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Abstract

Emotion inference in multi-turn conversations
aims to predict the participant’s emotion in
the next upcoming turn without knowing the
participant’s response yet, and is a necessary
step for applications such as dialogue planning.
However, it is a severe challenge to perceive
and reason about the future feelings of partic-
ipants, due to the lack of utterance informa-
tion from the future. Moreover, it is crucial
for emotion inference to capture the charac-
teristics of emotional propagation in conver-
sations, such as persistence and contagious-
ness. In this study, we focus on investigat-
ing the task of emotion inference in multi-turn
conversations by modeling the propagation of
emotional states among participants in the con-
versation history, and propose an addressee-
aware module to automatically learn whether
the participant keeps the historical emotional
state or is affected by others in the next upcom-
ing turn. In addition, we propose an ensem-
ble strategy to further enhance the model per-
formance. Empirical studies on three different
benchmark conversation datasets demonstrate
the effectiveness of the proposed model over
several strong baselines.

1 Introduction

In this paper, we investigate the task of emotion
inference in multi-turn conversations, which aims
to explore how the conversation history affects the
participant’s future emotion, and predict the partic-
ipant’s emotion in the next upcoming turn, with-
out knowing the participant’s response yet. An
example of the task is shown in Figure 1. Emo-
tion inference is a necessary step for applications
such as dialogue planning, dialogue generation,
and interpretability, among others (Lin et al., 2008;
Hasegawa et al., 2013; Gaonkar et al., 2020). For
example, in a human-machine conversation sce-
nario, if a chatbot tries to say something to cheer
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you up when you feel down, then the chatbot must
predict the emotional consequence first, and avoid
words that may offend you or elicit negative emo-
tion on you.

Previous studies on emotion analysis in conver-
sations have mainly focused on recognizing the
emotion of a given utterance, including bc-LSTM
(Poria et al., 2017), DialogueRNN (Majumder et al.,
2019), DialogueGCN (Zhong et al., 2019), COS-
MIC (Ghosal et al., 2020), etc., while the emotion
inference task is to predict the emotion of the next
upcoming utterance, in which the utterance in the
next turn is not given. Hasegawa et al. (2013) stud-
ied a similar task to the emotion inference, how-
ever they only took two turns as context and the
multi-party multi-turn scenario was not considered.
Bothe et al. (2017) and Wang et al. (2020) esti-
mate the sentiment polarity (negative or positive)
of the next utterance, while our work anticipates the
fine-grained emotion, such as happy, sad, angry,
excited, and frustrated, etc.

Although extensive related work has been con-
ducted, emotion inference in multi-turn conversa-
tions is still an understudied and challenging task,
due to the lack of utterance information from the
future and the complexity to capture the character-
istics of emotional propagation in multi-turn con-
versations, such as persistence and contagiousness.
To address these issues, an addressee-aware mod-
ule is designed for both a sequence-based and a
graph-based model to capture the propagation of
emotional state in conversations and automatically
learn whether the participant keeps the historical
emotional state or is affected by others.

In addition, we propose an ensemble strategy
to further enhance the model performance. Since
the exact response of the participant in the next
upcoming turn is unknown, there may be multiple
potential emotional reactions. We run the models
with different random seeds to generate multiple
candidate results, and then train a fusion classifier
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1) You liked it? You  
really liked it?

2) Oh, yeah!

3) Which part  
exactly?

4) The whole thing!  
Can we go?

5) What about the  scene 
with the kangaroo?

6) I was surprised to  see 
a kangaroo in a world 
war epic.

7) You fell
asleep!

Surprise Neutral Anger
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C
ha

nd
le

r

Joy Neutral SurpriseEmotion :

What is 
Chandler's 
most likely 
emotion at 
turn 8? 
(Sadness)

Neutral

Figure 1: A dialogue example in the MELD dataset (Poria et al., 2019). The task of emotion inference in multi-turn
conversations is to predict Chandler’s emotion in the next upcoming turn (8) based on the previous 7 turns of the
dialogue.

to automatically select the final result most suitable
for the current context and dialogue scene from the
candidates.

The main novelty and contribution of this work
is that we propose an addressee-aware module for
the emotion inference task to model the emotional
characteristics and anticipate the emotion trend in
multi-turn conversations. Moreover, an ensemble
strategy is proposed to further enhance the model
performance. The experiments on three bench-
mark conversational datasets show that our model
achieves the new state-of-the-art F1 score.

2 Task Definition

Given a multi-party multi-turn conversation his-
tory D along with the participants information,
the emotion inference task aims to infer and an-
ticipate the participant’s emotion in the next up-
coming turn. Formally, conversation history D =
[(U1, p

w
1 ), (U2, p

w
2 ), · · · , (Um, p

w
m), pam+1] is a se-

quence of utterances, where Um is the utterance
at time m and consists of N words, i.e., Um =
(wm

1 , w
m
2 , · · · , wm

N ), pwm is the writer/speaker of
utterance Um at timestamp m. And pam+1 is the ad-
dressee/listener in the next upcoming turn m+ 1.

The task is to infer the addressee pam+1’s emo-
tionEa

m+1 at timem+1 based on the utterances of
previous m turns along with the participants infor-
mation, without knowing the utterance information
at time m+ 1 yet:

Ea
m+1∼P (Ea

m+1|(U1, p
w
1 ), · · · , (Um, p

w
m), pam+1). (1)

3 Methodology

Feature Extraction: First, we employ both a
GloVe-based CNN encoder (Kim, 2014; Penning-
ton et al., 2014) and a RoBERTa Large encoder

(Liu et al., 2019) to encode each utterance in the
dataset. Following Ghosal et al. (2019, 2020), we
fine-tune each encoder for the context-independent
utterance-level emotion label recognition task on
the training set, and then extract the emotional rep-
resentation of each utterance from the last layer of
the encoder, and obtained a 100-dimensional and
a 1024-dimensional vector for each utterance from
the GloVe-based encoder and the RoBERTa-based
encoder respectively. The encoding process can be
simplified as:

u1, u2, · · · , um = CNN/RoBERTa(U1, U2, · · · , Um),
(2)

where (U1, U2, · · · , Um) is the conversation his-
tory, Ut is the utterance at time t and ut ∈ RH is
the corresponding utterance representation encoded
by CNN/RoBERTa, H = 100/1024.

Addressee-Aware Module

To infer and anticipate the participant’s emotion,
it is important to model the emotion shift in con-
versations. In this work, we consider two basic
characteristics of emotion: persistence and conta-
giousness (Picard, 1995; Hazarika et al., 2018), as
the basis of inferring participant’s emotion.

• Persistence. Participants may be consistently affected by
their own mood and keep the existing emotional state for
a period of time. For example, if a participant’s car breaks
down, then the emotion of this participant may be sad for a
long period of time in the conversation.

• Contagiousness. The emotional states of participants are
interactive, influential and contagious to each other. For
example, a sad participant can be encouraged or comforted
by others to be happy.

Thus, the addressee pam+1 either keeps her/his own
historical emotional state or is affected by oth-
ers. In this paper, an addressee-aware module is
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proposed for both a sequence-based and a graph-
based model to model these two kinds of emotion
flow simultaneously.

Sequence-based Model: We first categorize
each utterance ut in the conversation history (u1,
u2, · · · , ut, · · · , um) into two types according
to whether the utterance ut was spoken by the
addressee pam+1 or others. Two different LSTM
units, LSTMstore and LSTMaffect, are then em-
ployed to control the different emotional informa-
tion flow. Persistence: If the historical utterance
ut at time t was spoken by the addressee pam+1, i.e.,
pwt = pam+1, then we expect the LSTMstore unit
to open the input gate it and store the ut into the
internal state cat as much as possible. Contagious-
ness: If the utterance ut was spoken by someone
other than the addressee pam+1, i.e., pwt 6= pam+1,
then we expect that if the utterance ut is highly
contagious and is likely to affect the addressee’s
emotion, then the LSTMaffect unit will open the
forget gate ft to forget the addressee’s own past
state cat−1 and update the current state cat with the
other participant’s utterance ut. Otherwise if the ut-
terance ut is not contagious, then the LSTMaffect

unit will close the input gate it and keep the ad-
dressee’s own historical state cat−1 into the internal
state at time t. This process can be formalized as:

(ha
t , c

a
t ) =λ

a
t · LSTMstore(ut, (h

a
t−1, c

a
t−1))

+(1− λa
t ) · LSTMaffect(ut, (h

a
t−1, c

a
t−1)),

λa
t =

{
1, if pwt = pam+1

0, if pwt 6= pam+1
,

(3)

where t = 1, 2, · · · ,m. ut ∈ RH is the utterance
feature. (hat , c

a
t ) are the hidden state and cell state

in the LSTM unit, hat /c
a
t ∈ RF , F = 100. λat

is the information coefficient at time t. pwt is the
writer/speaker of the utterance ut at time t. pam+1

is the addressee/listener at time m+ 1.
Then the last hidden state ham is then fed to a

linear classifier to obtain the emotion distribution
esam+1 of the addressee pam+1 in the next upcoming
turn m+ 1:

esam+1 = softmax
(
WT

c

(
ReLU(WT

s h
a
m)
)
+ b
)
, (4)

where ham ∈ RF , Ws ∈ RF×F is the parameter
matrix, Wc ∈ RF×C is the weight of the linear
classifier, C is the total number of emotion cate-
gories. esam+1 ∈ RC is the final emotion distribu-
tion of the addressee pam+1.

Graph-based Model: A graph-based model is
also proposed to model the conversational data

for the emotion inference task. We construct a di-
rected graph for each conversation: G = (g, e, α),
with nodes gt ∈ g, edges em,t ∈ e and edge
weights αm,t ∈ α between nodes gm and gt, where
t = 1, 2, · · · ,m. Each node gt in the graph is used
to represent a dialogue state in the turn t, and we
initialize each node gt with the utterance represen-
tation ut through a linear transform layer (Eq 5).
The edges between nodes in the graph are used to
represent the complicated dependencies between
the dialogue states. In our emotion inference task
setting, each node is connected to all the previous
nodes (including itself), and then all the historical
information is accumulated into the node gm, based
on the edges and edge weights (Eq 6-7), and then
the emotion of the next upcoming turn is predicted
based on gm (Eq 8). We formally describe this
process below.

For t = 1, 2, · · · ,m, we represent each utter-
ance ut as a node gt in the directed graph G
through a linear transform layer:

gt = (WT
l ut + b), (5)

where t = 1, 2, · · · ,m. ut ∈ RH is the utterance
feature. gt ∈ RF is the node in the graph, Wl ∈
RF×H is the weight of the linear transform layer,
and F = 100 is the dimension of nodes.

We then employ two different attention func-
tions, ATTstore and ATTaffect, to compute the
edge weight between the node gm and node gt,
which is similar to the sequence-based addressee-
aware model. If the historical utterance ut at
time t was spoken by the addressee pam+1, i.e.,
pwt = pam+1, then we employ ATTstore to com-
pute the edge weight between gm and gt, otherwise
ATTaffect. The edge weight αa

m,t between node
gm and node gt can be formalized as:

αa
m,t = softmax(λa

t ·ATTstore(gm, gt)

+(1− λa
t ) ·ATTaffect(gm, gt)),

λa
t =

{
1, if pwt = pam+1

0, if pwt 6= pam+1
,

ATT (gm, gt) = WT
a

(
ReLU

(
WT

f [gm||gt]
))

,

(6)

where αa
m,t represents the attention weight between

the nodes gm and gt. || is the concatenation op-
eration. Wa ∈ RF and Wf ∈ R2F×F are the
parameter matrices.

We then update the nodes. The updated node g
′
m

is a linear combination of all the connected nodes
with the attention coefficient αa

m,t:

gm
′
=
∑

gt∈Hgm

αa
m,t · gt, (7)
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where gt ∈ Hgm represents all the historical nodes
gt connected with gm. After updating, all the histor-
ical information that contributes to the addressee’s
emotion is accumulated into the node gm

′
. Then

the emotion distribution egam+1 of the addressee
pam+1 is obtained:

egam+1 = softmax
(
WT

c

(
ReLU(WT

g g
′
m)
)
+ b
)
, (8)

where g
′
m ∈ RF , egam+1 ∈ RC . Wg ∈ RF×F is

the parameter matrix, Wc ∈ RF×C is the weight
of the linear classifier.

Ensemble Strategy
We denote the sequence-based and graph-
based model as DialogInfer-S (Equation 4) and
DialogInfer-G (Equation 8). And we also integrate
the two models through Equation 9 and denote it
as DialogInfer-(S+G):

eiam+1 = softmax
(
WT

c

(
ReLU(WT

i (h
a
m + g

′
m))
)
+ b
)
,

(9)

where eiam+1 ∈ RC , ham ∈ RF , g
′
m ∈ RF . Wi ∈

RF×F is the parameter matrix.
There may be multiple potential emotional reac-

tions, as the exact response of the participant in the
next upcoming turn is unknown. Therefore, differ-
ent results may be output by the above three differ-
ent models due to the uncertainty of the emotion
inference task. Moreover, even the same model
with different parameter initializations may give
different results. An ensemble strategy is proposed
to address this issue.

We train DialogInfer-S, DialogInfer-G, and
DialogInfer-(S+G) 5 times each with different ran-
dom seeds to generate 15 candidate results, and
then train a fusion classifier to automatically select
the final result most suitable for the current context
and dialogue scene from the candidates:

efa
m+1 = softmax(ReLU(WT

f ([es
a
m+1

1|| · · · ||esam+1
5||

egam+1
1|| · · · ||egam+1

5||eiam+1
1|| · · · ||eiam+1

5]) + b)),
(10)

where efam+1 ∈ RC is the output emotion proba-
bility distribution of the ensemble strategy. esam+1,
egam+1, eiam+1 are the output emotion probability
distributions of DialogInfer-S, DialogInfer-G, and
DialogInfer-(S+G) respectively. The superscripts
1, 2, · · · , 5 represent 5 different random initializa-
tions. || is the concatenation operation. Wf ∈ R15

is the parameter matrix. The ensemble model is
denoted as DialogInfer-Ensemble.

The final emotion label Ea
m+1 can be sampled

from the output probability distributions of the
above 4 types of models:

Ea
m+1∼P (Ea

m+1|(U1, p
w
1 ), · · · , (Um, p

w
m), pam+1)

= (esam+1/eg
a
m+1/ei

a
m+1/ef

a
m+1).

(11)

4 Experiments

4.1 Datasets

We evaluate our model on three multi-turn conver-
sational datasets: IEMOCAP (Busso et al., 2008),
MELD (Poria et al., 2019), and EmoryNLP (Za-
hiri and Choi, 2018). For more dataset details,
please refer to their papers.

4.2 Baseline and State-of-the-art Methods

We compare our model with the following related
latest neural-network-based methods, and modified
them to fit the emotion inference task: CNN (Kim,
2014) and RoBERTa Large (Liu et al., 2019)
model are trained at the utterance level to infer the
emotion class of next turn. sc-LSTM (Poria et al.,
2017) is a simple contextual unidirectional LSTM
model. DialogueRNN (Majumder et al., 2019)
is an RNN-based model, which uses three sepa-
rate GRU networks to keep track of the individual
speaker states. DialogueGCN (Ghosal et al., 2019)
uses a relational GCN to model the relation be-
tween utterances. COSMIC (Ghosal et al., 2020)
is the state-of-the-art model in emotion recognition
in conversations, which incorporates different ele-
ments of commonsense. All the baseline methods
in our experiments use the same input features (Eq
2) as our proposed methods to ensure a fair compar-
ison (300 dimensional pretrained 840B GloVe vec-
tors (Pennington et al., 2014) for the GloVe-based
models, and 1024 dimensional RoBERTa-Large
(Liu et al., 2019) for the RoBERTa-based models).

4.3 Experimental Settings

We use the batch size of 16, learning rate of 0.001,
and dropout rate of 0.2 to train the inference models.
Cross entropy is used as the optimization objective
function of the model, and the optimization algo-
rithm is Adam (Kingma and Ba, 2015). The hidden
size F is set to 100. All models are trained for 60
epochs and the model checkpoint that achieves the
best results on the development set is used for test-
ing. Other hyper-parameters are optimized using
the grid search.
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Methods IEMOCAP MELD EmoryNLP
G

lo
V

e-
ba

se
d

CNN (2014) 44.09 36.31 20.97
sc-LSTM (2017) 56.22 36.06 19.75
DialogueRNN (2019) 58.12 36.93 20.37
DialogueGCN (2019) 56.48 36.98 19.59
DialogInfer-S 60.45 38.09 21.08
DialogInfer-G 59.48 36.62 20.22
DialogInfer-(S+G) 60.74 38.46 21.69
DialogInfer-Ensemble 65.31* 38.48* 20.95

R
oB

E
R

Ta
-b

as
ed

RoBERTa Large (2019) 43.24 36.99 20.46
sc-LSTM (2017) 58.81 37.71 22.26
DialogueRNN (2019) 59.53 38.70 21.98
COSMIC (2020) 61.50 39.49 21.60
DialogInfer-S 63.63 40.32 23.09
DialogInfer-G 59.94 38.06 22.81
DialogInfer-(S+G) 64.70 40.67 22.63
DialogInfer-Ensemble 66.39* 39.41 24.09*

Table 1: Performance on three datasets. The weighted
macro-F1 is used as the evaluation metric and the best
results are in bold. The reported scores are median of
five runs, and the asterisk * indicates the statistically
significant improvement of our best model over each
baseline model (two-tailed paired t-test, p < 0.05).

4.4 Results and Discussion
We compare the performance of our proposed mod-
els with the baselines on the three benchmark con-
versational datasets, and the results are listed in Ta-
ble 1. As we can see from the results, our sequence-
based and graph-based addressee-aware models
surpass the baseline methods, which shows that
our models can capture more essential information
for inferring the addressee’s emotion than other
models. In addition, the ensemble model achieves
significant improvements in most cases, which also
proves the effectiveness of the ensemble strategy
for further enhancing the performance of emotion
inference in multi-turn conversations.

The performance of utterance level models,
CNN and RoBERTa Large, are worse than other
models based on conversation history in most cases,
which shows that the inference of the addressee’s
emotion relies heavily on the evidence from the
conversation history. Comparing the GloVe-based
models with the RoBERTa-based models, most of
the results obtained by the RoBERTa-based mod-
els are better than those got by the GloVe-based
models. This is because the RoBERTa model has
been pre-trained on the large-scale unstructured
texts and the features extracted from the RoBERTa
model are more informative.

Ablation analysis In Table 2, we also report
the results of ablation studies by removing the
addressee-aware module, and using the same
LSTM-unit or attention function in Equation 3 and

Methods IEMOCAP MELD EmoryNLP

G
lo

V
e-

ba
se

d

DialogInfer-S 60.45 38.09 21.08
w/o addressee-aware 57.04 36.30 18.94
DialogInfer-G 59.48 36.62 20.22
w/o addressee-aware 56.42 35.21 20.10
DialogInfer-(S+G) 60.74 38.46 21.69
w/o addressee-aware 58.79 37.33 19.70
DialogInfer-Ensemble 65.31 38.48 20.95
w/o addressee-aware 58.72 36.75 20.73

R
oB

E
R

Ta
-b

as
ed

DialogInfer-S 63.63 40.32 23.09
w/o addressee-aware 59.23 38.03 22.52
DialogInfer-G 59.94 38.06 22.81
w/o addressee-aware 56.43 37.17 21.03
DialogInfer-(S+G) 64.70 40.67 22.63
w/o addressee-aware 59.39 38.81 22.16
DialogInfer-Ensemble 66.39 39.41 24.09
w/o addressee-aware 61.16 37.85 21.79

Table 2: Ablation analysis on three datasets.

Equation 6. The results show that the performance
of both GloVe-based and RoBERTa-based models
drops after removing the addressee-aware module,
which proves the effectiveness of our addressee-
aware module, and indicates the addressee-aware
module can model the persistence and contagious-
ness of emotion and learn the emotion shift in multi-
turn conversations.

5 Conclusion

In this paper, we investigate the emotion inference
in multi-turn conversations, which explores how
the conversation history affects the participant’s
future emotion. To model the characteristics of
emotion propagation in conversations: persistence
and contagiousness, an addressee-aware module is
designed for both a sequence-based and a graph-
based model. In addition, an ensemble strategy
is proposed to further enhance the model perfor-
mance. The extensive experimental results on three
benchmark datasets show that the proposed models
achieve the new state-of-the-art F1 score, and the
effectiveness of both the addressee-aware module
and the ensemble strategy is demonstrated.
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