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Abstract
Many open-domain question answering prob-
lems can be cast as a textual entailment task,
where a question and candidate answers are
concatenated to form hypotheses. A QA sys-
tem then determines if the supporting knowl-
edge bases, regarded as potential premises, en-
tail the hypotheses. In this paper, we investi-
gate a neural-symbolic QA approach that in-
tegrates natural logic reasoning within deep
learning architectures, towards developing ef-
fective and yet explainable question answer-
ing models. The proposed model gradually
bridges a hypothesis and candidate premises
following natural logic inference steps to build
proof paths. Entailment scores between the
acquired intermediate hypotheses and candi-
date premises are measured to determine if a
premise entails the hypothesis. As the natural
logic reasoning process forms a tree-like, hier-
archical structure, we embed hypotheses and
premises in a Hyperbolic space rather than Eu-
clidean space to acquire more precise represen-
tations. Empirically, our method outperforms
prior work on answering multiple-choice sci-
ence questions, achieving the best results on
two publicly available datasets. The natural
logic inference process inherently provides ev-
idence to help explain the prediction process.

1 Introduction

Question answering (QA) is an important real-life
NLP application but also a challenging task for as-
sessing how well AI systems understand human
language and perform reasoning to answer ques-
tions. A main challenge of QA is that the answers
often do not explicitly exist in a supporting knowl-
edge base but instead need to be inferred from it.
Prior work (Angeli et al., 2016) has viewed QA
as a textual entailment problem performed on a
large premise set, where a question and candidate
answers are formulated as hypotheses that need to
be proved.

*Corresponding author.

Neural networks have recently become the main-
stream models for QA (Lukovnikov et al., 2017; Jia
et al., 2018; Yang et al., 2019). Most of the models,
however, are unable to give explainable inference
results. Developing effective and yet explainable
question answering models has attracted more at-
tention (Abujabal et al., 2017; Yang et al., 2018;
Zhou et al., 2018; Sydorova et al., 2019; Weber
et al., 2019).

In this paper, we investigate a neural-symbolic
QA approach that integrates natural logic reason-
ing (Lakoff, 1970; Nairn et al., 2006; MacCartney
and Manning, 2009) within deep learning architec-
tures for QA, aiming to keep the backbone of infer-
ence based on the natural logic formalism, while
integrating neural networks to make the systems
powerful and robust. Conventional natural logic
has been designed for natural language inference
and question answering (MacCartney and Manning,
2009; Angeli and Manning, 2014). As opposed to
performing deduction on an abstract logical form,
e.g., first-order logic (FOL) or its fragments, in
which obtaining representation for abstract logic
forms is known to face many thorny challenges,
natural logic provides a formal proof framework
based on the monotonicity calculus or projectivity.

We present the Neural Natural Logic Inference
(NeuNLI) framework for question answering. The
core idea of NeuNLI is bridging a hypothesis and
candidate premises by following natural logic in-
ference steps and incorporating neural models to
help build the proof paths. NeuNLI first converts
a question and candidate answers to form declara-
tive sentences, namely hypotheses. It then rewrites
these original hypotheses to obtain intermediate
hypotheses and repeats this process to construct a
proof tree for each question-answer pair.

Since the reasoning process forms a tree-like,
hierarchical structure (Angeli and Manning, 2014),
it can lead to structural distortion when learning
embeddings for hypotheses and premises in the
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Euclidean space (Sarkar, 2011; Sala et al., 2018).
Additionally, natural language text exhibits hierar-
chical structure in a variety of respects (Dhingra
et al., 2018). NeuNLI projects the question and
answer embeddings to the Hyperbolic space. For a
proof tree, NeuNLI computes an entailment score
between tree nodes and candidate premises in a
Hyperbolic space and use that to help select the an-
swer. We demonstrate modelling entailment score
in the Hyperbolic space improves the performance.

To train the above process in an end-to-end dif-
ferentiable manner, we utilize the Gumbel-Softmax
technique (Jang et al., 2017), which can effectively
approximate the discrete variable, as an approxi-
mation of the non-differentiable selecting process
of candidate mutations. In summary, the contri-
butions of our work are as follows: (1) We in-
troduce a novel framework NeuNLI, which com-
bines the advantages of natural logic and deep
neural networks for question answering. (2) Our
proposed model provides step-by-step explanation
for how the prediction was derived. (3) The pro-
posed model achieves new state-of-the-art perfor-
mance on two QA datasets. We provide detailed
analyses demonstrating how the model works to
achieve the improvement. The code is released at
https://github.com/Shijihao/NeuNLI.

2 Background

2.1 The Problem

Consider an example from a multiple-choice sci-
ence question from (Clark, 2015) and as shown in
the following example.

Example–1:
Question: The main function of a fish’s fins is to
help the fish _____.
(A) reproduce (B) see (C) breathe (D) move

Knowledge Base: . . . A fish has a flipper or fin that
helps them swim. The dorsal fin can help to keep
the fish stable in the water. . . .

Given a science question, four candidate an-
swers, and relevant knowledge, a model needs
to choose the correct answer supported by the
knowledge base. Following Clark et al. (2018),
we explore to solve the multiple-choice question
answering as a textual entailment problem. Specif-
ically, a question and four candidate answers can
be converted to four declarative sentences, namely
target hypothesis hi where i P t1, 2, 3, 4u. We

Relation Name Example

x ” y equivalence garbage” rubbish
x Ď y forward entailment dog Ď animal
x Ě y reverse entailment animal Ě dog
xN y negation usualN unusual
x ë y alternation monkeyë elephant
x ` y cover mammal` nonhuman
x # y independence angry # fridge

Table 1: Seven logic relations.

will retrieve relevant knowledge, a premise set
P “ tp1, . . . , pj , . . . , pku, from the knowledge
base and determine one that entails one of the four
hypotheses, where k represents the number of sup-
porting premises. Central to our approach is the
development of neural-symbolic model that uses
natural logic as the backbone prover and leverages
the expressiveness of neural models to help con-
struct this proving process.

2.2 Natural Logic

Natural Logic (Lakoff, 1970) is a formal proof the-
ory built on the syntax of human language, which
can be traced to the syllogisms of Aristotle. It aims
to capture logical inferences by appealing directly
to the structure of language. Specifically, the logi-
cal inferences are directly operated on the surface
form of language based on the monotonicity cal-
culus or projectivity (MacCartney and Manning,
2009; Valencia, 1991), as opposed to running de-
duction on an abstract logical form, first-order logic
(FOL), or its fragments. For natural language, ob-
taining a representation of abstract logic forms is
known to face many thorny challenges. In this
research, we investigate developing neural natural
logic models for QA, which provide insight into the
derivation process but also sidestep the difficulties
of translating sentences into FOL.

Natural logic proving is operated by inserting,
deleting, or mutating words following monotonic-
ity calculus or projectivity (MacCartney and Man-
ning, 2009; Valencia, 1991). In their recent work
MacCartney and Manning (2009) utilize seven log-
ical relations as shown in Table 1. For example,
mutating animals to dogs corresponds to a reverse
entailment relation, i.e., animals Ě dogs. Natural
logic then projects the lexical relation based on
the monotonicity or projectivity determined by the
context. According to the monotonicity calculus,
upward monotone preserves the logical relation,
while downward monotone can change the logical
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Figure 1: Natural logic proof process. It starts from
a hypothesis rodents consume plants and finds out a
premise squirrels eat nuts. Labels on the edges show
the logical relations between associated sentences.

relation. For example, the quantifier all has a down-
ward monotone in its first argument. Accordingly,
given animals Ě dogs, we know all animals Ď all
dogs (e.g., as in all animals need water Ď all dogs
need water).

2.3 Natural Logic Inference
Natural logic inference casts inference as a search
problem: given a hypothesis and an arbitrarily large
corpus of text, it searches through the space of
lexical mutations (e.g., eat Ñ consume), with as-
sociated costs, until a premise is found (Angeli
and Manning, 2014). The entire inference process,
constructed in reverse, starts from the hypothesis.
An example search using natural logic inference
is given in Figure 1. The root denotes one of the
hypotheses in our task, and the relations along the
edges denote relations between the associated sen-
tences.

3 Method

In this paper we propose the Neural Natural Logic
Inference (NeuNLI) framework, aiming to com-
bine the advantages of natural logic and deep neural
networks for question answering, which builds ex-
plainability in the model and leverages the powerful
capacity and robustness of neural models. Figure
2 depicts the overall architecture of NeuNLI; the
pseudocode of NeuNLI is listed in Algorithm 1.
In the following subsections, we discuss NeuNLI
in detail.

As the starting point, given a question sentence,
“In New York State, the longest period of daylight
occurs during which month” and candidate an-
swers, NeuNLI converts the question and each

Algorithm 1: NeuNLI Pseudocode
Input: Hypothesis hi, premises

P “ tp1, . . . , pj , . . . , pku, maximum
iteration imax

Output: Entailment score si
Initialization: si Ð 0

1 Hcand Ð Insertion_Deletion_Mutationphiq ;
2 Scj Ð Scorephc, pjq@hc P Hcand, pj P P ;
3 si Ð maxpScjq;
4 while iteration < imax do
5 rank Hcand according to Scj in descending

order;
6 Hcand Ð Hcandr: topks ;
7 H 1cand Ð rs ;
8 for hc in Hcand do
9 add Insertion_Deletion_Mutationphcq

to H 1cand ;
10 end
11 Sij Ð Scoreph1i, pjq@h

1
i P H

1
cand, pj P P ;

12 s˚i Ð maxpSijq;
13 if s˚i ą si then
14 si Ð s˚i ;
15 end
16 Hcand Ð H 1cand

17 end
Return: si

answer (say, “June”) to a declarative hypothesis
sentence hi, i.e., “In New York state, the longest
period of daylight occurs during June”.

3.1 Candidate Premises Retrieval

The knowledge base K consists of unstructured
text. This makes available the great amount of text
as knowledge source to help perform question an-
swering. Given a hypothesis, as shown in the right
part of Figure 2, NeuNLI first retrieves candidate
premises. Specifically, a premise is one of the sen-
tences in the knowledge base K “ tp1, . . . , pnu.
Given a hypothesis hi, we obtain the representation
of hi and each pj in K by computing the average
Glove word embeddings (Pennington et al., 2014)
of it, respectively. Then we calculate the cosine
similarity between hi and each pj in K, respec-
tively, to find the top k relevant candidate premises
(k is tuned on the development set).

3.2 Contextualized Neural Natural Logic
Prover

Candidate Proof Path Generation. As shown
in Figure 2, starting from the hypothesis at the root,
the backward proof process needs to generate proof
paths to help find supporting premises from the can-
didate premise pool retrieved above. The paths are
built by adding intermediate hypotheses, following
natural logic inference steps and utilizing neural
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ŷ

……

…

dD

BERT

Document
Document KKnowledge  Base

Candidate Premises Retrieval

Relevant Knowledge P

Hyperbolic 

Entailment 

Module

Hyperbolic 

Entailment 

Module

In New York State, the longest period of daylight occurs during which month? 

A. June B. March C. December D. September

In New York state, the longest period of daylight occurs during June 

In New York state, the 
shortest period of daylight 

occurs during June

mutation & prediction mutation & prediction

In New York state, the 
longest period of sunlight 

occurs during June

…

…

mutation & prediction

In New York state, the longest 
period of sunlight appears 

during June

mutation & prediction

In New York state, the 
longest period of sunlight is 

during June
…

mutation & prediction

In New York state, the longest 
period of sunlight appears 

during summer

…

Figure 2: Overview of the proposed NeuNLI framework for Question Answering.

networks to suggest candidates. An intermediate
hypothesis always entails the original hypothesis—
if we can find a premise entailing an intermediate
hypothesis, we also prove the original hypothesis.

Intuitively, there is no need to mutate each word
in a hypothesis. Thus, we first find out function
words in advance. For each word wi in a hypoth-
esis, we use the NLTK (Bird et al., 2009) toolkit
to obtain its part of speech tag wipos and apply
rules to filter out words that have little influence on
the semantics of the hypothesis. Words with the
following part of speech will be neglected: preposi-
tion, determiner, coordinating conjunction, cardinal
numbers, personal pronoun, and modal verb. Also,
punctuation words and stop words will be excluded.
Subsequently, we conduct inference starting from
the original hypothesis hi that consists of L words,
hi “ pwi1, . . . , wil , . . . , wiLq. We first mask a word
in the hypothesis and then feed it into BERT to
predict the masked token as shown in the upper-left
subfigure of Figure 2.

The probability of the word w on the l’th posi-
tion of hi with parameters θ is defined by:

plpw|θq “ wTo fθpSzlq, (1)

where wo is the one-hot vector for the word w
on the l’th position; fθp¨q is a multi-layer bidirec-
tional transformer model (Vaswani et al., 2017) and
Szl “ pwi1, ..., wil´1,[MASK], wil`1, ...wiLq. In or-
der to narrow the semantic distance, the reversed
search also deal with lexical insertion and deletion.
For example, the sentence some grey squirrels eat
nuts would entail some squirrels eat nuts by lexi-
cal insertion. As we know, deleting noun (or verb)

is very likely to result in incomplete sentences,
whereas inserting noun (or verb) does not guaran-
tee the resulting sentences conform to the grammar.
Thus, we choose to only insert (or delete) adjec-
tive, to conduct inference. Generating candidate
words for insertion also utilizes the mask mecha-
nism: we insert a mask in front of the correspond-
ing noun. The position of insertion and deletion
will be tagged to avoid repetitive insertion/deletion
operations at the same location.

Due to the nature of masked language model-
ing, we take advantage of the mask mechanism for
lexical mutation. In this way, the context of the
mutated word wl can be considered. According to
the probability plpw|θq, the candidate words can be
ranked in descending order. The higher the proba-
bility, the more relevant the candidate word w1l to
the original word wl. So far, we have obtained a
list of candidate words.

Proof Path Filtering. The mask mechanism
does not guarantee semantic coherence to the origi-
nal hypothesis as shown in the left part of Figure
2. The original hypothesis is “. . . the longest pe-
riod of daylight . . . ”. Through the mutation of the
word “longest”, the candidate words may contain
the word “shortest”, which fits well into the gram-
mar and context of the sentence but changes the
semantics of the original hypothesis. To keep a
high semantic similarity, we need to judge whether
the mutation operation would change the seman-
tics of the original hypothesis using a logical rela-
tion prediction module, and filter out the incorrect
mutations. Here, the candidate word w1l is “short-



3677

r ” Ď Ě N ë ` #

φprq ” Ě Ď ë N ` #

Table 2: The projection function φ when the lexical po-
larity of the mutated word is downward. The input r is
the predicted lexical relation between the mutated word
and the mutating word. Note that the projection func-
tion φ is the identity function when the lexical polarity
of the mutated word is upward.

est”, while the mutated word wl is “longest”. First,
we use the fine-tuned RoBERTa (Liu et al., 2019)
to predict the logical relation between “shortest”
and “longest”. The input form of the RoBERTa
is [CLS] wl [SEP] w1l [SEP], where wl is as-
signed to segment 0 and w1l is assigned to segment
1. The predicted result is negation relation (N), cal-
culated by the representation of the [CLS] token.

Then, we use the projection function φ to obtain
the sentence-level semantic relation according to
the predicted lexical relation and the lexical polar-
ity of the word wl. If the lexical polarity is upward,
the sentence-level relation will be identical to the
lexical relation. Otherwise, the projection from
the word-level relation to the sentence-level rela-
tion is performed as shown in Table 2. We employ
Stanford natlog parser (Manning et al., 2014) to
acquire the lexical polarity of words. For example,
as the polarity of the mutated word “longest” is
upward, and the logical relation between “longest”
and “shortest” isN, the semantic relation of the hy-
pothesis hi and the intermediate hypothesis h1i still
maintains N. If the predicted polarity of “longest”
is downward, the sentence-level relation will be ë.
As we only conduct inference on the sentence-level
relation of ” or Ě, this mutation would be filtered
out.

Entailment Score Estimation in Hyperbolic
Space. Given the intermediate hypothesis h1i, we
need to calculate the entailment score sij between
the intermediate hypothesis h1i and each candidate
premise pj . The representation of intermediate hy-
pothesis and candidate premise in Euclidean space
is calculated by BERT model with the input [CLS]
pj [SEP] h1i [SEP]. We take the embedding of
token [CLS] and middle token [SEP] as the rep-
resentation of the candidate premise and the inter-
mediate hypothesis, denoted as vEpj and vEh1i

.
For the tree-like, hierarchical structure con-

structed by the reasoning process, the number

of intermediate hypotheses grows exponentially.
However, the Euclidean space grows polynomially,
which would lead to structural distortion in the
Euclidean space (Sarkar, 2011; Sala et al., 2018).
Additionally, natural language text itself exhibits
hierarchical structure. Thus, we calculate the en-
tailment scores between them in Hyperbolic space
as shown in the right part of Figure 2. Here, we
choose the Poincaré ball model (Cannon et al.,
1997) to project the candidate premise and inter-
mediate hypothesis into the Hyperbolic space to
acquire more precise representations. We exploit
the re-parameterization technique (Dhingra et al.,
2018; López et al., 2019; Cao et al., 2020) to im-
plement it, which involves calculating a direction
vector m and a norm magnitude µ. Take vEpj as an
example to illustrate the procedure:

mpj “ ψdir

´

vEpj

¯

, mpj “
mpj

}mpj}
µ̄pj “ ψnorm

´

vEpj

¯

, µpj “ σ
`

µ̄pj
˘

(2)
where ψdir : Rd Ñ RdH is a multi-layer percep-
tron. ψnorm : Rd Ñ R is a linear function. σ is
the sigmoid function to ensure the resulting norm
µpj P p0, 1q. The re-parameterized premise repre-
sentation is defined as vHpj “ µpjmpj , which lies
in Hyperbolic space BdH . The re-parameterization
technique has the ability to avoid the need to adopt
the stochastic Riemannian optimization method
(Bonnabel, 2013). Instead, we can exploit AdamW
(Loshchilov and Hutter, 2019) to update the param-
eters in the entire model.

The entailment score in Hyperbolic space is cal-
culated by the hyperbolic distance:

dDpvHpj ,vHh1iq

“ cosh´1p1` 2
}vHpj ´ vHh1i

}2
p1´ }vHpj}2qp1´ }vHh1i}2q

q,

(3)

where vHpj and vHh1i
are representations of the can-

didate premise and intermediate hypothesis in Hy-
perbolic space. We then utilize a learnable clas-
sifier to project dDpvHpj ,vHh1iq to a scalar entail-
ment score sij . The maximum entailment score
si “ max

j
psijq is used as the supporting probabil-

ity to the hypothesis hi, i.e. the probability of the
corresponding answer. This is repeated for all an-
swers, and the answer with the highest entailment
score max

i
psiq is selected as the correct answer.
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3.3 Gumbel-Softmax Training
Note that the above learning process is not differ-
entiable and the training signal cannot be passed to
the parameters of pre-trained language model. To
address this, we adopt the Gumbel-Softmax tech-
nique (Jang et al., 2017) to train the whole process
in an end-to-end manner. Gumbel-Softmax tech-
nique has been shown an effective approximation
to the discrete variable. Therefore, we use

wj “ exppplogpplpwj |θqq ` gjq{τq
ř

i exppplogpplpwi|θqq ` giq{τq (4)

as the approximation of the one-hot vector of a
selected mutating word on the l’th position, where
wi is the i’th token that appears in the vocab of
BERT model. gj are i.i.d samples drawn from
Gumbel(0,1) 1 and τ is a constant that controls the
smoothness of the distribution.

3.4 Objective Function
We normalize prediction scores across all candidate
answers using the softmax function and train the
model using the cross-entropy loss:

ŷi “ exppsiq
řC
n“1 exppsnq

, (5)

L “ ´
C
ÿ

i“1

ti logpŷiq, (6)

where C is the number of candidate answers. si is
the entailment score corresponding to the answer i
and ti is 1 when the i’th candidate answer is correct,
otherwise ti is 0. We minimize the cross-entropy
loss between the prediction result and the ground
truth.

4 Experiment Set-Up

Datasets, Baselines, and Implementation De-
tails. We evaluate the performance of our model
on two publicly available datasets (Angeli et al.,
2016). Both datasets are made up of non-diagram
multiple-choice science questions from the New
York Regents 4th Grade Science Exams (NYSED,
2014). We use the same datasets (QA-S and QA-L)
and knowledge bases (Barron’s and SCITEXT) as
the baseline (Angeli et al., 2016). The details of
datasets and knowledge bases can be found in Ap-
pendix A. We compare NeuNLI with Solr, Clas-
sifier (Angeli et al., 2016), Evaluation Function,

1We sample g by drawing u „ Uniform(0, 1) then com-
puting g “ ´logp´logpuqq

” Ď Ě N ë ` #

10,000 10,000 10,000 1,320 10,000 1,650 10,000

Table 3: Statistics of lexical relation prediction corpus.

NaturalLI (Angeli et al., 2016), HyperQA (Tay
et al., 2018), SemBERT (Zhang et al., 2020) and
NeuNLI-E. Descriptions of the baseline methods
are detailed in Appendix B. Additionally, exper-
iment settings are further discussed in Appendix
C.

Construction of Lexical Relation Prediction
Corpus. To better predict lexical relations be-
tween the original word and the candidate mutat-
ing word, we build a set of lexical pairs to train
the prediction model. These lexical pairs are built
upon the lexical knowledge base WordNet (Miller,
1992). We regard words in the same synsets of
the WordNet as having the equivalence relation ”.
Words with hypernymy and hyponymy relations in
the WordNet are cast as having the forward Ď and
reverse Ě entailment relation, respectively. The
antonymy relation in the WordNet can be naturally
projected as the negation relation N of the natural
logic. For a synset in WordNet, the relation be-
tween its hypernyms (or between its hyponyms)
is regarded as the alternation relation ë in natural
logic. Besides, for a synset in WordNet, its hy-
ponymy and its antonym have the cover relation
` in natural logic. As for the independence rela-
tion # in natural logic, we randomly extract lexical
pairs from the WordNet and then filter out pairs
that have the other six lexical relations and the rest
can be regarded as the independence relation.

The number of seven lexical relations in natural
logic is shown in Table 3. We split the number of
each relation with the ratio of 8:1:1 to fine-tune a
pre-trained language model.

5 Experiment Results

We list the test accuracy of baseline methods and
NeuNLI on two test sets in Table 4 (QA-S) and
Table 5 (QA-L), respectively. In Table 4, we also
present results utilizing two different knowledge
bases. We find that:

(1) Compared with NaturalLI (Angeli et al.,
2016), our method performs better because we con-
sider the contextual information during the natural
logic-based reasoning process. This helps to reduce
the unnecessary expansion of irrelevant lexical mu-
tation and make NeuNLI focusing on the right
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Model Barron’s SCITEXT

Solr Only 42 58
Classifier 52 60
+ Solr 48 64

Evaluation Function 54 63
+ Solr 45 58
NaturalLI (Angeli et al., 2016) 51 61
+ Solr 49 61
+ Solr + Classifier 49 67

HyperQA (Tay et al., 2018) 54 62
SemBERT (Zhang et al., 2020) 53 59

NeuNLI-E (Ours) 57 67
NeuNLI (Ours) 64* 72*

Table 4: Accuracy (%) on the QA-S test set with 68 ex-
amples. The results are shown in integer form as (An-
geli et al., 2016). Bold denotes best results.* denotes a
significance test at the level of 0.05.

reasoning path.
(2) Comparison between HyperQA (Tay et al.,

2018) and NeuNLI shows that natural logic-
powered neural networks can achieve better perfor-
mance on the QA datasets. Moreover, the process
of natural logic reasoning can serve as the explana-
tion of the results, while HyperQA can hardly give
a reasonable explanation for its results.

(3) Our method also performs better than Sem-
BERT (Zhang et al., 2020). Both approaches incor-
porate contextual semantic information with BERT
for QA. In comparison, we involve natural logic
for achieving this goal, which is the main reason
for the improvements.

(4) NeuNLI outperforms NeuNLI-E mainly
because we learn embeddings of the candidate
premise and hypothesis in Hyperbolic space, which
can acquire more precise representations.

(5) NeuNLI achieves the best results on the test
set with two different knowledge bases: Barron’s
and SCITEXT. We also notice that the model with
a larger knowledge base SCITEXT can achieve a
better performance, which coincides with human
intuition that with more knowledge, we can choose
more correct answers.

(6) The experimental results on the QA-L test set
in Table 5 are consistent with those on the QA-S
test set in Table 4, which shows the generalization
of our approach.

Precision of Lexical Relation Prediction. As
the lexical relation prediction is an important mod-
ule in NeuNLI and can affect the performance
of NeuNLI, we evaluate the performance of this
module and show the results in Table 6. We com-

Model Accuracy

Solr Only 46.8
Classifier 43.6

NaturalLI (Angeli et al., 2016) 46.4
+ Solr 48.0

HyperQA (Tay et al., 2018) 47.6
SemBERT (Zhang et al., 2020) 47.2

NeuNLI-E (Ours) 48.8
NeuNLI (Ours) 50.8*

Table 5: Accuracy (%) on the QA-L test set with 250
examples. Bold denotes the best result. * denotes a
significance test at the level of 0.05.

Relation BERT RoBERTa
P R F1 P R F1

equivalence 0.79 0.83 0.81 0.81 0.85 0.83
forward entailment 0.75 0.69 0.72 0.75 0.74 0.75
reverse entailment 0.69 0.69 0.69 0.70 0.72 0.71
negation 0.74 0.58 0.65 0.85 0.63 0.72
alternation 0.54 0.64 0.58 0.57 0.61 0.59
cover 0.42 0.32 0.36 0.48 0.32 0.39
independence 0.63 0.58 0.60 0.66 0.62 0.64

Table 6: Performance of lexical relation prediction.

pare two pre-trained language models (BERT and
RoBERTa) for lexical relation prediction. The per-
formance of RoBERTa is better than BERT be-
cause RoBERTa utilizes a dynamic mask mecha-
nism, which can learn more knowledge.

Human Evaluation for Explainability. We
quantitatively evaluate the explainability of our
model through human evaluations. Specifically,
we evaluate NeuNLI on the QA-S dataset with
the Barron’s knowledge base. We employ three
graduate students that majored in natural language
processing to give a score belonging to {0, 1, 2}
to evaluate whether the inference path derived by
our model is reasonable. The semantic between
the final intermediate hypothesis and the premise is
irrelevant, then the score is tagged 0. The semantic
between the two is very close, then tagged 2. If the
gap between the two needs evaluators to imagine a
context, then tagged 1. For comparison, we set Nat-
uralLI (Angeli et al., 2016) as the baseline and the
significance test is conducted using paired t-test at
a significance level of 0.05. The average scores are
shown in Table 7 and the significance difference is
less than 0.05.

We can observe that the score of NeuNLI is
significantly higher than that of NaturalLI. This is
mainly because NeuNLI can generate more reason-
able words by incorporating contextual semantic
information into the natural logic inference process.
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NaturalLI NeuNLI

Avg. Explainability Score 1.09 1.31*

Table 7: Average explainability score of NaturalLI and
NeuNLI. * denotes a significance test at the level of
0.05.
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NeuNLI w/o reasoning
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NeuNLI-E w/o reasoning

Figure 3: Ablation study by removing the main compo-
nents, where “w/o” indicates without. Accuracy with
different numbers of relevant premises on 68 test ex-
amples with the Barron’s knowledge base. Our model
NeuNLI performs the state-of-the-art.

For example, the hypothesis is “in order to survive,
all animals need food, water and air”. By lexical
mutation in NeuNLI, we get the sentence “in or-
der to live, all animals need food, water and air”,
which is closer to the premise “animals need air,
water, and food in order to live and thrive”.

Ablation Study. We conduct the ablation study
on the QA-S test set with the Barron’s knowledge
base. The experimental results are shown in Figure
3. From the figure, we can observe that:

(1) Effect of Number of Relevant Premises.
The accuracy continues to increase as the number
of relevant premises increases from 1 to 4 in Fig-
ure 3. This is mainly because the more knowledge
is involved in the model, the better performance can
be achieved. While when the number of relevant
premises exceeds 4, the accuracy starts to decrease,
as there may be noise information included in the
model by the retrieval method.

(2) Effectiveness of Natural Logic-based Rea-
soning. Comparing NeuNLI with NeuNLI w/o
reasoning, we can find the performance improves
significantly. The accuracy score improves from
57.35% to 64.71% on the QA-S test set with the
Barron’s knowledge base (setting the number of
relevant premises is 4). The same conclusion can
be drawn from the comparison between NeuNLI-

E and NeuNLI-E w/o reasoning. It indicates that
exploiting natural logic-based reasoning is very ef-
fective for QA.

6 Related Work

Question answering systems that integrate deep
learning methods have made great progress in re-
cent years (Lukovnikov et al., 2017; Bhandwaldar
and Zadrozny, 2018; Jia et al., 2018; Yang et al.,
2019). Many works first adopt learnable encoders
for sentence representation like convolutional en-
coders (Zhang et al., 2017), recurrent encoders (Tay
et al., 2017) and transformers (Yang et al., 2019).
Then an interaction layer is devised to calculate the
semantic similarity, which is the main difference
in many models. Severyn and Moschitti (2015)
utilize a multi-layered perceptron to combine the
CNN encoded representations. Yang et al. (2016)
perform a soft-attention alignment to measure word
similarity between the question and the answer.

Though neural networks-based models make
great advances in QA, they are short of illus-
trating the step-by-step prediction derivation pro-
cess, where the logic-based method is adept (Rock-
täschel and Riedel, 2017; Weber et al., 2019; Min-
ervini et al., 2020), which differs from the widely
used attention mechanism (Doshi-Velez and Kim,
2017; Jain and Wallace, 2019). Angeli et al. (2016)
proposed a Natural Logic Inference framework to
utilize natural logic to conduct interpretable ques-
tion answering and viewed the open-domain ques-
tion answering as a textual entailment problem.
Our NeuNLI is inspired by natural logic inference
but can achieve better performance by modeling the
contextual information during natural logic proving
using two pre-trained language models and training
the whole process in an end-to-end fashion.

7 Conclusion

In this work, we explore the feasibility of combin-
ing natural logic with neural networks for inter-
pretable question answering. We present an end-to-
end differentiable method for learning the parame-
ters as well as the structure of natural logical rules,
which is capable of considering the contextual in-
formation while conducting natural logic-based
reasoning. Experimental results on the Regents
Science Exam of the Aristo dataset show that our
proposed model could bring improvements over
baseline methods.
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A Appendix: Datasets

We evaluate the performance of our model on two
publicly available datasets (Angeli et al., 2016).
One (denoted as QA-S) consists of 108 examples
in the training set, 61 examples in the validation set,
and 68 examples in the test set. The other (denoted
as QA-L) is larger with 500 examples, 249 exam-
ples, and 250 examples in the training, validation,
and test set, respectively. Two knowledge bases
are available for supporting the question answer-
ing. One is Barron’s study guide (J. Barry, 2007),
consisting of 1,200 sentences. The other is the SCI-
TEXT corpus (Clark et al., 2014), which extends
Barron’s study guide with simple Wikipedia, dictio-
naries, and a science textbook, including 1,316,278
sentences.

B Appendix: Baselines

We compare NeuNLI with:
‚ Solr is an information retrieval system, which
can return a confidence score according to the
query. Given a hypothesis, The maximum con-
fidence score of search results is regarded as the
score for that hypothesis.
‚ Classifier (Angeli et al., 2016) is a feature-based
entailment classifier, which utilizes 5 unlexicalized
real-valued features. Also, the confidence score
calculated by the Solr information system can be
seen as an optional feature.
‚ Evaluation Function is a variation of the Classi-
fier method. Evaluation Function uses keywords as
one of the features while Classifier uses key phrases
as the features.
‚ NaturalLI (Angeli et al., 2016) utilizes natural
logic for question answering. They use WordNet
to guide the lexical mutation process, while in our
work, we adopt neural networks to conduct the
lexical mutation process.
‚ HyperQA (Tay et al., 2018) learns the question
and answer embeddings in Hyperbolic space. we
train the model in our datasets using the same set-
tings with NeuNLI.
‚ SemBERT (Zhang et al., 2020) incorporates ex-
plicit contextual semantic information with BERT
for question answering. SemBERT is a top per-
former on SNLI2, and we train SemBERT in our
datasets using the same settings with NeuNLI.
‚ NeuNLI-E learns the distributed embedding rep-
resentations of the candidate premise and hypothe-

2https://nlp.stanford.edu/projects/snli/

sis in Euclidean space.

C Appendix: Implementation Details

We use the base size of pre-trained language mod-
els (i.e. BERT-base and RoBERTa-base) in this
paper. The dimension of vector d in Euclidean
space is 768. The dimension of vector dH in Hy-
perbolic space is 64. When searching for the rele-
vant premises, we use pre-trained 300-dimensional
840B GloVe vectors (Pennington et al., 2014). Dur-
ing the natural logic-based reasoning, we limit the
maximum searching depth is 10, and restrict the
number of relevant premises to be no more than 5.
In the re-parameterization technique, The number
of hidden layer of the multi-layer perceptron is 1
and the dimension of the hidden layer is 384. The
initial learning rate is selected from {1e-5, 5e-5, 3e-
6}. The dropout rate is 0.3. Our model is trained
on one Tesla V100 GPU. For all experiments, we
pick the model which works best on the validation
set and then evaluate it on the test set. We use the
default hyper-parameters as initial and fine-tune the
pre-trained model (Devlin et al., 2019; Liu et al.,
2019) on our task. Significance test is conducted
using paired t-test at a significance level of 0.05.


