
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3888–3898
November 7–11, 2021. c©2021 Association for Computational Linguistics

3888

CATE: A Contrastive Pre-trained Model for Metaphor Detection
with Semi-supervised Learning

Zhenxi Lin1,2, Qianli Ma1*, Jiangyue Yan1, Jieyu Chen3

1School of Computer Science and Engineering,
South China University of Technology, Guangzhou, China

2Tencent Jarvis Lab, Shenzhen, China
3Department of English and Communication, The Hong Kong Polytechnic University

zhenxi_lin@foxmail.com, qianlima@scut.edu.cn
jiangyue9606@gmail.com, 18043507r@connect.polyu.hk

Abstract
Metaphors are ubiquitous in natural language,
and detecting them requires contextual reason-
ing about whether a semantic incongruence ac-
tually exists. Most existing work addresses
this problem using pre-trained contextualized
models. Despite their success, these mod-
els require a large amount of labeled data
and are not linguistically-based. In this pa-
per, we proposed a ContrAstive pre-Trained
modEl (CATE) for metaphor detection with
semi-supervised learning. Our model first
uses a pre-trained model to obtain a contex-
tual representation of target words and em-
ploys a contrastive objective to promote an
increased distance between target words’ lit-
eral and metaphorical senses based on linguis-
tic theories. Furthermore, we propose a sim-
ple strategy to collect large-scale candidate in-
stances from the general corpus and general-
ize the model via self-training. Extensive ex-
periments show that CATE achieves better per-
formance against state-of-the-art baselines on
several benchmark datasets.

1 Introduction

Conceptual metaphors are figurative languages
widely used in our daily communication, im-
plying a mapping between two conceptual do-
mains (Lakoff and Johnson, 2008). At a linguistic
level, metaphor is defined as a linguistic expres-
sion representing other concepts rather than taking
literal meanings of words in context (Lagerwerf
and Meijers, 2008). For instance, in the sentence
“I have digested all this information,” the word di-
gested does not literally mean converting food into
absorbable substances. Instead, this word means
“arrange and integrate in the mind” in the con-
text.1 This metaphor conceptualizes the concept of
ideas in terms of the properties of food. Metaphor-
ical associations as such are broad generalizations

*Corresponding author
1http://wordnetweb.princeton.edu/perl/

webwn?s=digest

that allow us to project knowledge and inferences
across domains and are beneficial for various down-
stream NLP applications, such as machine transla-
tion (Shi et al., 2014), sentiment analysis (Cambria
et al., 2017; Dankers et al., 2019), and dialogue
systems (Dybala and Sayama, 2012).

Given the prevalence of metaphors in hu-
man communication, the effective detection of
metaphors plays an essential role in natural lan-
guage understanding. Hence, many efforts have
been devoted to metaphor detection (MD), which
aims to identify metaphorical expressions in a text
automatically. Most previous methods (Mason,
2004; Turney et al., 2011; Tsvetkov et al., 2014;
Shutova et al., 2016) for MD are based on var-
ious hand-crafted linguistic features and rely on
manually annotated resources to extract them. Re-
cently, significant progress has been made in ap-
plying deep learning techniques for MD (Wu et al.,
2018; Gao et al., 2018; Mao et al., 2019; Rohanian
et al., 2020; Le et al., 2020). These methods di-
rectly embed textual semantic information into a
low-dimensional space by deep neural networks.
Nevertheless, these methods are unable to model
the multiple meanings of polysemous words in con-
text (Choi et al., 2021). With the rapid develop-
ment of contextualized representations, a number
of methods (Su et al., 2020; Chen et al., 2020; Choi
et al., 2021) adopt pre-trained language models to
effectively capture context-dependent information
with respect to the target words and fine-tune them
to obtain state-of-the-art performances for MD.

Although these pre-trained models have
achieved promising results, several problems
remain unsolved. First, the current models lack the
discrimination between the literal meaning and
non-literal meaning of the target words, which
can be enhanced by analogical comparison in the
specific context based on Metaphor Identification
Procedure (MIP) (Pragglejaz Group, 2007).
Second, one challenge for fine-tuned language

http://wordnetweb.princeton.edu/perl/webwn?s=digest
http://wordnetweb.princeton.edu/perl/webwn?s=digest


3889

models is they still require large amounts of labeled
data for obtaining state-of-the-art performances
on downstream tasks (Du et al., 2020; Yu et al.,
2020; Karamanolakis et al., 2021). However,
due to the expensive and labor-intensive labeling,
existing public MD datasets are relatively small.
In addition, labeling metaphorical words can be
influenced by subjective input and may need expert
knowledge (Tsvetkov et al., 2014), which poses a
significant challenge for metaphor detection.

The above challenges motivate us to propose
a ContrAstive Pre-Trained ModEl (CATE) for
metaphor detection, using a contrastive objective
to model the distance between the target word’s
literal and metaphorical senses, enhancing the
model generalization performance via self-training
with unlabeled data generated by a simple strat-
egy. Firstly, we utilize pre-trained models (i.e.,
BERT and RoBERTa) to capture contextual infor-
mation about a target word in the sentence. If the
target word is a metaphor, its semantic meaning is
context-specific and different from its literal mean-
ing. The word’s literal meaning can be described
through non-metaphorical instances. Therefore,
we incorporate a contrastive objective to enhance
contextual representations between the literal and
metaphorical meaning of a target word to make
it more distinguishable, in which way the classi-
fier can make a more informed decision. To ad-
dress the label scarcity issue, we propose a simple
target-based generating strategy to automatically
generate training data inspired by a distantly su-
pervised paradigm (Mintz et al., 2009; Hoffmann
et al., 2011). Concretely, if a given word serves as
the detection target in a sentence, all sentences con-
taining this word in a specific corpora are retrieved
and regarded as candidate instances. To expand the
training data, we use the pre-trained model to gen-
erate pseudo-labels for these candidate instances
and incorporate them into training data, where the
pre-trained model is first fine-tuned on the origi-
nal training set, as shown in Figure 1. We update
the pseudo-labels and the model iteratively by self-
training for improving the generalization power.

In summary, the contributions of this paper are
as follows: (1) We propose a novel pre-trained
model with a contrastive objective for capturing
the semantic incongruence in metaphors based on
MIP linguistic theories. (2) To our best knowledge,
this is the first attempt to combine semi-supervised
learning with self-training to alleviate the label

Figure 1: Some candidate instances are obtained by
target-based generating strategy.

scarcity issue for MD. (3) Empirically, we perform
experiments on widely used datasets to verify the
effectiveness of our approach. Experimental results
show that our approach obtains state-of-the-art per-
formance over several benchmark datasets.

2 Related Work

Early approaches mainly use a variety of linguis-
tic features to detect metaphors, such as Part of
Speech, unigrams (Klebanov et al., 2014), concrete-
ness/abstractness (Turney et al., 2011; Tsvetkov
et al., 2014), WordNet supersenses (Klebanov et al.,
2016), and sensory features (Tekiroğlu et al., 2015;
Shutova et al., 2016), etc. They rely heavily on
numerous carefully designed feature engineering.

In recent years, various models have been widely
used in MD based on end-to-end neural architec-
tures. Wu et al. (2018) reformat the MD task as
a sequence labeling problem and combine CNN
and LSTM layers with ensemble learning to gen-
erate the best performance in the NAACL-2018
metaphor shared task (Leong et al., 2018). Subse-
quently, Gao et al. (2018) presented simple BiL-
STM augmented with contextualized word rep-
resentation, which achieved better results. Mao
et al. (2019) further adopted two linguistic theo-
ries on top of the structure of (Gao et al., 2018).
In addition, some approaches employed multi-task
learning to transfer knowledge from the related
tasks and resources to improve the performance of
MD (Do Dinh et al., 2018; Dankers et al., 2019; Ro-
hanian et al., 2020; Le et al., 2020). These neural
models are capable of properly capturing the rela-
tions between metaphors and their contexts with-
out linguistic analyses. However, the superficial
structures make them difficult to represent different
aspects of words in context.
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Figure 2: The diagram of CATE model with two stages. In stage I, the proposed pre-trained model is fine-tuned
with labeled data using a contrastive objective. In stage II, we design a target-based generating strategy (TGS) to
collect unlabeled data and adopt self training to iteratively augment the training data by generating pesudo-labels.

Recently proposed pre-trained language mod-
els (Devlin et al., 2018; Liu et al., 2019; Yang et al.,
2019) have shown dramatic improvements on sev-
eral NLP tasks with appropriate fine-tuning. There-
fore, some efforts (Maudslay et al., 2020; Gong
et al., 2020; Su et al., 2020; Choi et al., 2021) are
made to leverage the strong expressive power of
pre-trained models, such as BERT, RoBERTa, to
effectively capture general semantics and context-
dependent information of target words for improv-
ing the performance of metaphor detection. Despite
their success, one bottleneck for fine-tuning pre-
trained models is the requirement of labeled data.
When labeled data are scarce, the fine-tuned mod-
els often suffer from degraded performance, and
the large number of parameters can lead to severe
overfitting (Xie et al., 2019; Du et al., 2020; Yu
et al., 2020). However, it is time-consuming and
human-intensive to manually annotate large-scale
training data for MD.

3 Proposed Method

The MD task is to predict whether a target word in
a given sentence is metaphorical or literal. Some
previous work (Wu et al., 2018; Gao et al., 2018;
Mao et al., 2019) regards metaphor detection as a
sequence labeling task that predicts the metaphoric-
ity of each word in a given sentence. Nevertheless,
this format introduces the noise of treating all non-
target words as literal, which negatively impacts
the model learning the difference between literal
and metaphorical words (Mao et al., 2019). In
this paper, we convert the MD task as a classifica-
tion task based on the target word, like (Le et al.,

2020; Choi et al., 2021). Formally, given a sen-
tence S = {w1, w2, ..., wn} with n words and a
target word wt ∈ S, the task involves predicting a
binary label lt ∈ {0, 1} to indicate the metaphoric-
ity (i.e., metaphorical or literal) of the target word
wt. Figure 2 gives an overview of CATE.

3.1 Pre-trained Model for MD
Given a sentence S with target word wt, our model
leverages the power of BERT as a sentence encoder,
which is particularly attractive to this task due to its
strong expressive power to capture general seman-
tics and contextual information effectively. Fol-
lowing (Devlin et al., 2018), we insert two special
tokens ‘[CLS]’ and ‘[SEP]’, at the beginning and
end of the input sentence, respectively. We feed the
sentence S with two special tokens into the BERT
backbone to obtain the final hidden states H:

H = BERT([CLS], w1, w2, ..., wn, [SEP]). (1)

Our goal is to identify whether the semantic
meaning of the target word wt within the sentence
S is metaphorical or not. We should calculate the
context-specific representation of wt to classify.
The pre-training models (e.g., BERT) usually em-
ploy the WordPiece techniques (Wu et al., 2016;
Radford et al., 2019) to tokenize the word to reduce
the size of the vocabulary so that a word may be di-
vided into multiple word pieces. For example, the
word digested is segmented into two word pieces
“digest” and “##ed”. Hence, we use the average
operation to obtain a fixed-sized feature vector. As-
suming that the hidden states corresponding to the
subwords of the target word wt are from hi to hj ,
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we average these hidden states:

c =
1

j − i+ 1

j∑
k=i

hk, (2)

where c is the contextualized feature of target word
wt. Then we feed c into an MLP layer with tanh ac-
tivation function and a softmax layer to predict the
metaphoricity of the target word wt. This process
can be mathematically formalized as follows:

p = Softmax(W2(tanh(W1c+ b1) + b2), (3)

where W1 ∈ Rd×d,b1 ∈ Rd,W2 ∈ R2×d, and
b2 ∈ Rd (d is the hidden state size from BERT).
The parameters are updated by minimizing the
cross-entropy loss between the true label y and
the metaphoricity distribution p:

Lcls =
1

M

M∑
m=1

ymlog(pm), (4)

where M is the number of instances in the dataset.

3.2 Contrastive Objective
Metaphor Identification Procedure (MIP) dictates
that a word is identified as a metaphor if the lit-
eral meaning of a word contrasts with the mean-
ing that word adopts in this context (Pragglejaz
Group, 2007). According to MIP, the contrast
between the contextual and literal meaning of a
word serves as an important criterion for detect-
ing its metaphoricity. Although some work (Mao
et al., 2019; Choi et al., 2021) has attempted to
explore the contrastive relationship between literal
and contextual meaning corresponding to target
word by simply concatenating the semantic fea-
tures extracted from different branches of models,
it remains to be unclear whether this contrastive
relationship is effectively modeled.

This section explicitly incorporates a contrastive
objective to capture this contrastive relationship,
making the classifier more distinguishable. The
objective enables the metaphorical instances of a
target word to have closer semantic representations
and keep literal instances separated. As shown in
the shaded green part in Figure 2, the target word
“digest” in both instances a and b is metaphorical
and means “arrange and integrate some informa-
tion in the mind”, rather than its literal meaning
“converting food into absorbable substances” in in-
stance c. Therefore, we expect the contextual rep-
resentation of the target word “digest” in sentences

a and b to be more similar, and be far away from
the representation in sentence c.

Formally, given a sentence Sa with target word
wt as an anchor, Sp is a positive example with
target word wt belonging to the same class as Sa
in batch B, while Sn is a negative example with
target word wt belonging to another class in batch
B. We calculate their contextualized features ca,
cp and cn by Eq. (2), respectively. The contrastive
objective is defined:

Lco =
∑

(a,p,n)∈B

d(ca, cp) + [γ − d(ca, cn)]+,

(5)

where [·]+ denotes the function f(x) = max(0, x);
d(·, ·) denotes the L2-normalized euclidean dis-
tance; γ controls the margin.

This loss means capturing similarities between
examples of the same class and contrasting them
with examples from other classes. When the sam-
ples are from different classes (that is, one is
metaphorical and the other is literal), the con-
trastive loss increases the distance between them
and keep them apart by at least a margin γ. Mod-
elling the distance in embedding space between the
target word’s literal and metaphorical semantics is
an important characteristic for metaphor detection.

3.3 Semi-supervised Learning

The scarcity of labeled data is another challenge for
MD. Currently, only relatively small training sets
are available for MD, and labeling metaphorical
words requires manual efforts from metaphor ex-
perts, which is time-consuming and labor-intensive.
Although recent advances on pre-trained models
reduce the annotation workload, they still require
large amounts of labeled data to avoid overfitting
(Du et al., 2020). In this section, we propose
a simple strategy called Target-based Generating
Strategy (TGS) to construct a large-scale training
dataset with no need of metaphor experts or sophis-
ticated pre-defined rules.

Target-based Generating Strategy (TGS)
The TGS is based on a heuristic process that if
a word serves as the detection target in a sentence,
all other sentences containing this word in a spe-
cific corpus serve as potential candidate instances.
This strategy effectively obtains a large-scale candi-
date set U based on the target words in the labeled
data as heuristic seeds, which can cover more top-
ics without any special manual design. It is natural
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to use the fine-tuned model to predict the labels of
candidate instances and then select high-confidence
samples as the expanded data, but this way relies
on the performance of the pre-trained model, which
may lead to prediction bias and introduce noise.

Self-Training (ST) To alleviate the noise in
U , we adopt self-training (Rosenberg et al., 2005;
Lee et al., 2013) to generate pseudo-labels for the
candidate instances by the fine-tuned model and
incorporate them into the training set, with which
the pseudo-labels and the model are updated in an
iterative manner. There are two alternatives for gen-
erating the pseudo-labels for candidate instances,
namely hard labeling (Lee et al., 2013) and soft la-
beling (Xie et al., 2016). Hard labeling selects the
highest-confidence prediction as the class label for
each instance, which is prone to cause error propa-
gation when having the wrong prediction (Yu et al.,
2020). Alternatively, we choose to generate soft
pseudo-labels ŷi ∈ RK for each instance ui ∈ U :

ŷij =
p2
ij/fj∑

j′ p
2
ij′/fj′

, (6)

where fj =
∑

i pij is the sum over soft frequencies
of class j, pij is j-th class prediction of ui. Eq. (6)
derives ŷi by strengthening high-confidence pre-
dictions while reducing low-confidence ones via
squaring and normalizing the current predictions,
and it retains more information than hard labels.
We define the ST objective as a KL-divergence loss
between the pseudo-labels distributions Ŷ and the
model’s current prediction P :

Lst = KL(Ŷ ||P ) =
|U|∑
i=1

K∑
j=1

ŷij log
ŷij

pij
. (7)

3.4 Traning Procedure of CATE
The overall objective function of CATE includes
contrastive loss Lco, classification loss Lcls for la-
beled data and KL loss for unlabeled data U :

L = Lcls + αLco + βLst, (8)

where α and β are hyperparameters for balancing
the strength of the contrastive loss and KL loss,
respectively. CATE includes a two-stage training
procedure: In the first stage, we fine-tune the pre-
trained model with the first two terms of Eq. (8)
using the labeled data, which can significantly learn
contrastive relationship in metaphors and improve
the quality of prediction for MD. Then we use the

fine-tuned model to predict the soft pseudo-labels
for all unlabeled data collected by TGS. In the sec-
ond stage, we apply a self-training strategy to aug-
ment the training data with pseudo-labeled data and
update the pre-trained model in an iterative manner.
During self-training, we iteratively compute soft
pseudo-labels based on current predictions and re-
fine model parameters with Eq. (8). The procedures
are summarized in Algorithm 1.

Algorithm 1: Training Procedure of CATE
Input: labeled instances S; candidate

instances U collected by GTS;
Pre-trained Model f(·; θ).

// Stage I: fine-tune model with labeled data.
Update θ on S by first two terms in Eq. (8).
// Stage II: refine model with unlabeled data.
for t = 1, 2, ..., T do

Generate pesudo-labels for U by Eq. (6).
Update θ on S and U by Eq. (8).

end
Output: The final fine-tuned model f(·, θ).

4 Experiments

4.1 Experimental Setup
Datasets To evaluate the effectiveness of our
model, we conduct experiments on three widely-
studied datasets: (1) VUA (Steen, 2010) is cur-
rently the largest publicly available dataset used by
NAACL-2018 Metaphor Shared Task. Follow pre-
vious work (Gao et al., 2018; Mao et al., 2019), we
examine our model on two tracks, i.e., VUA ALL
POS and VERB metaphor detection. (2) MOH-
X (Mohammad et al., 2016) is a verb metaphor
detection dataset that only a single target verb is
labeled in each sentence. The sentences are sam-
pled from WordNet. (3) TroFi (Birke and Sarkar,
2006) is also a verb metaphor detection dataset,
and the sentences are extracted from the 1987-89
Wall Street Journal Corpus Release 1. Statistics of
these datasets are listed in Table 1.

Baselines we compare CATE against state-
of-the-art baselines in metaphor detection, includ-
ing RNN_CLS (Gao et al., 2018): a classifica-
tion model combining attention-based BiLSTM
and ELMo embedding. RNN_SEQ_ELMo and
RNN_SEQ_BERT (Gao et al., 2018): a sequence
labeling model with attention-based BiLSTM com-
bining the ELMo embedding and BERT embed-
ding, respectively. RNN_HG (Mao et al., 2019):
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Dataset #Tokens %Meta. #Sent. Avg. Len
VUA-ALLtr 116,622 11.2 6,323 18.4

VUA-ALLdev 38,628 11.6 1,550 24.9
VUA-ALLte 50,175 12.4 2,694 18.6

VUA-VERBtr 15,516 27.9 7,479 20.2
VUA-VERBdev 1,724 26.9 1,541 25.0
VUA-VERBte 5,873 30.0 2,694 18.6

MOH-X 647 48.7 647 8.0
TroFi 3,737 43.5 3,737 28.3

Table 1: Detailed dataset statistics. #Tokens: the num-
ber of target tokens whose metaphoricity is to be iden-
tified. %Meta.: the percentage of metaphoric tokens
among target tokens. #Sent.: the number of sentences.
Avg. Len: the average length of sentences.

a sequence labeling model that concatenates the
GloVe embedding and hidden states from BiL-
STM based on MIP principle. RNN_MHCA (Mao
et al., 2019): a sequence labeling model that
utilizes multi-head attention to capture the con-
textual representations based on SPV principle.
MUL_GCN (Le et al., 2020): joint learning
metaphor detection with word sense disambigua-
tion, and utilize GCN to capture important con-
text words. BERT+MWE_GCN (Rohanian et al.,
2020): an attention-guided GCN that encodes syn-
tactic dependencies alongside information about
the existence of verb multiword expressions. Deep-
Met (Su et al., 2020): utilize pre-trained trans-
former to encode global and local context and in-
corporate with various linguistic features. Mel-
BERT (Choi et al., 2021): utilize RoBERTa as
backbone and model the contextual meaning and
literal meaning based on siamese architecture.

Implementation Details In experiment, we
first collect a target word set in all datasets as trig-
gers and use TGS to recall large-scale target-related
candidate instances from the common corpus for
semi-supervised learning. We use Wikipedia as the
knowledge base because it contains a wide vari-
ety of domains which makes it an ideal general-
purpose corpus and is usually easily and cheaply
accessible. We extract and filter text from the En-
glish Wikipedia dump† to construct a large-scale
candidate set and apply the NLTK package (Bird
et al., 2009) to turn documents into sentences and
perform deduplication. Besides, we filter sentences
longer than 150 words due to potential noise and
memory limitations.

Following (Su et al., 2020; Choi et al., 2021), we

†https://dumps.wikimedia.org/enwiki/
20210201/

use RoBERTa (Liu et al., 2019) as the realization
of BERT. The number of transformer layers is 12,
and the hidden size is 784. We use AdamW (Pe-
ters et al., 2019) optimizer with a learning rate
of 3e-5 to update the parameters. The number
of training epochs is 5, and the batch size is 32.
The margin γ in contrastive loss is set to 1.0. The
hyper-parameters α and β are set to 0.2 and 0.05,
respectively. We perform 10-fold cross-validation
on MOH-X and TroFi and split the VUA datasets
into training, validation, and test sets the same as
the previous work (Gao et al., 2018; Mao et al.,
2019) for the fair comparison.

4.2 Overall Results

We report the results in Table 2 in terms of ac-
curacy, precision, recall, and F1-score, where F1-
score is the main measurement for metaphor detec-
tion (Mao et al., 2019). We can found that CATE
achieves strong performance on all datasets, is su-
perior to existing models on 3 out of 4 datasets in
terms of F1-score (improved by 0.5%, 4.5% and
1.3% compared with the previous best model in
VUA ALL POS, MOH-X and TroFi, respectively),
and achieves similar performance on VUA VERB
with MelBERT. Noteworthily, DeepMet and Mel-
BERT additionally utilize linguistic features, such
as POS features in their model, while CATE does
not use any linguistic features. Meanwhile, it can
be observed that the improvement of our model is
more obvious on small-scale datasets (i.e., MOH-
X and TroFi). The reason is that the massive pa-
rameters in the pre-trained model easily lead to
overfitting of the model when only relatively small
training sets are available. However, CATE can
make full use of a large number of unlabeled data
collected by the proposed target-based generating
strategy and improve the model generalization by
self-training. Compared with RNN_HG, which
also considers the MIP principle, our model signifi-
cantly outperforms it because ours explicitly cap-
tures the contrast between the literal and metaphor-
ical meaning of target words by a contrastive ob-
jective. Not surprisingly, the approaches based
on pre-trained language models (e.g., CATE, Mel-
BERT, DeepMet) are consistently superior to the
RNN-based models (e.g., RNN_CLS, RNN_HG,
RNN_MHCA) due to the strong expressive power
of pre-trained models to encode rich semantic and
contextual information into the representations.

https://dumps.wikimedia.org/enwiki/20210201/
https://dumps.wikimedia.org/enwiki/20210201/
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Model VUA ALL POS VUA VERB MOH-X(10-fold) TroFi(10-fold)
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

RNN_CLS - - - - 53.4 65.6 58.9 69.1 75.3 84.3 79.1 78.5 68.7 74.6 72.0 73.7
RNN_SEQ_ELMo 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 70.7 71.6 71.1 74.6
RNN_SEQ_BERT 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7 75.1 81.8 78.2 78.1 70.3 67.1 68.7 73.4

RNN_HG 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7 67.4 77.8 72.2 74.9
RNN_MHCA 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80.0 79.8 68.6 76.8 72.4 75.2
MUL_GCN 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9 73.1 73.6 73.2 76.4

BERT+MWE-GCN - - - - - - - - 80.0 80.4 80.2 80.5 73.8 71.8 72.8 73.5
DeepMet 82.0 71.3 76.3 - 79.5 70.8 74.9 - - - - - - - - -
MelBERT 80.1 76.9 78.5 - 78.7 72.9 75.7 - - - - - - - - -

CATE w/o CO 81.7 75.4 78.4 94.8 79.0 71.6 75.1 85.8 83.3 83.8 83.3 83.9 73.3 74.9 74.0 77.1
CATE w/o ST 78.8 78.7 78.7 94.7 77.0 73.8 75.4 85.5 84.1 82.0 82.7 83.5 72.9 74.9 73.6 76.7

CATE 79.3 78.8 79.0 94.8 78.1 73.2 75.6 85.8 85.7 84.6 84.7∗ 85.2 74.4 74.8 74.5∗ 77.7

Table 2: Experimental results of on three metaphor detection benchmarks. The best performance is in bold and the
second best performance is underlined. * denotes p < 0.01 for a two-tailed t-test against the best baseline.

Genre Model P R F1 Acc

A
ca

de
m

ic

RNN_ELMo 78.2 80.2 79.2 92.8
RNN_BERT 76.7 76.0 76.4 91.9

RNN_HG 76.5 83.0 79.6 92.7
RNN_MHCA 79.6 80.0 79.8 93.0

DeepMet 88.4 74.7 81.0 -
MelBERT 85.3 82.5 83.9 -

CATE 88.5 81.0 84.2 94.1

C
on

ve
rs

at
io

n

RNN_ELMo 64.9 63.1 64.0 94.6
RNN_BERT 64.7 64.2 64.4 94.6

RNN_HG 63.6 72.5 67.8 94.8
RNN_MHCA 64.0 71.1 67.4 94.8

DeepMet 71.6 71.1 71.4 -
MelBERT 70.1 71.7 70.9 -

CATE 72.2 72.2 72.2 95.8

Fi
ct

io
n

RNN_ELMo 61.4 69.1 65.1 93.1
RNN_BERT 66.5 68.6 67.5 93.9

RNN_HG 61.8 74.5 67.5 93.4
RNN_MHCA 64.8 70.9 67.7 93.8

DeepMet 76.1 70.1 73.0 -
MelBERT 74.0 76.8 75.4 -

CATE 77.8 74.1 75.9 95.7

N
ew

s

RNN_ELMo 72.7 71.2 71.9 91.6
RNN_BERT 71.2 72.5 71.8 91.4

RNN_HG 71.6 76.8 74.1 91.9
RNN_MHCA 74.8 75.3 75.0 92.4

DeepMet 84.1 67.6 75.0 -
MelBERT 81.0 73.7 77.2 -

CATE 84.3 71.0 77.1 96.6

Table 3: Model performance on different genres of
texts in VUA ALL POS. The best performance is in
bold and the second best performance is underlined.

4.3 Ablation Study

To investigate different components in CATE, we
compare CATE variants without the contrastive
objective (w/o CO) and without the self-training
(w/o ST). As we can see from the last three lines

POS Model P R F1 Acc

Ve
rb

RNN_ELMo 68.1 71.9 69.9 -
RNN_BERT 67.1 72.1 69.5 87.9

RNN_HG 66.4 75.5 70.7 88.0
RNN_MHCA 66.0 76.0 70.7 87.9

DeepMet 78.8 68.5 73.3 -
MelBERT 74.2 75.9 75.1 -

CATE 77.1 74.4 75.7 90.9

A
dj

ec
tiv

e

RNN_ELMo 56.1 60.6 58.3 -
RNN_BERT 58.1 51.6 54.7 88.3

RNN_HG 59.2 65.6 62.2 89.1
RNN_MHCA 61.4 61.7 61.6 89.5

DeepMet 79.0 52.9 63.3 -
MelBERT 69.4 60.1 64.4 -

CATE 74.4 59.0 65.8 91.6

A
dv

er
b

RNN_ELMo 67.2 53.7 59.7 94.8
RNN_BERT 64.8 61.1 62.9 94.8

RNN_HG 61.0 66.8 63.8 94.5
RNN_MHCA 66.1 60.7 63.2 94.9

DeepMet 79.4 66.4 72.3 -
MelBERT 80.2 69.7 74.6 -

CATE 76.9 74.2 75.5 95.5

N
ou

n

RNN_ELMo 59.9 60.8 60.4 -
RNN_BERT 63.3 56.8 59.9 88.6

RNN_HG 60.3 66.8 63.4 88.4
RNN_MHCA 69.1 58.2 63.2 89.8

DeepMet 76.5 57.1 65.4 -
MelBERT 75.4 66.5 70.7 -

CATE 77.9 60.0 68.0 91.5

Table 4: Model performance on different open-class
words in VUA ALL POS. The best performance is in
bold and the second best performance is underlined.

of Table 2, each component is important for the
proposed model as excluding any of them would
hurt the performance significantly. When the self-
training is removed, the F1-score respectively drops
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by 2.0% and 0.9% on small-scale MOH-X and
TroFi datasets, which demonstrates the necessity
of integrating semi-supervised learning to improve
the generalization performance. The contrastive
objective learns the difference between the target
word’s literal and metaphorical semantics and is
also beneficial to our model.

4.4 Model Analysis

VUA Breakdown Analysis Table 3 and 4 re-
spectively report the breakdown of performance
by different genres and open-class words based
on the VUA ALL POS test dataset, which in line
with Leong et al. (2018) and Mao et al. (2019).
CATE shows very promising overall results against
other competitive baselines in both breakdown
datasets. In Table 3, all models achieve better re-
sults on Academic due to the expressions used in
academic articles are formal and normative with
abundant context. Particularly, CATE presents
a substantial improvement in terms of F1-score
against the second best with a gain of 1.3% and
0.5% on Conversation and Fiction, respectively.
This is meaningful because Conversation and Fic-
tion are more challenging and have lower F1-score
than other genres due to their fragmented or rare
expressions, such as er, yeah, na. We speculate that
the reason for the improvement of CATE is that the
target-based generating strategy has the ability to
automatically construct diverse training data from
Wikipedia containing different topics and avoid the
model tend to be biased toward a specific domain.
In Table 4, all models perform better results on
Verb as it has the largest training instances. Prop-
erly, CATE provides strong performance on almost
all open-class words and achieves large improve-
ments against MelBERT in Verb (0.6%), Adjective
(1.4%), Adverb (0.9%) in terms of F1-score.

Embedding Visualization In Figure 3, we
visualize TroFi sample contexual embeddings in
Eq. (2) for specific target words attack and cool.
As shown in Figure 3 (a)(c), when the contrastive
objective is removed, the literal and metaphori-
cal representations are mixed together and indistin-
guishable. Based on the MIP principle, a metaphor
is identified if the literal meaning of the target word
contrasts with its contextual meaning. As excepted,
the proposed contrastive objective explicitly ex-
tends the distance between the target word’s literal
and metaphorical meanings in embedding space
and learns more compact representations for data

Figure 3: t-SNE visualization on TroFi for target words
attack and cool. The red color denotes the metaphorical
instances and blue color denotes the literal instances.

from the same class, as shown in Figure 3 (b)(d).
Impact of available labeled data We further

investigate the effectiveness of self-training when
using different ratios of supervised data. The re-
sults on MOH-X and TroFi are reported in Figure 4.
As the labeled data size continues to increase, the
gain of self-training gradually decreases. When lit-
tle supervised data is available, self-training can be
regarded as a regularizer to effectively improve the
prediction ability and generalization of the model.

Figure 4: Effect of self-training on different propor-
tions of supervised data on MOH-X and TroFi.

Hyperparameters Discussion We examine
the effects of hyper-parameters α and β on the
MOH-X dataset, as shown in Figure 5. With the
increase of parameter α or β, the model perfor-
mance increases first and then decreases. When α
is too large, it easily leads to overly penalize the
distance and overlooks the metaphorical associa-
tions between different senses, whereas when β is
too large, it also deteriorates performance due to
injecting too much noise from unlabeled data.



3896

Figure 5: Impact of different α and β on MOH-X.

5 Conclusion

This paper takes advantage of self-training and de-
signs a simple but effective metaphor detection
model based on the pre-trained backbone to cap-
ture the contextualized features. To be specific, we
incorporate a contrastive objective into the model
to capture the semantic incongruence in metaphors
and use a simple strategy to automatically construct
substantial training data ready for self-training. The
evaluation on multiple benchmarks has shown that
our model can achieve state-of-the-art performance.
In future work, we plan to explore how to use unla-
beled data more effectively and discover potentially
valuable metaphor examples to reduce efforts of
manual annotation.
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