battery, more powerful, Better)} 3 3 3 3

E
xa

m
pl

e
2

The D200 autofocus performs similarly to the D80
but a stronger autofocus motor on the D200. CSI CEE CPC COQE

CSM (Jindal and Liu, 2006b) {D200, D80, autofocus performs, similarly, Equative} 3 3 7 7

CPC (Panchenko et al., 2019) (D80, D200) ⇒ Worse 7 7 3 7

COQE {(D200, D80, autofocus performs, similarly, Equal),
(D200, D80, autofocus motor, stronger, Better)} 3 3 3 3

Table 8: Case study of three comparative opinion mining tasks.

Source → Target Metric CSI CEE COQE
Subject Object Aspect Opinion Micro-Ave Quintuple

Ele → Car
Exact 96.62 64.75 79.60 67.96 78.90 74.08 23.44
Prop 96.62 70.29 87.24 74.10 85.92 80.82 30.49

Binary 96.62 72.80 89.46 76.01 88.44 83.11 31.64

Car → Ele
Exact 97.22 48.42 72.12 73.20 83.23 73.35 24.42
Prop 97.22 53.61 84.34 76.46 87.48 79.26 31.61

Binary 97.22 56.14 87.10 76.98 90.82 82.25 32.85

Table 9: Results of our proposed Multi-StageBERT approach in the cross-domain setting.

Compared with the CSM task on the second ex-
ample, our task is more suitable for comparative
sentences with multiple comparative quintuples.
Furthermore, compared with the CPC task, our
task incorporates two additional preference cate-
gories, i.e., Equal and Different, which can cover
a wider range of comparative entities.

5.7 Cross-Domain Experiments
In addition to the previous in-domain experiments,
we further conducted a cross-domain experiment
on two Chinese datasets, where the training set and
validation set are chosen from the source domain,
and testing set is in the target domain. The results
are reported in Table 9. We use Source→Target
to denote different cross-domain tasks, e.g., in
Ele→Car Ele is the source domain and Car is the
target domain.

It can be observed that there is a significant per-
formance drop in the extraction of the subject, ob-
ject, and aspect in comparison with the in-domain
results in Table 3. This is reasonable since most
entities and aspects in the source and target do-
mains are quite different. In contrast, an interest-
ing observation is that the comparative opinion ex-
traction performance drops slightly in comparison
with the in-domain setting, probably due to that
the gap of comparative opinions in different do-
mains is relatively small. As a whole, the quintu-
ple extraction performance has a significant drop.

It can also be found that the drop of compara-
tive sentence identification is very limited. This
suggest that the patterns of distinguishing compar-
ison in different domains are similar.

6 Conclusions and Future Work

In this work, we introduce a new Comparative
Opinion Quintuple Extraction (COQE) task, to
identify comparative sentences from reviews, and
extract all comparative opinion quintuples each of
which includes Subject, Object, Comparative As-
pect, Comparative Opinion and Comparative Pref-
erence. We construct three datasets for the task,
and benchmark the task by proposing a new multi-
stage neural network approach which shows signif-
icant advantages in comparison with baseline sys-
tems extended from previous methods. In the fu-
ture work, we would like to consider more sophis-
ticated approaches, for example, end-to-end deep
learning models, for COQE.
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A Experiment results under
Proportional Match and Binary Match

In Table A1 and Table A2, we report the perfor-
mance of all four approaches on three tasks across
three datasets under the metrics of Proportional
Match and Binary Match.

Dataset Method CSI CEE COQE
Subject Object Aspect Opinion Micro Quintuple

Camera-COQE

CSICSR-CEECRF 65.38 34.05 46.19 25.67 58.31 43.90 4.67
(CSI-CEE)CRF 82.14 38.49 45.42 35.61 66.19 49.80 6.59

Multi-StageLSTM 87.14 55.45 58.16 51.55 68.60 59.72 13.23
Multi-StageBERT 93.04 68.68 71.00 66.24 77.62 71.64 23.26

Car-COQE

CSICSR-CEECRF 86.90 30.23 54.68 45.45 58.11 49.33 7.15
(CSI-CEE)CRF 89.85 43.78 63.02 51.25 61.86 56.45 11.97
Multi-StageLSTM 92.68 62.91 76.88 63.84 76.71 70.97 17.54
Multi-StageBERT 97.39 80.46 89.01 81.73 87.48 85.19 38.46

Ele-COQE

CSICSR-CEECRF 88.30 27.13 52.42 42.06 53.79 46.04 8.16
(CSI-CEE)CRF 85.97 15.74 55.61 39.08 60.90 49.15 9.01
Multi-StageLSTM 96.25 48.01 80.01 68.71 79.70 72.85 25.33
Multi-StageBERT 98.31 70.09 87.90 81.30 90.30 84.59 40.83

Table A1: The performance of different approaches under the Proportional Match metric.

Dataset Method CSI CEE COQE
Subject Object Aspect Opinion Micro Quintuple

Camera-COQE

CSICSR-CEECRF 65.38 36.00 48.40 26.58 63.36 46.84 5.08
(CSI-CEE)CRF 82.14 40.50 47.89 37.43 72.77 53.60 7.32

Multi-StageLSTM 87.14 59.29 62.39 55.34 75.61 64.73 14.67
Multi-StageBERT 93.04 71.07 74.91 69.14 85.36 76.23 25.25

Car-COQE

CSICSR-CEECRF 86.90 32.04 57.36 47.25 61.06 51.73 7.61
(CSI-CEE)CRF 89.85 45.76 64.87 52.35 65.45 58.65 12.63
Multi-StageLSTM 96.25 48.01 80.01 68.71 79.70 72.85 18.76
Multi-StageBERT 97.89 82.45 90.50 83.18 90.91 87.32 39.62

Ele-COQE

CSICSR-CEECRF 88.30 28.72 55.14 43.70 56.39 48.27 8.57
(CSI-CEE)CRF 85.97 15.74 59.47 39.32 62.49 50.96 9.42
Multi-StageLSTM 96.25 49.27 83.42 71.91 83.86 76.16 26.61
Multi-StageBERT 98.61 70.87 91.30 82.33 91.76 86.43 41.87

Table A2: The performance of different approaches under the Binary Match metric.


