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Abstract

Argument pair extraction (APE) aims to ex-
tract interactive argument pairs from two pas-
sages of a discussion. Previous work stud-
ied this task in the context of peer review and
rebuttal, and decomposed it into a sequence
labeling task and a sentence relation classi-
fication task. However, despite the promis-
ing performance, such an approach obtains the
argument pairs implicitly by the two decom-
posed tasks, lacking explicitly modeling of
the argument-level interactions between argu-
ment pairs. In this paper, we tackle the APE
task by a mutual guidance framework, which
could utilize the information of an argument
in one passage to guide the identification of ar-
guments that can form pairs with it in another
passage. In this manner, two passages can mu-
tually guide each other in the process of APE.
Furthermore, we propose an inter-sentence re-
lation graph to effectively model the inter-
relations between two sentences and thus fa-
cilitates the extraction of argument pairs. Our
proposed method can better represent the holis-
tic argument-level semantics and thus explic-
itly capture the complex correlations between
argument pairs. Experimental results show
that our approach significantly outperforms
the current state-of-the-art model.

1 Introduction

Argumentation mining has received increasing re-
search attention in recent years. Existing studies
can be categorized into monological argumentation
(Stab and Gurevych, 2014; Eger et al., 2017; Potash
et al., 2017; Kuribayashi et al., 2019) and dialog-
ical argumentation (Swanson et al., 2015; Morio
and Fujita, 2018; Chakrabarty et al., 2019), with
the former identifying the argumentation structure
of a single monological document, and the latter fo-
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cusing on the analysis of argumentation in debates
or discussions.

Argument pair extraction (APE) is a new task
within the field of dialogical argumentation, aim-
ing at extracting interactive argument pairs from
two argumentative passages of a discussion. Cheng
et al. (2020) investigated this task in the context
of peer review and rebuttal, as they involve rich
argumentative and interactive discussions. An ex-
ample of APE is shown in Figure 1, where a review
passage and its corresponding rebuttal passage are
segmented into arguments and non-arguments at
sentence level. The arguments in review can form
argument pairs with the arguments in rebuttal, ac-
cording to the points they discuss.

APE is a highly challenging task because we
need to understand not only the argumentation
structure presented by each side of the discussion,
but also the interaction of arguments between the
participants. The interactions between arguments
can be complicated, for example, one argument
may be paired with multiple other arguments, form-
ing one-to-many relations. This task is essential
for understanding the structure of dialogical argu-
mentation and can also support other related tasks,
such as argument generation (Hua et al., 2019a)
and debate summarization (Chowanda et al., 2017).
Due to the rich interaction of complex arguments,
peer review and rebuttal are perfect resources for
APE, and have also been exploited in other tasks
(Hua et al., 2019b; Fromm et al., 2020).

Cheng et al. (2020) proposed to tackle APE by
decomposing it into a sequence labeling task and a
sentence relation classification task, with the first
subtask extracting the arguments in each review
or rebuttal, and the second subtask determining
whether two sentences belong to the same pair of
arguments. These two subtasks are jointly opti-
mized within a multi-task learning framework, and
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Figure 1: An example of APE. A review passage is shown on the left, and its corresponding rebuttal passage is
shown on the right. Sent-i denotes the i-th sentence in the review/rebuttal, and Rev:Arg-i/Rep:Arg-i denotes the
i-th argument in the review/rebuttal. Each argument consists of one or more consecutive sentences. Arg-Pair-i
denotes the i-th argument pair. In this example, two argument pairs are colored in green and blue respectively.

then the argument pairs are obtained indirectly by
combining the results of the two subtasks. How-
ever, this method is suboptimal for APE, because
it lacks explicitly modeling of the argument-level
interactive relations between argument pairs, and
the two subtasks might not adapt well to each other.

When humans perform this task, we will first
identify an argument from the review passage.
Then, keeping this argument in mind, we would
further seek out the corresponding arguments from
the rebuttal passage to obtain argument pairs. Sim-
ilarly, this process can be reversed, i.e., we first
identify an argument from the rebuttal passage,
and then identify the argument in the review pas-
sage guided by the identified rebuttal argument. In-
spired by this, we design a mutual guidance frame-
work (MGF) to address APE. Our approach first
identifies the arguments in the review and rebuttal
by a non-guided sequence tagger. Then, incorpo-
rating the representations of identified arguments,
a review-argument-guided sequence tagger and a
rebuttal-argument-guided sequence tagger are uti-
lized to determine argument pairs. Furthermore, we
introduce an inter-sentence relation graph (ISRG)
to better characterize the complex interactions be-
tween review and rebuttal. Unlike the previous
method based on two subtasks, our approach can
explicitly exploit argument-level semantic informa-
tion to extract argument pairs more precisely.

Experimental results show that our method sig-
nificantly outperforms the state-of-the-art methods.
Further analysis reveals the effectiveness of mu-
tual guidance and ISRG. Also, our method is more
superior when extracting one-to-many pairs.

2 Task Definition

Following the work of Cheng et al. (2020), we
aim to automatically extract interactive argument
pairs from peer review and rebuttal. Formally,
given a review passage V = (sv1, s

v
2, . . . , s

v
m) con-

sisting of m sentences and a rebuttal passage
B = (sb1, s

b
2, . . . , s

b
n) consisting of n sentences,

we first need to identify each argument in review
and rebuttal, and obtain a review argument spans
set X̂

v
= {α̂v1, α̂v2, . . . } and a rebuttal argument

spans set X̂
b
= {α̂b1, α̂b2, . . . }, where α̂vi and α̂bi

are sentence-level spans in review and rebuttal,
respectively. Then, a set of interactive argument
pairs P̂ = {p̂1, p̂2, . . . } should be extracted, where

p̂i ∈ X̂
v × X̂

b
is an interactive argument pair. For

example, in Figure 1, the review argument spans set
X̂ is {âv1, âv2} = {(3, 5), (6, 9)} and the rebuttal ar-
gument spans set Ŷ is {âb1, âb2} = {(2, 3), (4, 5)}.
The argument pairs set P̂ is {(âv1, âb1), (âv2, âb2)}.

3 Proposed Approach

We present a mutual guidance framework with
an inter-sentence relation graph for APE, named
MGF. Our approach can better utilize the holistic
argument-level semantics and thus explicitly cap-
ture the complex correlations between argument
pairs. The overall architecture is shown in Figure
2. In the following, we first introduce the inter-
sentence relation graph, then describe the mutual
guidance framework.
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Figure 2: The architecture of MGF.

3.1 Inter-sentence Relation Graph

In order to facilitate argument pair extraction, we
capture the latent sentence relations between review
and rebuttal by an inter-sentence relation graph.
This graph regards every sentence in review and
rebuttal as nodes, and is constructed from two per-
spectives: 1) From the in-passage perspective, we
build edges among the sentences of individual re-
view/rebuttal passage (in-passage edges) based on
the relative positions between them. This kind of
edge can emphasize the correlation between two
sentences with close distance, as they may be in
the same argument. 2) From the cross-passage per-
spective, we build edges between review sentences
and rebuttal sentences (cross-passage edges) based
on the co-occurring words between two sentences.
Intuitively, two arguments in an argument pair are
likely to share certain words since they are dis-
cussing the same point. Also, we find that there are
co-occurring words in more than 80% of the argu-
ment pairs of the Review-Rebuttal dataset (Cheng
et al., 2020) (ignoring the stop words). Thus, this
kind of edge could help capture the interactions
between argument pairs by modeling the cross-
passage sentence relations.

In-passage Edge. Based on the relative positions
between two sentences, the weights of the edge
between every two in-passage sentences ωI(si, sj)

can be computed as:

ωI(si, sj) =

{
1 + (1− D(si,sj)ρ ) D(si, sj) ≤ ρ
0 otherwise

(1)

where si and sj are two sentences within an indi-
vidual review/rebuttal passage, and D(si, sj) de-
notes the relative distance between them. ρ is the
in-passage sentence distance threshold, and two
sentences are connected only if their relative dis-
tance is not greater than ρ. Since most passages are
very long, this threshold ρ can control the farthest
retention distance, so as to reduce noise.

Cross-passage Edge. Based on the co-occurring
words between two sentences, the weights of the
edge between every two cross-passage sentences
ωC(si, sj) can be computed as:

ωC(si, sj) =

{
1 +

C(si,sj)
Cmax

C(si, sj) > ϕ

0 otherwise
(2)

where si and sj are two sentences from two differ-
ent passages, and C(si, sj) denotes the number of
co-occurring words of them. Cmax is the maximum
co-occurring words number of the corpus. ϕ indi-
cates the co-occurring words number threshold, and
two passage sentences are connected only when the
number of their co-occurring words is greater than
ϕ. Note that when calculating C(si, sj), we ignore
the stop words.
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With the in-passage edges and the cross-passage
edges defined above, the inter-sentence relation
graph (ISRG) of review V and rebuttal B could be
constructed, where the nodes are all sentences of
review and rebuttal. Here, the adjacency matrix
A ∈ R(m+n)×(m+n) of ISRG can be derived as:

Aij =


ωI(si, sj) si, sj ∈ V
ωI(si, sj) si, sj ∈ B
ωC(si, sj) si ∈ V, sj ∈ B
ωC(si, sj) si ∈ B, sj ∈ V

(3)

3.2 Mutual Guidance Framework

Our proposed Mutually Guided Framework (MGF)
first encodes the sentences and employs a non-
guided sequence tagger to identify the arguments
in the review and rebuttal. Then, after obtaining a
relation-oriented sentence representation by graph
convolution, two mutually guided taggers are used
to extract argument pairs.

Sentence Encoder. We apply BERT (Devlin
et al., 2019) to obtain the representation of each sen-
tence and use LSTM (Hochreiter and Schmidhuber,
1997) to encode the contextual long-term dependen-
cies of sentences. Specifically, for each sentence
si from V or B, we feed it into BERT and get the
sentence embedding ei ∈ Rdb by mean pooling
over all token representations, where db is the vec-
tor dimension of the last layer of BERT. Hence,
the sentences in V and B can be represented as
V = (ev1, e

v
2, . . . , e

v
m) and B = (eb1, e

b
2, . . . , e

b
n).

Subsequently, V and B are separately fed into a
bidirectional LSTM (BiLSTM), and the hidden
states from both directions of each sentence are con-
catenated as the contextual sentence representation.
In this way, the contextual sentence representation
matrix of V and B can be derived:

Hv = (hv1,h
v
2, . . . ,h

v
m) (4)

Hb = (hb1,h
b
2, . . . ,h

b
n) (5)

where hvi /hvi ∈ R2dl is the contextual sentence rep-
resentation of the i-th sentence in review/rebuttal,
dl is the hidden size of LSTM.

Non-guided Tagger. We use a CRF sequence
tagger to identify all potential arguments, named
non-guided tagger, which could provide explicit
argument span information for the subsequent argu-
ment pairs extraction. Concretely, we feed the con-
textual sentence representations Hv and Hb into

this CRF tagger, and the predicted label sequences
for review and rebuttal could be obtained:

Yv = (yv1 , y
v
2 , . . . , y

v
m) (6)

Yb = (yb1, y
b
2, . . . , y

b
n) (7)

where yvi /ybi is the IOBES label for the i-th sentence
of review/rebuttal.

According to these two label sequences, we
could obtain the potential argument spans for re-
view and rebuttal, i.e. Xv = {αv1, αv2, . . . } and
Xb = {αb1, αb2, . . . }, where αvi /αbi is the i-th pre-
dicted argument span of review/rebuttal.

Graph Aggregation Layer. Base on the inter-
sentence relation graph constructed in Section 3.1,
we use the contextual sentence representations
Hv ∈ Rm×2dl and Hb ∈ Rn×2dl as the feature
vectors of (m + n) nodes in this graph. Then,
we employ a graph convolutional network (GCN)
(Kipf and Welling, 2017) to conduct information
exchange between nodes:

G(0) =
[
Hv;Hb

]
(8)

G(l+1) = σ(ÃG(l)W(l) + b(l)) (9)

where Gl ∈ R(m+n)×2dl contains all node vectors
in the l-th layer of GCN and Ã is the normalized
adjacency matrix. W(l) and b(l) are learnable pa-
rameter matrix and bias term. σ(·) is the ReLU
activation function commonly used in GCN.

We keep the node vectors of the last layer of
the GCN as the relation-oriented sentence represen-
tations of sentences for review (Gv) and rebuttal
(Gb):

G(L) =
[
Gv;Gb

]
(10)

Gv = (gv1,g
v
2, . . . ,g

v
m) (11)

Gb = (gb1,g
b
2, . . . ,g

b
n) (12)

where gvi /gbi ∈ Rdg is the relation-oriented repre-
sentation for the i-th sentence in review/rebuttal,
and dg is the output feature dimension of GCN.

Mutually Guided Taggers. With the argument
spans sets (Xv and Xb) produced by the non-guided
tagger and the relation-oriented sentence represen-
tations (Gv and Gb) produced by GCN, we could
extract argument pairs with two mutually guided
taggers, i.e. review-argument-guided (RVAG) tag-
ger and rebuttal-argument-guided (RBAG) tagger.
These two taggers could guide each other and co-
operate to extract argument pairs.
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For the RVAG tagger, we first use review argu-
ment spans set Xv to produce a representation of
each potential review argument from Gv by mean
pooling over the sentence representations in each
argument span. Specifically, for the k-th argument
span αvk = (bk, ek) in Xv, the contextual represen-
tation of this argument avk ∈ Rdg could be obtained
by:

avk =
1

ek − bk + 1

ek∑
i=bk

gvi (13)

In this way, the representations of review arguments
can be represented as Qv = (av1,a

v
2, . . . ). Subse-

quently, to enable this k-th review argument to
guide the identification of its paired rebuttal argu-
ments, we concatenate avk to each rebuttal sentence
representation gbi and then apply another BiLSTM
to obtain the RVAG rebuttal sentence representa-
tions:

−→
h b,g
i =

−−−−→
LSTM(gbi ⊕ avk,

−→
h b,g
i−1) (14)

←−
h b,g
i =

←−−−−
LSTM(gbi ⊕ avk,

←−
h b,g
i−1) (15)

hb,gi =
−→
h b,g
i ⊕

←−
h b,g
i (16)

where hb,gi ∈ Rdl is the RVAG representations
for the i-th sentence in rebuttal. In this way,
the RVAG rebuttal sentence representation matrix
Hv,g = (hb,g1 ,hb,g2 , . . . ,hb,gn ) could be obtained.
Then, we input Hv,g into a CRF layer to identify
the arguments that could form pairs with the k-th
review argument αvk.

Similarly, the RBAG tagger can be conducted
in the same manner, except that each identified
rebuttal argument is used to guide the identification
of its paired review arguments.

3.3 Training
The loss function of MGF consists of two parts,
one for AM and the other for APE.

For AM, we maximize the log-likelihood of the
non-guided tagger:

Lam = logp(Ŷ
v|V) + logp(Ŷ

b|B) (17)

where Ŷ
v

and Ŷ
b

are the ground-truth IOBES label
sequences of the review and rebuttal.

For APE, the log-likelihood of the RVAG tagger
and the RBAG tagger are as follows:

Lape =
∑
i

logp(Ŷ
b,r
i |B,Xv)

+
∑
i

logp(Ŷ
v,r
i |V,Xb)

(18)

where Ŷ
v,r
i and Ŷ

b,r
i are the i-th relation-oriented

ground-truth IOBES label sequences of review and
rebuttal. Concretely, all review arguments derived
by the label sequence Ŷ

v,r
i are paired with the i-th

argument of the rebuttal.
We sum the loss function of the above two parts

to obtain the final training objective of MGF1:

L = Lam + Lape (19)

3.4 Inference
During inference, we fuse the prediction of both
RVAG tagger and RBAG tagger to obtain argument
pairs. Specifically, let Yv,r

k denote the relation-
oriented label sequences predicted by the RBAG
tagger, from which all review argument spans
paired with the k-th rebuttal argument can be ob-
tained. We notate these review argument spans
as Xv,rk = (αvk,1, α

v
k,2, . . . ) and the k-th rebut-

tal argument span as αbk. Accordingly, the argu-
ment pairs derived from Yv,r

k can be denoted as
Pv,rk = ((αvk,1, α

b
k), (α

v
k,2, α

b
k), . . . ). Further, we

can obtain all argument pairs predicted by RBAG
tagger Prbag by:

Prbag =
⋃
k

Pv,rk (20)

Similarly, all argument pairs predicted by RVAG
tagger Prvag can be obtained in the same manner.

Then, we consider the union set of Prvag and
Prbag as the prediction result of argument pairs, i.e.
P = Prvag ∪ Prbag. Our preliminary experimental
results show that this approach can efficiently fuse
the prediction results of RVAG tagger and RBAG
tagger.

4 Experimental Setup

4.1 Dataset
We conduct experiments on the Review-Rebuttal
(RR) dataset proposed by Cheng et al. (2020).
This dataset contains 4,764 review-rebuttal pas-
sage pairs of ICLR collected from openreview.net.
Cheng et al. (2020) provided two versions of di-
viding RR dataset, namely RR-submission and RR-
passage. In both versions, RR dataset is split by the
ratio of 8:1:1 for training, development, and test-
ing. In RR-submission, multiple review-rebuttal
passage pairs of the same paper submission are in

1We considered putting different weights for these two
parts, but the impact is minimal. Detailed experimental results
can be found in Appendix A.

https://openreview.net/
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RR

# Review-rebuttal pairs 4,764
# Argument pairs 18.6K
# One-to-one argument pairs 13.0K
# One-to-many argument pairs 5.6K

Rev

# Sentences 99.8K
# Arguments 23.2K
Avg. # sentences per passage 21.0
Avg. # sentences per argument 2.5

Reb

# Sentences 94.9K
# Arguments 17.7K
Avg. # sentences per passage 19.9
Avg. # sentences per argument 3.8

Table 1: Statistics of RR dataset.

the same train/development/test set, whereas RR-
passage does not guarantee this. This distinction
makes RR-submission more challenging, so our fur-
ther experiments are conducted on RR-submission.
The detailed statistics about RR dataset are summa-
rized in Table 1.

4.2 Implementation Details

We evaluate our experiments by two metrics,
namely argument mining (AM) and argument pair
extraction (APE). Unlike Cheng et al. (2020), we
do not use sentence pairing as an evaluation metric
since we extract argument pairs directly instead of
using sentence pairing as a subtask. We employ
the precision (Pre.), recall (Rec.), and F1 scores
to measure the performance on AM and APE. All
experiments are performed 5 times with different
random seeds, and the scores are averaged.

Regarding the implementation of our model2, we
adopt the uncased BERTBase 3 as our base encoder,
which is fine-tuned during training. All LSTMs
used in our model are 1 layer with the hidden size
of 512. Note that, the parameters of LSTMs and
CRFs used in the three taggers are not shared. The
AdamW optimizer (Kingma and Ba, 2015) is em-
ployed for parameter optimization, and the initial
learning rates for BERT layer and other layers are
set to 1e-5 and 1e-3, respectively. The dropout
rate (Srivastava et al., 2014) is set to 0.5 and the
batch size is 2. Our model is implemented in Py-
Torch (Paszke et al., 2019) on a NVIDIA Tesla
V100 GPU. We train our model 10 epochs with
early stopping strategy, and choose the best model
parameters based on the best performance on the
development set (average of F1 score of AM and

2Our source code is available at https://github.
com/HLT-HITSZ/MGF.

3https://github.com/huggingface/
transformers

APE).

4.3 Baselines

To evaluate our mutual guidance framework
(MGF), we compare it with several baselines:
PL-H-LSTM-CRF (Cheng et al., 2020) indepen-
dently trains a sequence labeling model and a sen-
tence relation classification model, and then pipes
the result together to obtain argument pairs.
MT-H-LSTM-CRF (Cheng et al., 2020) is simi-
lar to PL-H-LSTM-CRF, except that it trains two
subtasks in a multi-task framework. This is the cur-
rent state-of-the-art method on RR dataset. Note
that the BERT encoder used in this model is not
fine-tuned during training.

Besides, we implemented two additional base-
lines for further comparisons:
Two-Step is another pipeline model. Unlike PL-H-
LSTM-CRF, this model first identifies all potential
arguments by sequence labeling, then matches re-
view arguments and rebuttal arguments by Carte-
sian products to determine argument pairs. Both
steps are based on BERT.
Non-FT-MGF is the implementation of our frame-
work based on the sentence encoding method of
MT-H-LSTM-CRF. It does not fine-tune BERT for
a fair comparison with MT-H-LSTM-CRF.

5 Results and Analysis

5.1 Main Results

The overall performance of our proposed frame-
work and the baselines are shown in Table 2. Our
model achieves the best performance on both RR-
submission and RR-passage. On RR-submission,
our model outperforms the current state-of-the-art
model MT-H-LSTM-CRF by at least 1.01% and
7.94% in F1 score over AM and APE. On RR-
passage, our model also outperforms MT-H-LSTM-
CRF and obtains at least 0.79% and 7.01% higher
F1 scores over AM and APE.

We also show the results where the sentence en-
coder of MGF is replaced by that of MT-H-LSTM-
CRF, namely Non-FT-MGF. Without employing
BERT fine-tuning, Non-FT-MGF still outperforms
MT-H-LSTM-CRF, which demonstrates that the
performance gains we achieve are not solely due to
BERT fine-tuning. It can also be observed that our
model results can be further improved with BERT
fine-tuning by comparing MGF with Non-FT-MGF.

https://github.com/HLT-HITSZ/MGF
https://github.com/HLT-HITSZ/MGF
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Data Method Argument Mining Argument Pair Extraction
Pre. Rec. F1 Pre. Rec. F1

RR-submission

PL-H-LSTM-CRF 67.63 68.51 68.06 19.86 19.94 19.90
MT-H-LSTM-CRF 70.09 70.14 70.12 26.69 26.24 26.46
Two-Step 70.94 70.77 70.86 33.11 24.67 28.27
Non-FT-MGF 69.18 69.94 69.55 33.12 33.69 33.40
MGF (Ours) 70.40 71.87 71.13 34.23 34.57 34.40

RR-passage

PL-H-LSTM-CRF 73.10 67.65 70.27 21.24 19.30 20.23
MT-H-LSTM-CRF 71.85 71.01 71.43 30.08 29.55 29.81
Two-Step 71.94 71.51 71.72 34.31 26.87 30.14
Non-FT-MGF 71.22 70.49 70.85 35.20 34.11 34.65
MGF (Ours) 73.62 70.88 72.22 38.03 35.68 36.82

Table 2: Comparison results with baselines on RR-submission and RR-passage (%). The best scores are in bold.
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Figure 3: Detailed results of AM (%). * indicates the
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Method APE
F1 ∇

MGF (Ours) 34.40 -
w/o RVAG Tagger 33.11 -1.29
w/o RBAG Tagger 31.94 -2.46
w/o ISRG 30.65 -3.75
w/o IPE 33.12 -1.28
w/o CPE 32.33 -2.07

Table 3: The results of ablation experiments on RR-
submission (%). The best scores are in bold.

5.2 Detailed Results of Argument Mining

Figure 3 shows the detailed results of AM on RR-
submission. Here, we compare the performances of
MGF and MT-H-LSTM-CRF on review passages
and rebuttal passages, respectively. Since rebuttal
passages are more clearly arranged and structured
than review passages (Cheng et al., 2020), both
models perform better on the former. Although our
MGF yielded similar AM results to MT-H-LSTM-
CRF on rebuttal passages, it shows significant im-
provement on more complex review passages.

5.3 Ablation Study

As shown in Table 3, we conduct ablation experi-
ments to further evaluate the contribution of each

Type of pairs Method APE
Rec.

All MT-H-LSTM-CRF* 26.05
MGF (Ours) 34.57

One-to-one MT-H-LSTM-CRF* 35.86
MGF (Ours) 41.37

One-to-many MT-H-LSTM-CRF* 11.09
MGF (Ours) 17.71

Table 4: Results of extracting one-to-many pairs on RR-
submission (%). Similar to Figure 3, * denotes the re-
sults that we replicated.

component in our proposed MGF. The F1 score
decreases heavily without mutual guidance. Specif-
ically, the F1 score of APE decreases by 2.46%
if only RVAG tagger is used (w/o RBAG Tagger).
Similarly, using only the RBAG tagger (w/o RVAG
Tagger) decreases the F1 score by 1.29%. Such
results validate the effectiveness of our proposed
mutual guidance framework. Furthermore, we can
observe that the performance of using only RBAG
tagger is better than that of using only RVAG tagger.
This is possibly due to the fact that, on the AM task,
the identification of the rebuttal arguments is more
accurate than the review arguments (Figure 3), lead-
ing to better results when using identified rebuttal
arguments to guide argument pair extraction.

It can be observed that without our proposed
inter-sentence relation graph (w/o ISRG), the F1

score drops heavily (-3.75%). Going one step fur-
ther, if we exclude the in-passage edges (w/o IPE),
the F1 score will decrease by 1.28%, indicating
the necessity of capturing interactions between two
sentences with close distance. Also, incorporating
cross-passage edges into MGF (w/o CPE) can bring
more significant F1 score improvement (2.07%), be-
cause cross-passage edges can model the sentence
relations cross two passages and thus facilitate the
identification of interactive argument pairs.
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Figure 4: Impacts of graph parameters.

5.4 Results of Extracting One-to-many Pairs

We further compare the results on extracting one-
to-many pairs on RR-submission in Table 4. We
divide argument pairs of the test set into two sub-
sets: one subset contains only one-to-one argument
pairs, and the other subset contains only one-to-
many argument pairs. Then, we compare the recall
of MT-H-LSTM-CRF and MGF on the two subsets.

It can be seen that our MGF model consistently
outperforms MT-H-LSTM-CRF on both subsets.
Furthermore, MGF is relatively more effective for
one-to-many argument pairs, with a recall improve-
ment of 6.62%. This improvement comes from
the ability of our model to take into account the
entire review/rebuttal sequence when extracting ar-
gument pairs, so that multiple arguments that form
pairs with the guiding argument could be extracted
simultaneously through sequence tagging.

5.5 Impacts of Graph Parameters

The inter-sentence relation graph for modeling
inter-sentence latent relations is a critical part of
our model. Therefore, we further investigate the im-
pacts of the graph parameters on the performance
of MGF, including the threshold of in-passage sen-
tence distance ρ, the threshold of co-occurring
words number ϕ, and the number of GCN layers l.
The detailed results are shown in Figure 4.

From Figure 4(a), our approach achieves the best
performance with ρ set to 1. With this setting, each
sentence node in the graph is directly connected to
the two sentence nodes that are adjacent to it in the
passage. Such a phenomenon is consistent with our
observation in Table 1 that the average number of
sentences contained in each argument is 3.1. Since
the majority of arguments contain a small number
of sentences, we should not connect two sentences
that have a long distance. Otherwise, the semantic
representation of arguments will be distorted.

According to Figure 4(b), we find that it is most

appropriate to set ϕ to 2. This suggests that two
sentences with more than 2 co-occurring words are
more likely to be from two inter-related arguments.
If we set ϕ too small, then too much noise will
be introduced. Conversely, if we set ϕ too large,
then many sentence pairs from two inter-related
arguments will be ignored by the graph.

For the number of GCN layers l, our approach
performs best with 1 layer GCN, indicating that the
inter-sentence relations can be modeled sufficiently
without stacking many layers of GCN.

5.6 Error Analysis

To gain a deeper insight into our method, we an-
alyze the prediction of our model. To be specific,
we randomly sampled 100 samples from the test
set of RR-submission, and then manually inspect
the prediction results. Here are two major causes
of errors.
• It is difficult to extract argument pairs if there are

no co-occurring or semantically similar words
in two arguments. In this scenario, our proposed
ISRG based on co-occurring words cannot pro-
vide valid information. Also, it is hard for the
pre-trained model to capture the association be-
tween such argument pairs.

• In some cases, our model identifies only a few
important sentences instead of a complete argu-
ment. However, in some other cases, multiple
consecutive arguments are identified as one argu-
ment. The reason is that we frame both AM and
APE as sentence-level sequence tagging tasks.
For such a task, the boundaries of arguments are
often diverse and difficult to determine, so the
model often misidentifies them.

6 Related Work

Most existing studies in the field of argumen-
taion mining focus on monological argumentation,
such as argumentation structure parsing(Stab and
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Gurevych, 2017; Afantenos et al., 2018; Kurib-
ayashi et al., 2019; Hua et al., 2019b; Morio et al.,
2020), automated essay scoring(Wachsmuth et al.,
2016; Ke et al., 2018; Song et al., 2020), argument
quality assessment(Wachsmuth et al., 2017; Gretz
et al., 2020; Lauscher et al., 2020), argumentation
strategies modeling(Khatib et al., 2016, 2017), etc.

Since real-life argumentation is usually in the
form of dialogue, some prior work focuses on di-
alogical argumentation. Morio and Fujita (2018)
employed a pointer network to predict argumenta-
tion structures in discussion threads. Chakrabarty
et al. (2019) studied the relations between argu-
ment components in online discussion forums with
pre-trained models and discourse relations. Ji et al.
(2019) proposed a discrete argument representation
learning method to extract argument pairs. How-
ever, these studies above assumed that the bound-
aries of arguments have been given. Recently,
Cheng et al. (2020) present a new task named argu-
ment pair extraction, which is more challenging as
it requires both identifying arguments from plain
text and extracting the interactive argument pairs.

Our work is closely related to the argument re-
lation prediction task. Many studies of argumen-
tation structure parsing include argumentative re-
lation prediction as a subtask(Kuribayashi et al.,
2019; Morio et al., 2020; Bao et al., 2021). Since
argument relation prediction is highly challeng-
ing, recently, more and more researchers study it
as an independent task(Chen et al., 2018; Opitz
and Frank, 2019; Cocarascu et al., 2020; Jo et al.,
2021). Despite the strong connection, APE task
is more challenging than argument relation predic-
tion. Specifically, in argument relation prediction,
arguments are given. But for APE, only two plain
documents without any pre-labeled information are
given, and we need to identify arguments in two
documents and determine argument relations simul-
taneously.

Graph neural networks (GNN) have shown
promising performance in many NLP tasks, such
as text classification(Yao et al., 2019; Ragesh et al.,
2021), question answering(Tu et al., 2019; Qiu
et al., 2019), sentiment analysis(Liang et al., 2021,
2020), text summarization(Xu et al., 2020; Ya-
sunaga et al., 2017), etc. Recently, some works
have attempted to introduce GNN into argumenta-
tion mining. Morio and Fujita (2019) performed ar-
gument component identification and classification
by syntactic graph convolutional networks. Huang

et al. (2021) proposed a heterogeneous argument
attention network for argumentation persuasive-
ness prediction. In this paper, our proposed inter-
sentence relation graph can effectively model the
inter-relations between two sentences, thus facili-
tating APE.

7 Conclusion

In this paper, we propose an effective mutual
guidance framework for argument pair extraction,
named MGF, which enables arguments of two pas-
sages to mutually guide each other for extracting
interactive argument pairs. In addition, we intro-
duce an inter-sentence relation graph into our pro-
posed MGF, which could effectively model the
inter-relations between two sentences and thus im-
proving the extraction of argument pairs. The ex-
perimental results demonstrate the effectiveness of
our method. In the future, we plan to apply our
method to datasets from more diverse domains be-
yond the peer review and rebuttal, such as social
networks, debate competitions, etc.
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Appendices

A Different Weights for Loss Functions

Weight F1

Lam Lape AM APE
0.25 0.75 70.01 33.98
0.5 0.5 71.13 34.40
0.75 0.25 70.51 34.33

Table 5: The results of different weights for loss func-
tions on RR-submission (%). The best scores are in
bold.

As shown in Table 5, the impacts of the differ-
ent weights are minimal. The performance of the
model is optimal when two weights are the same.
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