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Abstract

Information seeking is an essential step for
open-domain question answering to efficiently
gather evidence from a large corpus. Recently,
iterative approaches have been proven to be ef-
fective for complex questions, by recursively
retrieving new evidence at each step. How-
ever, almost all existing iterative approaches
use predefined strategies, either applying the
same retrieval function multiple times or fix-
ing the order of different retrieval functions,
which cannot fulfill the diverse requirements
of various questions. In this paper, we propose
a novel adaptive information-seeking strategy
for open-domain question answering, namely
AISO. Specifically, the whole retrieval and an-
swer process is modeled as a partially observed
Markov decision process, where three types of
retrieval operations (e.g., BM25, DPR, and hy-
perlink) and one answer operation are defined
as actions. According to the learned policy,
AISO could adaptively select a proper retrieval
action to seek the missing evidence at each
step, based on the collected evidence and the
reformulated query, or directly output the an-
swer when the evidence set is sufficient for the
question. Experiments on SQuAD Open and
HotpotQA fullwiki, which serve as single-hop
and multi-hop open-domain QA benchmarks,
show that AISO outperforms all baseline meth-
ods with predefined strategies in terms of both
retrieval and answer evaluations.

1 Introduction

Open-domain question answering (QA) (Voorhees
et al., 1999) is a task of answering questions using
a large collection of texts (e.g., Wikipedia). It re-
lies on a powerful information-seeking method to
efficiently retrieve evidence from the given large
corpus.

Traditional open-domain QA approaches mainly
follow the two-stage retriever-reader pipeline
(Chen et al., 2017; Yang et al., 2018; Karpukhin
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Strategies:
1 BM25(Golden Retriever) BM25(𝑄) P1 BM25([𝑄, 𝑃1]) ✗ BM25(𝑄) P2 BM25([𝑄, 𝑃2]) ✗
2 DR(MDR) DR(𝑄) P3 DR([𝑄, 𝑃3]) ✗
3 BM25+Link(GRR) BM25(𝑄) P1 LINK(𝑃1) P2 LINK(𝑃2) ✗

Optimal BM25(𝑄) P1 LINK(𝑃1) P2 DR([𝑄,𝑃2]) P3 ANS([𝑄, 𝑃2,𝑃3]) ✓

65

>1K

>1K

3 >1K

Passages:

P1: Pitof
Jean-Christophe “Pitof” Comar is a French director notable for “Catwoman[Link to P2]” and “Vidocq[Link to

Px]”. In 2004, Pitof made his English debut with the Hollywood film Catwoman …
P2: Catwoman (film)
Catwoman is a 2004 American action superhero film loosely based on the DC Comics character of the
same name directed by Pitof[Link to P1] …
P3: Catwoman (video game)
Catwoman is an action-adventure tie-in video game based on the 2004 film of the same name[Link to P2]

based on the fictional character …

Question: What movie directed by Pitof in 2004 has a tie-in electronic game?

Figure 1: An example derived from HotpotQA develop-
ment set. P1, P2 and P3 are the most relevant passages,
of which P2 and P3 are supporting passages, which are
essential to answer the question. Except for the adaptive
strategy in the last row, fixed strategy methods such as
using BM25 or dense retrieval multiple times and first
using BM25 and then entity linking have failed, due to
the rank of the remaining supporting passages larger
than 1k. The number between two arrows indicates the
highest rank of the remaining supporting passages in
the retrieval list, unless ranked first.

et al., 2020), in which the retriever uses a determi-
nate sparse or dense retrieval function to retrieve
evidence, independently from the reading stage.
But these approaches have limitations in answer-
ing complex questions, which need multi-hop or
logical reasoning (Xiong et al., 2021).

To tackle this issue, iterative approaches have
been proposed to recurrently retrieve passages
and reformulate the query based on the original
question and the previously collected passages.
Nevertheless, all of these approaches adopt fixed
information-seeking strategies in the iterative pro-
cess. For example, some works employ a single
retrieval function multiple times (Das et al., 2019a;
Qi et al., 2019; Xiong et al., 2021), and the other
works use a pre-defined sequence of retrieval func-
tions (Asai et al., 2020; Dhingra et al., 2020).

However, the fixed information-seeking strate-
gies cannot meet the diversified requirements of
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various problems. Taking Figure 1 as an example,
the answer to the question is ‘Catwoman’ in P3.
Due to the lack of essential supporting passages,
simply applying BM25/dense retrieval (DR) multi-
ple times (strategy 1 (Qi et al., 2019) or 2 (Xiong
et al., 2021)), or using the mixed but fixed strategy
(strategy 3 (Asai et al., 2020)) cannot answer the
question. Specifically, it is hard for Qi et al. (2019)
to generate the ideal query ‘Catwoman game’ by
considering P1 or P2, thus BM25 (Robertson and
Zaragoza, 2009) suffers from the mismatch prob-
lem and fails to find the next supporting passage
P3. The representation learning of salient but rare
phrases (e.g. ‘Pitof’) still remains a challenging
problem (Karpukhin et al., 2020), which may af-
fect the effectiveness of dense retrieval, i.e., the
supporting passage P3 is ranked 65, while P1 and
P2 do not appear in the top-1000 list at the first step.
Furthermore, link retrieval functions fail when the
current passage, e.g., P2, has no valid entity links.

Motivated by the above observations, we pro-
pose an Adaptive Information-Seeking approach
for Open-domain QA, namely AISO. Firstly, the
task of open-domain QA is formulated as a par-
tially observed Markov decision process (POMDP)
to reflect the interactive characteristics between the
QA model (i.e., agent) and the intractable large-
scale corpus (i.e., environment). The agent is asked
to perform an action according to its state (belief
module) and the policy it learned (policy module).
Specifically, the belief module of the agent main-
tains a set of evidence to form its state. Moreover,
there are two groups of actions for the policy mod-
ule to choose, 1) retrieval action that consists of
the type of retrieval function and the reformulated
query for requesting evidence, and 2) answer action
that returns a piece of text to answer the question,
then completes the process. Thus, in each step, the
agent emits an action to the environment, which re-
turns a passage as the observation back to the agent.
The agent updates the evidence set and generates
the next action, step by step, until the evidence set
is sufficient to trigger the answer action to answer
the question. To learn such a strategy, we train the
policy in imitation learning by cloning the behav-
ior of an oracle online, which avoids the hassle of
designing reward functions and solves the POMDP
in the fashion of supervised learning.

Our experimental results show that our ap-
proach achieves better retrieval and answering
performance than the state-of-the-art approaches

on SQuAD Open and HotpotQA fullwiki, which
are the representative single-hop and multi-hop
datasets for open-domain QA. Furthermore, AISO
significantly reduces the number of reading steps
in the inference stage.

In summary, our contributions include:

• To the best of our knowledge, we are the first
to introduce the adaptive information-seeking
strategy to the open-domain QA task;

• Modeling adaptive information-seeking as a
POMDP, we propose AISO, which learns the
policy via imitation learning and has great
potential for expansion.

• The proposed AISO achieves state-of-the-
art performance on two public dataset and
wins the first place on the HotpotQA fullwiki
leaderboard. Our code is available at https:
//github.com/zycdev/AISO.

2 Related Work

Traditional approaches of open-domain QA mainly
follow the two-stage retriever-reader pipeline
(Chen et al., 2017): a retriever first gathers rele-
vant passages as evidence candidates, then a reader
reads the retrieved candidates to form an answer.
In the retrieval stage, most approaches employ a de-
terminate retrieval function and treat each passage
independently (Wang et al., 2018; Lin et al., 2018;
Lee et al., 2018; Yang et al., 2018; Pang et al., 2019;
Lee et al., 2019; Guu et al., 2020; Karpukhin et al.,
2020; Izacard and Grave, 2021). As an extension,
some approaches further consider the relations be-
tween passages through hyperlinks or entity links
and extend evidence with the linked neighbor pas-
sages (Nie et al., 2019; Das et al., 2019b; Zhao
et al., 2020). However, pipeline approaches retrieve
evidence independently from reader, leading to 1)
introduce less-relevant evidence to the question,
and 2) hard to model the complex question which
has high-order relationship between question and
evidence.

Instead, recent iterative approaches sequentially
retrieve new passages by updating the query in-
putted to a specific retrieval function at each step,
conditioned on the information already gathered.
At each step, Das et al. (2019a); Feldman and El-
Yaniv (2019); Xiong et al. (2021) reformulate the
dense query vector in a latent space, while Ding
et al. (2019); Qi et al. (2019); Zhang et al. (2020);

https://github.com/zycdev/AISO
https://github.com/zycdev/AISO
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Figure 2: The overview of the AISO.

Qi et al. (2020) update the natural language query.
After the first step retrieval using TF-IDF, Asai
et al. (2020) and Li et al. (2021) recursively se-
lect subsequent supporting passages on top of a
hyperlinked passage graph. Nevertheless, all of
these approaches adopt fixed information-seeking
strategies, employing the same retrieval function
multiple times (Das et al., 2019a; Feldman and El-
Yaniv, 2019; Xiong et al., 2021; Ding et al., 2019;
Qi et al., 2019; Zhang et al., 2020; Qi et al., 2020)
or pre-designated sequence of applying retrieval
functions (Asai et al., 2020; Li et al., 2021). Due
to the diversity of questions, these fixed strategies
established in advance may not be optimal for all
questions, or even fail to collect evidence.

3 Method

In this section, we first formulate the open-domain
QA task as a partially observed Markov decision
process (POMDP) and introduce the dynamics of
the environment. Then, we elaborate on how the
agent interacts with the environment to seek evi-
dence and answer a question. Finally, to solve the
POMDP, we describe how to train the agent via
imitation learning.

3.1 Open-Domain QA as a POMDP

Given a question q and a large corpus P composed
of passages, the task of open-domain QA is to col-

lect a set of evidence E ⊂ P and answer the ques-
tion based on the gathered evidence.

The fashion of iterative evidence gathering,
proven effective by previous works (Das et al.,
2019a; Asai et al., 2020; Xiong et al., 2021), is
essentially a sequential decision-making process.
Besides, since the corpus is large, ranging from mil-
lions (e.g., Wikipedia) to billions (e.g., the Web),
and the input length of a QA model is limited, the
QA model can only observe a part of the corpus.
Owing to the above two reasons, we model open-
domain QA as a partially observed Markov deci-
sion process.

In the POMDP we designed, as shown in Fig-
ure 2, the agent is the QA model that needs to
issue actions to seek evidence from the large-
scale corpus hidden in the environment and fi-
nally respond to the question. By executing the
received action, the environment can return a re-
trieved passage to the agent as an observation of
the corpus. Formally, the POMDP is defined by
(S,A,O,Ω, Z,R), where R is the reward function.

Actions: At timestep t = 0, 1, · · · , T , the action
at in the action space A = F × U is a request
for an executable function f ∈ F , expressed as
⟨f, u⟩, where u ∈ U is the text argument that gets
passed to f . The space of executable functions
F includes two groups of functions, 1) retrieval
function that takes the query u and corpus P as
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input and ranks a retrieval list of passages as Pf(u),
2) answer function that replies to the question q
with the answer u and ends the process. The action
at is performed following the policy Π described
in Subsection 3.2.2.

States: The environment state st in the state
space S contains revealing states of retrieval lists
of all history retrieval actions. When the agent
issues an action at = ⟨f, u⟩, st will transfer to st+1

governed by a deterministic transition dynamics
Ω(st, at). Specifically, Ω will mark the topmost
unrevealed passage in the retrieval list Pf(u) as
revealed. If the environment has never executed
at before, it will first search and cache Pf(u) for
possible repeated retrieval actions in the future.

Observations: On reaching the new environ-
ment state st+1, the environment will return an
observation ot+1 from the observation space O =
{q}∪P , governed by the deterministic observation
dynamics Z. At the initial timestep, the question q
will returned as o0. In other cases, Z is designed to
return only the last passage marked as revealed in
Pf(u) at a time. For example, if the action ⟨f, u⟩ is
received for the kth time, the kth passage in Pf(u)

will be returned.

3.2 Agent

The agent interacts with the environment to collect
evidence for answering the question. Without ac-
cess to the environment state st, the agent can only
perform sub-optimal actions based on current ob-
servations. It needs to build its belief bt in the state
that the environment may be in, based on its expe-
rience ht = (o0, a0, o1, · · · , at−1, ot). Therefore,
the agent consists of two modules: belief module
Φ that generates the belief state bt = Φ(ht) from
the experience ht, and policy module Π that pre-
scribes the action at = Π(bt) to take for current
belief state bt.

Both belief and policy modules are constructed
based on pretrained Transformer encoders (Clark
et al., 2020), respectively denoted as Ψbelief and
Ψpolicy, which encode each inputted token into a
d-dimensional contextual representation. The in-
put of both encoders is a belief state, formatted as
“[CLS] [YES] [NO] [NONE] question [SEP]
titleo [SOP] contento [SEP] title1 [SOP] · · ·
content|E| [SEP]”, where the subscript o denotes
the observation passage, and the others passages
come from the collected evidence set E, [SOP]
is a special token to separate the title and con-

tent of a passage, [YES] and [NO] are used to
indicate yes/no answer, and [NONE] is gener-
ally used to indicate that there is no desired an-
swer/query/evidence. In this way, the self-attention
mechanism across the concatenated sequence al-
lows each passage in the input to interact with oth-
ers, which has been shown crucial for multi-hop
reasoning (Wang et al., 2019a).

3.2.1 Belief Module

The belief module Φ transforms the agent’s expe-
rience ht into a belief state bt by maintaining a
set of evidence Et−1. At the end of the process,
the evidence set E is expected to contain sufficient
evidence necessary to answer the question and no ir-
relevant passage. In the iterative process, the agent
believes that all the passages in E may help answer
the question. In other words, those passages that
were observed but excluded from the evidence set,
i.e., o1:t−1 \ Et−1, are believed to be irrelevant to
the question.

For simplicity, assuming that the negative pas-
sages o1:t−1 \ Et−1 and action history a<t are not
helpful for subsequent decision-making, the expe-
rience ht is equivalent to {q, ot} ∪ Et−1. Thus, let
Ct = Et−1 ∪ {ot} be the current candidate evi-
dence set, then the original question and current
evidence candidates can form the belief state bt as

bt = Π(ht) = ⟨q, Ct⟩ = ⟨q, Et−1 ∪ {ot}⟩. (1)

At the beginning, the belief state b0 is initialized to
⟨q,∅⟩, and the evidence set E0 is initialized to ∅.

To maintain the essential evidence set Et, we
use a trainable scoring function ϕ(p|bt) to identify
each evidence candidate p ∈ Ct. Specifically, each
passage is represented as the contextual represen-
tation of the special token [SOP] in it, which is
encoded by Ψbelief . Then, the representation of
each candidate is projected into a score through a
linear layer. Besides, we use a pseudo passage p0,
represented as [None], to indicate the dynamic
threshold of the evidence set. In this way, after step
t, the evidence set is updated as

Et = {pi|ϕ(pi|bt) > ϕ(p0|bt), pi ∈ Ct}. (2)

It is worth noting that these evidence candidates are
scored jointly since encoded together in the same
input, different from conventional rerankers that
score separately.
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3.2.2 Policy Module
The policy module Π decides the next action at to
be taken based on the current belief state bt. In this
paper, we equipped the agent with three retrieval
functions and one answer function, which means
that the action space A consists of three types of
retrieval actions and one type of answer actions.
However, unlike the finite space of executable func-
tions F , the space of function arguments U in-
cludes all possible natural-language queries and
answers. To narrow the search space, for each exe-
cutable function, we employ a suggester to propose
a plausible query or answer as the argument passed
to the function. Finally, we apply an action scoring
function in the narrowed action space and select
the action with the highest score.

Equipped Functions Formally, the space of
executable functions is defined as F =
{fs, fd, fl, fo}.

Among them, except fo is the answer function
used to reply to the question, the rest are three dis-
tinct off-the-shelf retrieval functions (RF) used to
explore the corpus. fs is a sparse RF, implemented
as BM25 (Robertson and Zaragoza, 2009). It per-
forms well when the query is concise and contains
highly selective keywords but often fails to capture
the semantics of the query. fd is a dense RF, im-
plemented as MDR (Xiong et al., 2021) for multi-
hop questions, and DPR (Karpukhin et al., 2020)
for single-hop questions. Dense RFs can capture
lexical variations and semantic relationships, but
they struggle when encountering out-of-vocabulary
words. fl is a link RF, implemented as hyperlink.
When hyperlink markups are available in a source
passage, it can readily map a query (i.e., anchor
text) to the target passage.

Argument Generation The space of function
arguments U , composed of textual queries and an-
swers, is too large to perform an exhaustive search
due to the complexity of natural language. To re-
duce the search complexity, inspired by Yao et al.
(2020), we employ four argument generators to
generate the most plausible query/answer for the
equipped functions.
go is a trainable reading comprehension model

for fo. It is a span extractor built upon the con-
textual representations outputted by the encoder
Ψpolicy. Like conventional extractive reading com-
prehension models (Yang et al., 2018; Clark et al.,
2020), go uses the contextual representations to

calculate the start and end positions of the most
plausible answer uo. If the current context Ct is in-
sufficient to answer the question, the special token
[NONE] will be extreacted.
gs is a query reformulation model for fs. In this

work, we directly employ the well-trained query
reformulator from Qi et al. (2019) for multi-hop
questions, which takes the belief state bt as input
and outputs a span of the input sequence as the
sparse query us. As for single-hop questions, since
there exists no off-the-shelf multi-step query refor-
mulator, we leave gs as an identity function that
returns the original question directly. In this case,
requesting the same RF multiple times is equivalent
to traverse the retrieval list of original question.
gd is a query reformulator for fd. For multi-hop

questions, gd concatenates the question q and the
passage with the highest score in evidence set Et as
the dense query ud, the same as the input of MDR
(Xiong et al., 2021). If Et is empty, ud is equal
to the question q. Similar to gs, gd for single-hop
questions also leaves original questions unchanged.
gl is a trainable multi-class classifier for fl. It se-

lects the most promising anchor text from the belief
state bt. To enable rejecting all anchors, [NONE]
is also treated as a candidate anchor. gl shares
the encoder Ψpolicy, where each anchor is repre-
sented by the average of contextual representations
of its tokens. Upon Ψpolicy, we use a linear layer
to project the hidden representations of candidate
anchors to real values and select the anchor with
the highest value as the link query ul.

In this way, the action space is narrowed down
to Ǎ = {⟨fs, us⟩, ⟨fd, ud⟩, ⟨fl, ul⟩, ⟨fo, uo⟩}.

Action Selection The action scoring function π
is also built upon the output of Ψpolicy. To score
an action ⟨f, u⟩ for current belief state bt, an addi-
tional two-layer (3d× 4d× 1) MLP, with a ReLU
activation in between, projects the concatenated
representation of bt, executable function f , and
function argument u, i.e., v[CLS], wf , and vu, into
a real value. wf ∈ Rd is a trainable embedding
for each executable function, the same dimension
as the token embedding. vu is specific for each
function. Since us, ul and uo have explicit text
span in the bt, thus their vu are the averages of
their token representations. As for ud, if gd does
not expand the original question, vud

is the con-
textual representation of [NONE]. Otherwise, vud

is the [SOP] of the passage concatenated to the
question.
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In short, the next action is selected from the
narrowed action space Ǎ by the scoring function π,

at = Π(bt) = argmax
a∈Ǎ

π(a|bt). (3)

3.3 Training
In the agent, in addition to the encoders Ψbelief

and Ψpolicy, we need to train the evidence scoring
function ϕ, link classifier gl, answer extractor go,
and action scoring function π, whose losses are
Lϕ, Ll, Lo, and Lπ. Since the policy module is
dependent on the belief module, we train the agent
jointly using the following loss function,

L = Lϕ + Ll + Lo + Lπ. (4)

Unlike ϕ, gl and go that can be trained in su-
pervised learning through human annotations in
QA datasets, the supervision signal for π is hard
to be derived directly from QA datasets. Even
though policies are usually trained via reinforce-
ment learning, reinforcement learning algorithms
(Sutton et al., 2000; Mnih et al., 2015) are often
sensitive to the quality of reward functions. For
a complex task, the reward function R is often
hard to specify and exhaustive to tune. Inspired
by Choudhury et al. (2017), we explore the use of
imitation learning (IL) by querying a model-based
oracle online and imitating the action a⋆ chose by
the oracle, which avoids the hassle of designing R
and solves the POMDP in the fashion of supervised
learning. Thus, the loss of π is defined as the cross
entropy,

Lπ = − log
eπ(a

⋆|b)∑
a∈Ǎ eπ(a|b)

, (5)

where b is the belief state of the agent.
The link classifier gl and the answer extractor go

are also optimized with multi-class cross-entropy
losses. For gl, denoting its loss as Ll, the classifi-
cation label is set to the anchor text that links to
a gold supporting passage, if there is no such an-
chor, then the pseudo hyperlink [NONE] is labeled.
go is trained as a classifier of start and end posi-
tion following previous work (Clark et al., 2020),
denoting its loss as Lo. Considering the belief
state b = ⟨q, {p1, p2, · · · , p|C|}⟩, the ListMLE (Xia
et al., 2008) ranking loss of the evidence scoring
function ϕ is defined as the negative log likelihood
of the ground truth permutation,

Lϕ(y, b) = − logP (τy|{ϕ(pi|b)}|C|
i=0), (6)

where y is the relevance label of {p0, p1, · · · , p|C|}
and τy is their ground truth permutation. To learn
the dynamic threshold ϕ(p0|b), we set the rele-
vance label of the pseudo passage p0 to y0 = 0.5.
And passages in C are labeled as 1/0 according to
whether they are gold supporting passages.

Model-based Oracle The model-based oracle
has full access to the environment and can foresee
the gold evidence and answer of every question,
which means that the oracle can infer the rank of
a supporting passage in the retrieval list of any re-
trieval action. Thus, given a state, the oracle can
easily select a near-optimal one from candidate ac-
tions according to a greedy policy π⋆. Specifically,
if all gold evidence is collected and the argument of
an answer action is a correct answer, the oracle will
select the answer action. Otherwise, the oracle will
use a greedy algorithm to select the retrieval action
that helps to gather a missing passage of evidence
in the fewest steps.

Belief States Sampling We train the agent on
sampled belief states instead of long trajectories.
In every epoch, one belief state is sampled for each
question. To sample a belief state ⟨q, C⟩, we first
uniformly sample a subset from q’s gold evidence
as C, which could be an empty set. However, at
testing time, it is impossible for the candidate ev-
idence set C to contain only gold evidence. To
alleviate the mismatch of the state distribution be-
tween training and testing, we inject a few negative
passages into C and shuffle them. We treat the first
passage in the candidate set as the observation, and
the others as evidence collected before.

The distribution of injected negative passages
can affect the test performance. In this work, to
make it simple, we sample 0~2 passages from all
top-ranked negative passages in retrieval lists of fs,
fd, and fl.

4 Experiments

We evaluate AISO and baselines on two Wikipedia-
sourced benchmarks. We first introduce the ex-
perimental setups, then describe the experimental
results on evidence gathering and question answer-
ing. Furthermore, detailed analyses are discussed.

4.1 Experimental Setup

Data HotpotQA (Yang et al., 2018), a multi-hop
QA benchmark. We focus on its fullwiki (open-
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domain) setting1. It requires gathering two sup-
porting passages (paragraphs) to answering a ques-
tion, given the introductory (first) paragraphs of 5M
Wikipedia articles dumped on October 1, 2017.

SQuAD Open (Chen et al., 2017), a single-hop
QA benchmark, whose questions are from the
SQuAD dataset (Rajpurkar et al., 2016) and can be
answered based on a single passage. We preprocess
the Wikipedia dump on December 21, 2016 and ex-
tract hyperlinks using WikiExtractor2. Following
Karpukhin et al. (2020), we split articles into some
disjoint passages, resulting in 20M passages in to-
tal. We add two extra hyperlinks to each passage,
one linking to its previous passage in the article,
the other to the next passage.

Metrics To test whether the top-2 passages in the
evidence set exactly cover both gold supporting
passages, we use Supporting Passage Exact Match
(P EM) as the evaluation metric following (Asai
et al., 2020). To test the performance of answer
extraction, we use EM and F1 as our metrics fol-
lowing (Yang et al., 2018).

Implementation Details For sparse retrieval, we
index all passages in the corpus with Elasticsearch
and implement BM25 following Qi et al. (2019)3.
For dense retrieval, we leverage the trained pas-
sage encoder and query encoder from Karpukhin
et al. (2020)4 and Xiong et al. (2021)5 and index
all passage vectors using FAISS (Johnson et al.,
2019) offline. During training, we use the HNSW-
based index for efficient low-latency retrieval; in
test time, we use the exact inner product search
index for better retrieval results. For link retrieval,
the filtered hyperlinks are used, whose targets have
to be another article from this dump.

Based on Huggingface Transformers (Wolf et al.,
2020), we use ELECTRA (Clark et al., 2020) (d =
768/1024 for base/large)6 as the initializations for
our encoders Ψbelief and Ψpolicy. The maximum
number of passages inputted into the encoders is
set to 3 and the length of input tokens is limited to

1https://hotpotqa.github.io/wiki-readme.html
2https://github.com/attardi/wikiextractor. We do not use

the processed data provided by Chen et al. (2017) because it
removed the hyperlinks required by our link RF.

3https://github.com/qipeng/golden-retriever
4https://github.com/facebookresearch/DPR, the multi-set

version is used
5https://github.com/facebookresearch/multihop_dense _re-

trieval
6Many recent approaches are based on ELECTRA, so we

use ELECTRA for fair comparison.

Strategy Method P EM # read

fs
BM25 11.11 2
BM25 + Reranker 29.60 20

fd DPR (Karpukhin et al., 2020) 14.18 2

fs ◦ fl
Semantic Retrieval∗♢ 69.35 39.4
Entity Centric IR∗♡ 34.90 -

fs ◦ fs GoldEn Retriever♣ 47.77 10

fd ◦ fd
MDR (Xiong et al., 2021) 64.52 2
MDR + Reanker†∗ 81.20 ≥200
Ballen†∗ (Khattab et al., 2021) 86.70 -

fn
s

CogQA∗ (Ding et al., 2019) 57.80 -
DDRQA†∗ (Chen et al., 2017) 79.80 -
IRRR†∗ (Qi et al., 2020) 84.10 ≥150

fs ◦ fn−1
l

GRR†∗ (Asai et al., 2020) 75.70 ≥500
HopRetriever†∗ (Li et al., 2021) 82.54 ≥500
HopRetriever-plus†∗ 86.94 >500
TPRR†∗ (Xinyu et al., 2021) 86.19 ≥500

(fs ∥ fd)
n DrKit∗ (Dhingra et al., 2020) 38.30 -

(fs|fd|fl)nΠ
AISObase 85.69 36.7
AISOlarge 88.17 35.7

Table 1: Evidence gathering performance and reading
cost on the HotpotQA fullwiki development set. The
symbol † denotes the baseline methods use the large
version of pretrained language models comparable to
our AISOlarge. The results with ∗ are from published
papers, otherwise they are our implementations. The
symbol ◦ denotes sequential apply RFs, fn denotes
apply the RF f multiple times, || denotes combining the
results of different RFs, and (·|·)Π means choosing one
of RFs to use according to the policy Π. ♢: (Nie et al.,
2019), ♡: (Qi et al., 2019), ♣: (Qi et al., 2019)

512. To avoid the high confidence passages from
being truncated, we input the passages of evidence
in descending order of their belief scores from the
previous step.

To accelerate the model training, for the first 24
epochs, Ψbelief and Ψpolicy share parameters, for
the next 6 epochs, they are trained separately. The
batch size is 32. We use Adam optimization with
learning rate 2 × 10−5. To select the best agent
(QA model), we first save several checkpoints that
perform well on heuristic single-step metrics, such
as action accuracy. Then we choose the one that
performs best in the whole process on the develop-
ment set. In test time, the number of interaction
steps is limited to T . We set the maximum number
of steps to T = 1000 if not specified. Once the
agent has exhausted its step budget, it is forced to
answer the question.

4.2 Results

Evidence Gathering We first evaluate the per-
formance and reading cost on the evidence gath-
ering, illustrating the effectiveness and efficiency
of AISO. In Table 1, we split evidence gathering
methods into different groups according to their
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Method
Dev Test

Ans Sup Joint Ans Sup Joint

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Semantic Retrieval (Nie et al., 2019) 46.5 58.8 39.9 71.5 26.6 49.2 45.3 57.3 38.7 70.8 25.1 47.6
GoldEn Retriever (Qi et al., 2019) - - - - - - 37.9 49.8 30.7 64.6 18.0 39.1
CogQA (Ding et al., 2019) 37.6 49.4 23.1 58.5 12.2 35.3 37.1 48.9 22.8 57.7 12.4 34.9
DDRQA† (Zhang et al., 2020) 62.9 76.9 51.3 79.1 - - 62.5 75.9 51.0 78.9 36.0 63.9
IRRR+†∗ (Qi et al., 2020) - - - - - - 66.3 79.9 57.2 82.6 43.1 69.8
MUPPET (Feldman and El-Yaniv, 2019) 31.1 40.4 17.0 47.7 11.8 27.6 30.6 40.3 16.7 47.3 10.9 27.0
MDR† (Xiong et al., 2021) 62.3 75.1 56.5 79.4 42.1 66.3 62.3 75.3 57.5 80.9 41.8 66.6
GRR† (Asai et al., 2020) 60.5 73.3 49.2 76.1 35.8 61.4 60.0 73.0 49.1 76.4 35.4 61.2
HopRetriever† (Li et al., 2021) 62.2 75.2 52.5 78.9 37.8 64.5 60.8 73.9 53.1 79.3 38.0 63.9
HopRetriever-plus† (Li et al., 2021) 66.6 79.2 56.0 81.8 42.0 69.0 64.8 77.8 56.1 81.8 41.0 67.8
EBS-Large∗ - - - - - - 66.2 79.3 57.3 84.0 42.0 70.0
TPRR†∗ (Xinyu et al., 2021) 67.3 80.1 60.2 84.5 45.3 71.4 67.0 79.5 59.4 84.3 44.4 70.8
AISObase 63.5 76.5 55.1 81.9 40.2 66.9 - - - - - -
AISOlarge 68.1 80.9 61.5 86.5 45.9 72.5 67.5 80.5 61.2 86.0 44.9 72.0

Table 2: Answer extraction and supporting sentence identification performance on HotpotQA fullwiki. The methods
with † use the large version of pretrained language models comparable to AISOlarge. The results marked with ∗ are
from the official leaderboard otherwise originated from published papers.

Method EM F1 # read

DrQA (Chen et al., 2017) 27.1 - 5
Multi-passage BERT (Wang et al., 2019b) 53.0 60.9 100
DPR (Karpukhin et al., 2020) 29.8 - 100
BM25+DPR (Karpukhin et al., 2020) 36.7 - 100
Multi-step Reasoner (Das et al., 2019a) 31.9 39.2 5
MUPPET (Feldman and El-Yaniv, 2019) 39.3 46.2 45
GRR† (Asai et al., 2020) 56.5 63.8 ≥ 500
SPARTA† (Zhao et al., 2021) 59.3 66.5 -
IRRR† (Qi et al., 2020) 56.8 63.2 ≥ 150

AISOlarge 59.5 67.6 24.8

Table 3: Question answering performance on SQuAD
Open benchmark. † denotes the methods use the large
pretrained language models comparable to AISOlarge.

strategies. Moreover, the first three groups are the
traditional pipeline approaches, and the others are
iterative approaches.

For effectiveness, we can conclude that 1) al-
most all the iterative approaches perform better
than the pipeline methods, 2) the proposed adaptive
information-seeking approach AISOlarge outper-
forms all previous methods and achieves the state-
of-the-art performance. Moreover, our AISObase

model outperforms some baselines that use the
large version of pretrained language models, such
as HopRetriever, GRR, IRRR, DDRQA, and MDR.

For efficiency, the cost of answering an open-
domain question includes the retrieval cost and
reading cost. Since the cost of reading a passage
along with the question online is much greater than
the cost of a search, the total cost is linear in # read,
reported in the last column of Table 1. # read means

the total number of passages read along with the
question throughout the process, which is equal
to the adaptive number of steps. We can find that
the number of read passages in AISO model, i.e.,
the is about 35, which is extremely small than the
competitive baselines (P EM > 80) that need to
read at least 150 passages. That is to say, our AISO
model is efficient in practice.

Question Answering Benefit from high-
performance evidence gathering, as shown in
Tables 2 and 3, AISO outperforms all existing
methods across the evaluation metrics on the
HotpotQA fullwiki and SQuAD Open benchmarks.
This demonstrates that AISO is applicable to both
multi-hop questions and single-hop questions.
Notably, on the HotpotQA fullwiki blind test set7,
AISOlarge significantly outperforms the second
place TPRR (Xinyu et al., 2021) by 2.02% in Sup
F1 (supporting sentence identification) and 1.69%
on Joint F1.

4.3 Analysis
We conduct detailed analysis of AISObase on the
HotpotQA fullwiki development set.

The effect of the belief and policy module As
shown in the second part of Table 4, we examine
the variations of AISO with the oracle evidence
scoring function ϕ⋆ or oracle action scoring func-
tion π⋆, which are key components of the belief

7https://hotpotqa.github.io. As of September 2021, AISO
is still at the top of the fullwiki leaderboard.
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Model P EM Ans F1 # read

AISObase 85.69 76.45 36.64
w. ϕ⋆ 97.52 79.99 40.01
w. ϕ⋆ + π⋆ 98.88 80.34 8.92
f t
s 68.51 67.33 58.74
f t
d 79.80 72.91 68.63
(fd|fl)nΠ 83.97 74.93 61.41
(fs|fl)nΠ 82.44 74.44 37.76
(fs|fd)nΠ 79.66 73.36 42.01

Table 4: Analysis experiments on HotpotQA fullwiki.

and policy module. When we replace our learned
evidence scoring function with ϕ⋆ that can identify
supporting passage perfectly, the performance in-
crease a lot while the reading cost do not change
much. This means that the belief module has a
more impact on the performance than the cost. If
we further replace the learned π with π⋆, the cost
decreases a lot. This shows that a good policy can
greatly improve the efficiency.

The impact of retrieval functions As shown
in the last part Table 4, the use of a single RF,
such as f t

s and f t
d, leads to poor performance and

low efficiency. Moreover, lack of any RF will de-
grade performance, which illustrates that all RFs
contribute to performance. Specifically, although
the link RF fl cannot be used alone, it contributes
the most to performance and efficiency. Besides,
the sparse RF fs may be better at shortening the
information-seeking process than the dense RF fd,
since removing fs from the action space leads to
the number of read passages increase from 36.64
to 61.41. We conjecture this is because fs can rank
the evidence that matches the salient query very
high.

The impact of the maximum number of steps
As shown in Figure 3, with the relaxation of the step
limit T , AISObase can filter out negative passages
and finally observe low-ranked evidence through
more steps, so its performance improves and tends
to converge. However, the cost is more paragraphs
to read. Besides, once T exceeds 1000, only a few
questions (about 1%) can benefit from the subse-
quent steps.

The ability to recover from mistakes We count
three types of mistakes in gathering evidence on the
HotpotQA development set. In the process of col-
lecting evidence for 7405 questions, false evidence
was added into the evidence set for 1061 questions,
true evidence was missed for 449 questions, and
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Figure 3: Performance and cost of AISObase on the
HotpotQA development set with different step limits.

true evidence was deleted from the evidence set for
131 questions. And we find that AISO recovered
from 17.7%, 43.9%, and 35.9% of these three types
of errors respectively, which implies that even with-
out beam search, AISObase can make up for previ-
ous mistakes to some extent. Besides, we can see
that false evidence is the most harmful to evidence
gathering and the most difficult to remedy.

5 Conclusion and Future Work

This work presents an adaptive information-
seeking approach for open-domain question an-
swering, called AISO. It models the open-domain
QA task as a POMDP, where the environment con-
tains a large corpus and the agent is asked to se-
quentially select retrieval function and reformulate
query to collect the evidence. AISO achieves state-
of-the-art results on two public datasets, which
demonstrates the necessity of different retrieval
functions for different questions. In the future,
we will explore other adaptive retrieval strate-
gies, like directly optimizing various information-
seeking metrics by using reinforcement learning
techniques.

Ethical Considerations

We honor and support the ACL code of Ethics. The
paper focuses on information seeking and question
answering tasks, which aims to answer the question
in the open-domain setting. It can be widely used in
search engine and QA system, and can help people
find the information more accuracy and efficiency.
Simultaneously, the datasets we used in this paper
are all from previously published works and do not
involve privacy or ethical issues.
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