
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3599–3614
November 7–11, 2021. c©2021 Association for Computational Linguistics

3599

Answering Open-Domain Questions of Varying Reasoning Steps from Text

Peng Qi*♠♥ Haejun Lee*♣ Oghenetegiri “TG” Sido*♠ Christopher D. Manning♠
♠ Computer Science Department, Stanford University

♥ JD AI Research
♣ Samsung Research

{pengqi, osido, manning}@cs.stanford.edu, haejun82.lee@samsung.com

Abstract

We develop a unified system to answer di-
rectly from text open-domain questions that
may require a varying number of retrieval
steps. We employ a single multi-task trans-
former model to perform all the necessary
subtasks—retrieving supporting facts, rerank-
ing them, and predicting the answer from all
retrieved documents—in an iterative fashion.
We avoid crucial assumptions of previous work
that do not transfer well to real-world settings,
including exploiting knowledge of the fixed
number of retrieval steps required to answer
each question or using structured metadata like
knowledge bases or web links that have lim-
ited availability. Instead, we design a sys-
tem that can answer open-domain questions
on any text collection without prior knowledge
of reasoning complexity. To emulate this set-
ting, we construct a new benchmark, called
BeerQA, by combining existing one- and two-
step datasets with a new collection of 530 ques-
tions that require three Wikipedia pages to an-
swer, unifying Wikipedia corpora versions in
the process. We show that our model demon-
strates competitive performance on both exist-
ing benchmarks and this new benchmark. We
make the new benchmark available at https:
//beerqa.github.io/.

1 Introduction

Using knowledge to solve problems is a hallmark
of intelligence. Since human knowledge is often
containned in large text collections, open-domain
question answering (QA) is an important means for
intelligent systems to make use of the knowledge in
large text collections. With the help of large-scale
datasets based onWikipedia (Rajpurkar et al., 2016,
2018) and other large corpora (Trischler et al., 2016;
Dunn et al., 2017; Talmor and Berant, 2018), the
research community has made substantial progress
on tackling this problem in recent years, including

∗These authors contributed equally.

in the direction of complex reasoning over multiple
pieces of evidence, or multi-hop reasoning (Yang
et al., 2018; Welbl et al., 2018; Chen et al., 2020).
Despite this success, most previous systems are

developed with, and evaluated on, datasets that
contain exclusively single-hop questions (ones that
require a single document or paragraph to answer)
or two-hop ones. As a result, their design is often
tailored exclusively to single-hop (e.g., Chen et al.,
2017; Wang et al., 2018b) or multi-hop questions
(e.g., Nie et al., 2019; Min et al., 2019; Feldman
and El-Yaniv, 2019; Zhao et al., 2020a; Xiong
et al., 2021). Even when the model is designed to
work with both, it is often trained and evaluated on
exclusively single-hop or multi-hop settings (e.g.,
Asai et al., 2020). In practice, not only can we
not expect open-domain QA systems to receive
exclusively single- or multi-hop questions from
users, but it is also non-trivial to judge reliably
whether a question requires one or multiple pieces
of evidence to answer a priori. For instance, “In
which U.S. state was Facebook founded?” appears
to be single-hop, but its answer cannot be found in
the main text of a single English Wikipedia page.

Besides the impractical assumption about reason-
ing hops, previous work often also assumes access
to non-textual metadata such as knowledge bases,
entity linking, and Wikipedia hyperlinks when re-
trieving supporting facts, especially in answering
complex questions (Nie et al., 2019; Feldman and
El-Yaniv, 2019; Zhao et al., 2019; Asai et al., 2020;
Dhingra et al., 2020; Zhao et al., 2020a). While
this information is helpful, it is not always avail-
able in text collections we might be interested in
getting answers from, such as news or academic
research articles, besides being labor-intensive and
time-consuming to collect and maintain. It is there-
fore desirable to design a system that is capable of
extracting knowledge from text without using such
metadata, tomaximally emphasize using knowledge
available to us in the form of text.

https://beerqa.github.io/
https://beerqa.github.io/

3600

② Q + retrieved paras à NOANSWER
⑤ Q + Ingerophrynus Gollum

+ The Lord of the Rings à “150 million copies”
Q. The Ingerophrynus
Gollum is named after
a character in a book
that sold how many

copies?

Retriever

Reader
A. 150
million
copies

Answer exists in one
of the reasoning paths

N
o answ

er exist

Repeat N times until the answer found is confident enough

Reranker

Query
Generator

Expand reasoning path with
top-ranked paragraph

…

WIKIPEDIA

search

① Q à “Ingerophrynus Gollum”
④ Q + Ingerophrynus Gollum à “Lord of the Rings”

② Q + retrieved paras à NOANSWER
⑤ Q + Ingerophrynus Gollum

+ The Lord of the Rings à “150 million copies”

③ Q + retrieved paras à Ingerophrynus Gollum

W

W

W
W

Figure 1: The IRRR question answering pipeline answers a complex question in the HotpotQA dataset by iteratively
retrieving, reading, and reranking paragraphs from Wikipedia. In this example, the question is answered in five
steps: 1. the retriever model selects the words “Ingerophrynus gollum” from the question as an initial search
query; 2. the question answering model attempts to answer the question by combining the question with each of
the retrieved paragraphs and fails to find an answer; 3. the reranker picks the paragraph about the Ingerophrynus
gollum toad to extend the reasoning path; 4. the retriever generates an updated query “Lord of the Rings” to retrieve
new paragraphs; 5. the reader correctly predicts the answer “150 million copies” by combining the reasoning path
(question + “Ingerophrynus gollum”) with the newly retrieved paragraph about “The Lord of the Rings”.

To address these limitations, we propose Iterative
Retriever, Reader, and Reranker (IRRR), which
features a single neural networkmodel that performs
all of the subtasks required to answer questions
from a large collection of text (see Figure 1). IRRR
is designed to leverage off-the-shelf information
retrieval systems by generating natural language
search queries, which allows it to easily adapt to
arbitrary collections of text without requiring well-
tuned neural retrieval systems or extra metadata.
This further allows users to understand and control
IRRR, if necessary, to facilitate trust. Moreover,
IRRR iteratively retrieves more context to answer
the question, which allows it to easily accommodate
questions of different number of reasoning steps.

To evaluate the performance of open-domain QA
systems in a more realistic setting, we construct
a new benchmark called BeerQA1 by combining
the questions from the single-hop SQuAD Open
(Rajpurkar et al., 2016; Chen et al., 2017) and the
two-hop HotpotQA (Yang et al., 2018) with a new
collection of 530 human-annotated questions that
require information from at least three Wikipedia
pages to answer. We map all questions to a unified
version of the English Wikipedia to reduce stylistic
differences that might provide statistical shortcuts
to models. As a result, BeerQA provides a more re-
alistic evaluation of open-ended question answering
systems in their ability to answer questions with-
out knowledge of the number of reasoning steps
required ahead of time. We show that IRRR not

1https://beerqa.github.io/

only achieves competitive performance with state-
of-the-art models on the original SQuAD Open and
HotpotQA datasets, but also establishes a strong
baseline for this new dataset.

To recap, our contributions in this paper are: (1)
a new open-domain QA benchmark, BeerQA, that
features questions requiring variable steps of reason-
ing to answer on a unified Wikipedia corpus. (2) A
single unified neural network model that performs
all essential subtasks in open-domain QA purely
from text (retrieval, reranking, and reading com-
prehension), which not only achieves strong results
on SQuAD and HotpotQA, but also establishes a
strong baseline on this new benchmark.2

2 Open-Domain Question Answering

The task of open-domain question answering is
concerned with finding the answer 0 to a question @
from a large text collectionD. Successful solutions
to this task usually involve two crucial components:
an information retrieval system that finds a small set
of relevant documents DA from D, and a reading
comprehension system that extracts the answer from
it.3 Chen et al. (2017) presented the first neural-
network-based approach to this problem, which
was later extended by Wang et al. (2018a) with a
reranking system to further reduce the amount of

2Our code for the model can be found at: https://
github.com/beerqa/IRRR.

3Some recent work breaks away from this mold, and use
large pretrained language models (e.g., T5; Raffel et al., 2020)
to directly generate answers from knowledge stored in model
parameters.

https://beerqa.github.io/
https://github.com/beerqa/IRRR
https://github.com/beerqa/IRRR

3601

context the reading comprehension component has
to consider to improve answer accuracy.
More recently, Yang et al. (2018) showed that

this single-step retrieve-and-read approach to open-
domain question answering is inadequate for more
complex questions that require multiple pieces of
evidence to answer (e.g., “What is the popula-
tion of Mark Twain’s hometown?”). While later
work approaches these by extending supporting fact
retrieval beyond one step, most assumes that all
questions are either exclusively single-hop or multi-
hop during training and evaluation. We propose
IRRR, a system that performs variable-hop retrieval
for open-domain QA to address these issues, and
present a new benchmark, BeerQA, to evaluate
systems in a more realistic setting.

3 IRRR: Iterative Retriever, Reader, and
Reranker

In this section, we present a unified model to per-
form all of the subtasks necessary for open-domain
question answering—Iterative Retriever, Reader,
and Reranker (IRRR), which performs the subtasks
involved in an iterative manner to accommodate
questions with a varying number of steps. IRRR
aims at building a reasoning path ? from the ques-
tion @, through all the necessary supporting doc-
uments or paragraphs 3 ∈ Dgold to the answer 0
(where Dgold is the set of gold supporting facts).4
As shown in Figure 1, IRRR operates in a loop
of retrieval, reading, and reranking to expand the
reasoning path ? with new documents from 3 ∈ D.
Specifically, given a question @, we initialize

the reasoning path with the question itself, i.e.,
?0 = [@], and generate from it a search query
with IRRR’s retriever. Once a set of relevant doc-
uments D1 ⊂ D is retrieved, they might either
help answer the question, or reveal clues about
the next piece of evidence we need to answer @.
The reader model then attempts to read each of
the documents in D1 to answer the question com-
bined with the current reasoning path ?. If more
than one answer can be found from these candidate
reasoning paths, we predict the answer with the
highest answerability score, which we will detail
in section 3.2. If no answer can be found, then
IRRR’s reranker scores each retrieved paragraph
against the current reasoning path, and appends the
top-ranked paragraph to the current reasoning path,

4For simplicity, we assume that there is a single set of
relevant supporting facts that helps answer each question.

Retriever (Query Generator) Reader Reranker

4-way Clsf

[CLS] q [SEP] title0 [CONT] ctx0 [SEP] …

Transformer-Encoder

h[CLS] h1 h2 h3 h4 h5 h6 …

Token-wise Binary Prediction Span Prediction
RerankRerankRerankNCE Clsf

……✓ / ✗ NOANSWER / Span / Yes / No✓ / ✗ ✓ / ✗ Start End Gold Paragraph

Figure 2: The overall architecture of our IRRR model,
which uses a shared Transformer encoder to perform all
subtasks of open-domain question answering.

i.e., ?8+1 = ?8 + [arg max3∈�1 reranker(?8 , 3)], be-
fore the updated reasoning path is presented to
the retriever to generate new search queries. This
iterative process is repeated until an answer is pre-
dicted from one of the reasoning paths, or until the
reasoning path has reached a cap of documents.

To reduce computational cost and improve model
representations of reasoning paths from shared
statistical learning, IRRR is implemented as a multi-
task model built on a pretrained Transformer model
that performs all three subtasks. At a high level, it
consists of a Transformer encoder (Vaswani et al.,
2017)which takes the reasoning path ? (the question
and all retrieved paragraphs so far) as input, and
one set of task-specific parameters for each task
of retrieval, reranking, and reading comprehension
(see Figure 2). The retriever generates natural
language search queries by selecting words from
the reasoning path, the reader extracts answers from
the reasoning path and abstains if its confidence is
not high enough, and the reranker assigns a scalar
score for each retrieved paragraph as a potential
continuation of the current reasoning path.

The input to our Transformer encoder is format-
ted similarly to that of the BERT model (Devlin
et al., 2019). For a reasoning path ? that consists of
the question and C retrieved paragraphs, the input is
formatted as “[CLS] question [SEP] title1 [CONT]
para1[SEP] . . . titleC [CONT] paraC [SEP]”, where
[CLS], [SEP], and [CONT] are special tokens to
separate different components of the input. The
[CONT] embedding is randomly initialized with a
truncated normal distribution with a standard de-
viation of 0.02, and finetuned with other model
parameters during training.

We will detail each of the task-specific compo-
nents in the following subsections.

3602

3.1 Retriever

The goal of the retriever is to generate natural lan-
guage queries to retrieve relevant documents from
an off-the-shelf text-based retrieval engine.5 This
allows IRRR to perform open-domain QA in an
explainable and controllable manner, where a user
can easily understand the model’s behavior and in-
tervene if necessary. We extract search queries from
the current reasoning path, i.e., the original ques-
tion and all of the paragraphs that we have already
retrieved, similar to GoldEn Retriever’s approach
(Qi et al., 2019). This is based on the observation
that there is usually a strong semantic overlap be-
tween the reasoning path and the next paragraph
to retrieve, which helps reduce the search space
of potential queries. We note, though, that IRRR
differs from GoldEn Retriever in two important
ways: (1) we allow search queries to be any subse-
quence of the reasoning path instead of limiting it to
substrings to allow for more flexible combinations
of search phrases; (2) more importantly, we employ
the same retriever model across reasoning steps to
generate queries instead of training separate ones
for each reasoning step, which is crucial for IRRR
to generalize to arbitrary reasoning steps.
To predict these search queries from the reason-

ing path, we apply a token-wise binary classifier
on top of the shared Transformer encoder model,
to decide whether each token is included in the
final query. At training time, we derive supervision
signal to train these classifiers with a binary cross
entropy loss (which we detail in Section 3.4.1); at
test time, we select a cutoff threshold for query
words to be included from the reasoning path. In
practice, we find that boosting the model to predict
more query terms is beneficial to increase the recall
of the target paragraphs in retrieval.

3.2 Reader

The reader model attempts to find the answer given
a reasoning path comprised of the question and
retrieved paragraphs. To support unanswerable
questions and the special non-extractive answers
yes and no from HotpotQA, we train a classifier
conditioned on the Transformer encoder represen-
tation of the [CLS] token to predict one of the
4 classes SPAN/YES/NO/NOANSWER. The classifier
thus simultaneously assigns an answerability score

5We employ Elasticsearch (Gormley and Tong, 2015) as our
text-based search engine, and follow previous work to process
Wikipedia and search results, which we detail in Appendix B.

to this reasoning path to assess the likelihood of the
document having the answer to the original question
on this reasoning path. Span answers are predicted
from the context using a span start classifier and a
span end classifier, following Devlin et al. (2019).
We define answerability as the log likelihood

ratio between the most likely positive answer and
the NOANSWER prediction, and use it to pick the best
answer from all the candidate reasoning paths to
stop IRRR’s iterative process, if found. We find that
this likelihood ratio formulation is less affected by
sequence length compared to prediction probability,
thus making it easier to assign a global threshold
across reasoning paths of different lengths to stop
further retrieval. We include further details about
answerability calculation in Appendix C.

3.3 Reranker

When the reader fails to find an answer from the
reasoning path, the reranker selects one of the re-
trieved paragraphs to expand it, so that the retriever
can generate new search queries to retrieve new
context to answer the question. To achieve this,
we assign each potential extended reasoning path a
score by linearly transforming the hidden represen-
tation of the [CLS] token, and picking the extension
that has the highest score. At training time, we
normalize the reranker scores across top retrieved
paragraphs with softmax, and maximize the log
likelihood of selecting gold supporting paragraphs
from retrieved ones, which is a noise contrastive
estimation (NCE; Mnih and Kavukcuoglu, 2013;
Jean et al., 2015) of the reranker likelihood over all
retrieved paragraphs.

3.4 Training IRRR

3.4.1 Dynamic Oracle for Query Generation
Since existing open-domain QA datasets do not
include human-annotated search queries, we need to
derive supervision signal to train the retriever with
a dynamic oracle. Similar to GoldEn Retriever,
we derive search queries from overlapping terms
between the reasoning path and the target paragraph
with the goal of maximizing retrieval performance.

To reduce computational cost, we limit our at-
tention to overlapping spans of text between the
reasoning path and the target document when gen-
erating oracle queries. For instance, when “David”
is part of the overlapping span “David Dunn”, the
entire span is either included or excluded from the
oracle query to reduce the search space. Once #

3603

1 2 5 10 20 50
70

80

90

100

Number of Retrieved Documents

D
ev

Re
ca
ll
(%

)
GoldEn Doc 1
GoldEn Doc 2
IRRR Doc 1
IRRR Doc 2

Figure 3: Recall of the two gold supporting documents
by the oracle queries of GoldEnRetriever and IRRR on
theHotpotQAdataset, where each question corresponds
to two supporting documents.

overlapping spans are found, we approximate the
importance of each with the following “importance”
metric to avoid enumerating all 2# combinations
to generate the oracle query

Imp(B8) = Rank(C, {B 9}#9=1, 9≠8) − Rank(C, {B8}),

where B 9 are overlapping spans, and Rank(C, () is
the rank of target document C in the search result
when spans (are used as search queries (the smaller,
the closer C is to the top). Intuitively, the second
term captures the importance of the search term
when used alone, and the first captures its impor-
tance when combined with all other overlapping
spans, which helps us capture query terms that are
only effective when combined. After estimating
importance of each overlapping span, we determine
the final oracle query by first sorting all spans by
descending importance, then including each in the
final oracle query until the search rank of C stops
improving. The resulting time complexity for gener-
ating these oracle queries is thus $ (#), i.e., linear
in the number of overlapping spans between the
reasoning path and the target paragraph.
Figure 3 shows that the added flexibility of non-

span queries in IRRR significantly improves re-
trieval performance compared to that of GoldEn
Retriever, which is only able to extract contiguous
spans from the reasoning path as queries.

3.4.2 Reducing Exposure Bias with Data
Augmentation

With the dynamic oracle, we are able to generate
target queries to train the retriever model, retrieve
documents to train the reranker model, and expand
reasoning paths in the training set by always choos-
ing a gold paragraph, following Qi et al. (2019).
However, this might prevent the model from gen-
eralizing to cases where model behavior deviates
from the oracle. To address this, we augment the
training data by occasionally selecting non-gold

Question: How many counties are on the island that is home to the
fictional setting of the novel in which Daisy Buchanan is a supporting
character?

Wikipedia Page 1: Daisy Buchanan
Daisy Fay Buchanan is a fictional character in F. Scott Fitzgerald’s
magnum opus “The Great Gatsby” (1925)...

Wikipedia Page 2: The Great Gatsby
The Great Gatsby is a 1925 novel ... that follows a cast of characters
living in the fictional town of West Egg on prosperous Long Island ...

Wikipedia Page 3: Long Island
The Long Island ... comprises four counties in the U.S. state of New
York: Kings and Queens ... to the west; and Nassau and Suffolk to the
east...

Answer: four

Figure 4: An example of the newly collected challenge
questions. This particular question requires three pieces
of evidence to answer.

paragraphs to expand reasoning paths, and use the
dynamic oracle to generate queries for the model to
“recover” from these synthesized retrieval mistakes.
We found that this data augmentation significantly
improves the performance of IRRR in preliminary
experiments, and thus report main results with
augmented training data.

4 Experiments

Standard Benchmarks. We test IRRR on two
standard benchmarks, SQuADOpen andHotpotQA.
SQuAD Open (Chen et al., 2017) designates the
development set of the original SQuADdataset as its
test set, which features more than 10,000 questions,
each based on a single paragraph in a Wikipedia
article. For this dataset, we follow previous work
and use the 2016 English Wikipedia as the corpus
for evaluation. Since the authors did not present
a standard development set, we further split part
of the training set to construct a development set
roughly as large as the test set. HotpotQA (Yang
et al., 2018) features more than 100,000 questions
that require the introductory paragraphs of two
Wikipedia articles to answer, and we focus on its
open-domain “fullwiki” setting in this work. For
HotpotQA, we use the introductory paragraphs
provided by the authors for training and evaluation,
which is based on a 2017 Wikipedia dump.

New Benchmark. To evaluate the performance
of IRRR as well as future QA systems in a more re-
alistic open-domain setting without a pre-specified
number of reasoning steps for each question, we
further combine SQuAD Open and HotpotQA with
530 newly collected challenge questions (see Figure
4 for an example, and Appendix E for more details)

3604

SQuAD Open HotpotQA 3+ Hop Total

Train 59,285 74,758 0 134,043
Dev 8,132 5,989 0 14,121
Test 8,424 5,978 530 14,932

Total 75,841 86,725 530 163,096

Table 1: Counts of QA examples in the new unified
benchmark, BeerQA.

to construct a new benchmark. Note that naively
combining the datasets by merging the questions
and the underlying corpora is problematic, as the
corpora not only feature repeated and sometimes
contradicting information, but alsomake them avail-
able in two distinct forms (full Wikipedia pages
in one and just the introductory paragraphs in the
other). This could result in models taking corpus
style as a shortcut to determine question complex-
ity, or even result in plausible false answers due to
corpus inconsistency.
To construct a high-quality unified benchmark,

we begin by mapping the paragraphs each question
is based on to a more recent version of Wikipedia.6
We discarded examples where the Wikipedia pages
have either been removed or significantly edited
such that the answer can no longer be found from
paragraphs that are similar enough to the original
contexts the questions are based on.7 As a result,
we filtered out 22,328 examples from SQuADOpen,
and 18,649 examples from HotpotQA’s fullwiki set-
ting. We add newly annotated challenge questions
to the test set of the new benchmark, which require
at least three steps of reasoning to answer. This
allows us to test the generalization capabilities of
QA models to this unseen scenario. The statistics
of the final dataset, which we name BeerQA, can
be found in Table 1. For all benchmark datasets,
we report standard answer exact match (EM) and
unigram F1 metrics.

Training details. We use ELECTRALARGE
(Clark et al., 2020) as the pre-trained initializa-
tion for our Transformer encoder. We train the
model on a combined dataset of SQuAD Open
and HotpotQA questions where we optimize the
joint loss of the retriever, reader, and reranker com-
ponents simultaneously in an multi-task learning

6In this work, we used the English Wikipedia dump from
August 1st, 2020.

7We refer the reader to Appendix A for further details
about these Wikipedia corpora and how we process and map
between them.

fashion. Training data for the retriever and reranker
components is derived from the dynamic oracle on
the training set of these datasets, where reasoning
paths are expanded with oracle queries and by pick-
ing the gold paragraphs as they are retrieved for the
reader component. We augment the training data
with the technique in Section 3.4.2 and expand rea-
soning paths up to 3 reasoning steps on HotpotQA
and 2 on SQuAD Open, and find that this results
in a more robust model. After an initial model is
finetuned on this expanded training set, we apply
our iterative training technique to further reduce
exposure bias of the model by generating more data
with the trained model and the dynamic oracle.

5 Results

In this section, we present the performance of
IRRR when evaluated against previous systems on
standard benchmarks, and demonstrate its efficacy
on our new, unified benchmark, especially with the
help of iterative training.

5.1 Performance on Standard Benchmarks

We first compare IRRR against previous systems on
SQuADOpen and the fullwiki setting of HotpotQA.
On each dataset, we compare the performance of
IRRR against best previously published systems, as
well as unpublished ones on public leaderboards.
For a fairer comparison to previous work, we make
use of their respective Wikipedia corpora, and
limit the retriever to retrieve 150 paragraphs of
text from Wikipedia at each step of reasoning. We
also compare IRRR against the Graph Recurrent
Retriever (GRR; Asai et al., 2020) on our newly
collected 3-hop question challenge test set, using
the author’s released code and models trained on
HotpotQA. In these experiments, we report IRRR
performance both from training on the dataset it is
evaluated on, and from combining the training data
we derived from both SQuAD Open and HotpotQA.

As can be seen in Tables 2 and 3, IRRR achieves
competitive performance with previous work, and
further outperforms previously published work on
SQuAD Open by a large margin when trained on
combined data. It also outperforms systems that
were submitted after IRRR was initially submitted
to the HotpotQA leaderboard. On the 3+ hop chal-
lenge set, we similarly notice a large performance
margin between IRRR and GRR, although neither
is trained with questions requiring three or more
hops, demonstrating that IRRR generalizes well to

3605

System SQuAD Open
EM F1

DrQA (Chen et al., 2017) 27.1 —
DensePR (Karpukhin et al., 2020) 38.1 —
BERTserini (Yang et al., 2019) 38.6 46.1
MUPPET (Feldman and El-Yaniv, 2019) 39.3 46.2
RE3 (Hu et al., 2019) 41.9 50.2
Knowledge-aided (Zhou et al., 2020) 43.6 53.4
Multi-passage BERT (Wang et al., 2019) 53.0 60.9
GRR (Asai et al., 2020) 56.5 63.8
FiD (Izacard and Grave, 2020) 56.7 —
SPARTA (Zhao et al., 2020b) 59.3 66.5

IRRR (SQuAD) 56.8 63.2
IRRR (SQuAD+HotpotQA) 61.8 68.9

Table 2: End-to-end question answering performance
on SQuAD Open, evaluated on the same set of docu-
ments as Chen et al. (2017).

System HotpotQA 3+ hop
EM F1 EM F1

GRR (Asai et al., 2020) 60.0 73.0 27.2† 31.9†
Step-by-step⊗ 63.0 75.4 — —
DDRQA (Zhang et al., 2021) 62.3 75.3 — —
MDR (Xiong et al., 2021) 62.3 75.3 — —
EBS-SH ⊗ 65.5 78.6 — —
TPRR ⊗ 67.0 79.5 — —
HopRetriever (Li et al., 2020) 67.1 79.9 — —

IRRR (HotpotQA) 65.2 78.0 29.2 34.2
IRRR (SQuAD + HotpotQA) 65.7 78.2 32.5 36.7

Table 3: End-to-end question answering performance
on HotpotQA and the new 3+ hop challenge questions,
evaluated on the official HotpotQA Wikipedia para-
graphs. ⊗ denotes anonymous/preprint unavailable at
the time of writing of this paper. † indicates results
we obtained using the publicly available code and pre-
trained models.

questions that require more retrieval steps than the
ones seen during training. We note that the systems
that outperform IRRR on these datasets typically
make use of trainable neural retrieval components,
which IRRR can potentially benefit from adopting
as well. Specifically, SPARTA (Zhao et al., 2020b)
introduces a neural sparse retrieval system that
potentially works well with IRRR’s oracle query
generation procedure to further improve retrieval
performance, thanks to its use of natural language
queries. HopRetriever (Li et al., 2020) introduces a
novel representation of documents for retrieval that
is particularly suitable for discovering documents
connected by the same entity to answer multi-hop
questions, which IRRR could benefit from as well.
We leave exploration of these directions to future
work.

To better understand the behavior of IRRR on

1 2 3 4 5
0

20
40
60
80

Retrieval Steps/Question

Pe
rc
en
ta
ge

SQuAD Open

50 docs/step
100 docs/step
150 docs/step

1 2 3 4 5

0
20
40
60
80

Retrieval Steps/Question

HotpotQA

50 docs/step
100 docs/step
150 docs/step

0 100 200 300 400 500

58

59

60

61

62

(1)
(5)

(1)
(5)

(1)

(5)

Total Paragraphs Retrieved/Question

A
ns
w
er

F 1

50 docs/step
100 docs/step
150 docs/step

100 200 300 400
74

75

76

77

78

79

(2)

(5)

(2)

(5)

(2)

(5)

Total Paragraphs Retrieved/Question

50 docs/step
100 docs/step
150 docs/step

Figure 5: The retrieval behavior of IRRR and its rela-
tion to the performance of end-to-end question answer-
ing. Top: The distribution of reasoning path lengths as
determined by IRRR. Bottom: Total number of para-
graphs retrieved by IRRR vs. the end-to-end question
answering performance as measured by answer F1.

these benchmarks, we analyze the number of para-
graphs retrieved by the model when varying the
number of paragraphs retrieved at each reasoning
step among {50, 100, 150}. As can be seen in Fig-
ure 5, IRRR stops its iterative process as soon as all
necessary paragraphs to answer the question have
been retrieved, effectively reducing the total num-
ber of paragraphs retrieved and read by the model
compared to always retrieving a fixed number of
paragraphs for each question. Further, we note that
the optimal cap for the number of reasoning steps
is larger than the number of gold paragraphs nec-
essary to answer the question on each benchmark,
which we find is due to IRRR’s ability to recover
from retrieving and selecting non-gold paragraphs
(see the example in Figure 6). Finally, we note that
increasing the number of paragraphs retrieved at
each reasoning step remains an effective, if com-
putationally expensive, strategy, to improve the
end-to-end performance of IRRR. However, the
tradeoff between retrieval budget and model perfor-
mance is more effective than that of previous work
(e.g., GRR), and we note that the queries generated
by IRRR are explainable to humans and can help
humans easily control its behavior.

5.2 Performance on the Unified Benchmark

To demonstrate the performance of IRRR in a more
realistic setting of open-domain QA, we evaluate
it on the new, unified benchmark. As is shown
in Table 4, IRRR’s performance remains compet-
itive on all questions from different origins in the
unified benchmark, despite the difference in rea-
soning complexity when answering these questions.

3606

Dev Test
EM F1 EM F1

SQuAD Open 50.65 60.99 60.59 67.51
HotpotQA 59.01 70.33 58.61 69.86
3+ hop — — 33.02 39.59

Micro-averaged 54.20 64.95 58.82 67.46
Macro-averaged 54.83 65.66 50.74 58.99

Table 4: End-to-end question answering performance
of IRRR on the unified benchmark, evaluated on the
2020 copy of Wikipedia. These results are not directly
comparable with those in Tables 2 and 3 because the set
of questions and Wikipedia documents differ.

System SQuAD HotpotQA

Ours (joint dataset) 58.69 68.74
vs. fixed retrieval steps (= 3) 31.70 66.60
vs. remove HotpotQA / SQuAD data 54.35 66.91
replace ELECTRA w/ BERTLARGE-WWM 57.19 63.86

Table 5: Ablation study of different design choices in
IRRR, as evaluated by Answer F1 on the dev set of the
unified benchmark. Results differ from those in Table
4 because fewer reasoning steps are used (3 vs. 5) and
fewer paragraphs retrieved at each step (50 vs. 150).

The model also generalizes to the 3-hop questions
despite having never been trained on them. We
note that the large performance gap between the
development and test settings for SQuAD Open
questions is due to the fact that test set questions
(the original SQuAD dev set) are annotated with
multiple human answers, while the dev set ones
(originally from the SQuAD training set) are not.

To better understand the contribution of the var-
ious components and techniques we proposed for
IRRR, we performed ablation studies on the model
iterating up to 3 reasoning steps with 50 paragraphs
for each step, and present the results in Table 5.
First of all, we find it is important to allow IRRR to
dynamically stop retrieving paragraphs to answer
the question. Compared to its fixed-step retrieval
counterpart, dynamically stopping IRRR improves
F1 on both SQuAD and HotpotQA questions by
27.0 and 2.1 points respectively (we include fur-
ther analyses for dynamic stopping in Appendix D).
We also find combining SQuAD and HotpotQA
datasets beneficial for both datasets in an open-
domain setting, and that ELECTRA is an effective
alternative to BERT for this task.

6 Related Work

The availability of large-scale question answering
(QA) datasets has greatly contributed to the research
progress on open-domain QA. SQuAD (Rajpurkar

Question The Ingerophrynus gollum is named after a character in a
book that sold how many copies?

Step 1
(Non-
Gold)

Ingerophrynus is a genus of true toads with 12 species. ... In
2007 a new species, “Ingerophrynus gollum”, was added to this
genus. This species is named after the character Gollum created
by J. R. R. Tolkien."

Query Ingerophrynus gollum book sold copies J. R. R. Tolkien

Step 2
(Gold)

Ingerophrynus gollum (Gollum’s toad) is a species of true
toad. ... It is called “gollum” with reference of the eponymous
character of The Lord of the Rings by J. R. R. Tolkien.

Query Ingerophrynus gollum character book sold copies J. R. R. Tolkien
true Lord of the Rings

Step 3
(Gold)

The Lord of the Rings is an epic high fantasy novel written by
English author and scholar J. R. R. Tolkien. ... is one of the
best-selling novels ever written, with 150 million copies sold.

Answer/GT 150 million copies

Figure 6: An example of IRRR answering a question
from HotpotQA by generating natural language queries
to retrieve paragraphs, then rerank them to compose
reasoning paths and read them to predict the answer.
Here, IRRR recovers from an initial retrieval/reranking
mistake by retrieving more paragraphs, before arriving
at the gold supporting facts and the correct answer.

et al., 2016, 2018) is among the first question an-
swering datasets adopted for this purpose by Chen
et al. (2017) to build QA systems over Wikipedia
articles. Similarly, TriviaQA (Joshi et al., 2017)
and Natural Questions (Kwiatkowski et al., 2019)
feature Wikipedia-based questions that are written
by trivia enthusiasts and extracted from Google
search queries, respectively. More recently, Petroni
et al. (2021) presented, KILT, a new benchmark
based on Wikipedia where many knowledge-based
tasks are evaluated in a unified version ofWikipedia,
including open-domain question answering, entity
linking, dialogue, etc. Unlike BeerQA, however,
single-hop and multi-hop QA are held completely
separate during evaluation in KILT, which makes
the evaluation of open-domain QA less realistic.
Aside from Wikipedia, researchers have also used
news articles (Trischler et al., 2016) and search
results from the web (Dunn et al., 2017; Talmor and
Berant, 2018) as the corpus for open-domain QA.

Inspired by the TREC QA challenge,8 Chen et al.
(2017) were the first to combine information re-
trieval systems with accurate neural network-based
reading comprehension models for open-domain
QA. Recent work has improved open-domain QA
performance by enhancing various components
in this retrieve-and-read approach. While much
research focused on improving the reading compre-
hension model (Seo et al., 2017; Clark and Gardner,
2018), especially with pretrained langauge models
like BERT (Devlin et al., 2019), researchers have

8https://trec.nist.gov/data/qamain.html

https://trec.nist.gov/data/qamain.html

3607

also demonstrated that neural network-based infor-
mation retrieval systems achieve competitive, if
not better, performance compared to traditional IR
engines (Lee et al., 2019; Khattab et al., 2020; Guu
et al., 2020; Xiong et al., 2021). Aside from the
reading comprehension and retrieval components,
researchers have also found value from reranking
search results (Wang et al., 2018a) or answer candi-
dates (Wang et al., 2018b; Hu et al., 2019).
While most work focuses on questions that re-

quire only a local context of supporting facts to an-
swer, Yang et al. (2018) presentedHotpotQA,which
tests whether open-domain QA systems can general-
ize to more complex questions that require evidence
from multiple documents to answer. Researchers
have explored various techniques to extend retrieve-
and-read systems to this problem, including making
use of hyperlinks between Wikipedia articles (Nie
et al., 2019; Feldman and El-Yaniv, 2019; Zhao
et al., 2019; Asai et al., 2020; Dhingra et al., 2020;
Zhao et al., 2019) and iterative retrieval (Talmor
and Berant, 2018; Das et al., 2019; Qi et al., 2019).
While most previous work on iterative retrieval
makes use of neural retrieval systems that directly
accept real vectors as input, our work is similar to
that of Qi et al. (2019) in using natural language
search queries. A crucial distinction between our
work and previous work on multi-hop open-domain
QA, however, is that we don’t train models to ex-
clusively answer single-hop or multi-hop questions,
but demonstrate that one single set of parameters
performs well on both tasks.

7 Conclusion

In this paper, we presented Iterative Retriever,
Reader, and Reranker (IRRR), a system that uses
a single model to perform subtasks to answer
open-domain questions of arbitrary reasoning steps.
IRRRachieves competitive results on standard open-
domain QA benchmarks, and establishes a strong
baseline on BeerQA, the new unified benchmark
we present, which features questions with mixed
levels of complexity.

Acknowledgments

The authors would like to thank the anonymous
reviewers for discussions and comments on earlier
versions of this paper. This research is funded in
part by Samsung Electronics Co., Ltd. and in part
by the SAIL-JD Research Initiative.

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, andCaimingXiong. 2020. Learning
to retrieve reasoning paths over Wikipedia graph for
question answering. In International Conference on
Learning Representations.

Giusepppe Attardi. 2015. WikiExtractor. https://
github.com/attardi/wikiextractor.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan
Xiong, Hong Wang, and William Yang Wang. 2020.
HybridQA: A dataset of multi-hop question answer-
ing over tabular and textual data. In Findings of the
Association for Computational Linguistics: EMNLP
2020.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learning
Representations.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In International Conference on Learning
Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers).

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. 2020. Differentiable reasoning
over a virtual knowledge base. In International Con-
ference on Learning Representations.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
SearchQA: A new Q&A dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://www.aclweb.org/anthology/P17-1171
https://www.aclweb.org/anthology/P17-1171
https://openreview.net/forum?id=SJxstlHFPH
https://openreview.net/forum?id=SJxstlHFPH

3608

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The definitive guide: A distributed real-time
search and analytics engine. O’Reilly Media, Inc.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

V.Karpukhin, BarlasOuguz, SewonMin, PatrickLewis,
Ledell YuWu, Sergey Edunov, Danqi Chen, andWen
tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv, abs/2004.04906.

Omar Khattab, Christopher Potts, and Matei Zaharia.
2020. Relevance-guided supervision for OpenQA
with ColBERT. arXiv preprint arXiv:2007.00814.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics.

Shaobo Li, Xiaoguang Li, Lifeng Shang, Xin Jiang,
Qun Liu, Chengjie Sun, Zhenzhou Ji, and Bingquan
Liu. 2020. HopRetriever: Retrieve hops over
wikipedia to answer complex questions. arXiv
preprint arXiv:2012.15534.

Yuanhua Lv and ChengXiang Zhai. 2011. When doc-
uments are very long, BM25 fails! In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 1103–1104.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097–6109, Florence, Italy. Association for Compu-
tational Linguistics.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in neural information pro-
cessing systems, pages 2265–2273.

Yixin Nie, Songhe Wang, and Mohit Bansal. 2019.
Revealing the importance of semantic retrieval for
machine reading at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis,MajidYazdani, NicolaDeCao, JamesThorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D. Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers).

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://www.aclweb.org/anthology/D19-1258
https://www.aclweb.org/anthology/D19-1258
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://www.aclweb.org/anthology/D19-1261
https://www.aclweb.org/anthology/D19-1261
https://www.aclweb.org/anthology/D19-1261
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/P18-2124
https://www.aclweb.org/anthology/P18-2124

3609

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at TREC-3. NIST Special Publication,
pages 109–126.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016. NewsQA: A machine compre-
hension dataset. arXiv preprint arXiv:1611.09830.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. 2018a. R3:
Reinforced reader-ranker for open-domain question
answering. In AAAI Conference on Artificial Intelli-
gence.

ShuohangWang, MoYu, Jing Jiang, Wei Zhang, Xiaox-
iao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger,
Gerald Tesauro, and Murray Campbell. 2018b. Ev-
idence aggregation for answer re-ranking in open-
domain question answering. In International Con-
ference on Learning Representations.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallap-
ati, and Bing Xiang. 2019. Multi-passage BERT: A
globally normalized BERT model for open-domain
question answering. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP).

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, pages 287–302.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas

Oguz. 2021. Answering complex open-domain ques-
tions withmulti-hop dense retrieval. In International
Conference on Learning Representations.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
BERTserini. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

YuyuZhang, PingNie, ArunRamamurthy, andLe Song.
2021. IDRQA: Iterative document reranking for
open-domain multi-hop question answering. In SI-
GIR.

Chen Zhao, Chenyan Xiong, Xin Qian, and Jordan
Boyd-Graber. 2020a. Complex factoid question an-
swering with a free-text knowledge graph. In Pro-
ceedings of The Web Conference 2020, pages 1205–
1216.

Chen Zhao, Chenyan Xiong, Corby Rosset, Xia
Song, Paul Bennett, and Saurabh Tiwary. 2019.
Transformer-XH: Multi-evidence reasoning with ex-
tra hop attention. In International Conference on
Learning Representations.

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee.
2020b. Sparta: Efficient open-domain question an-
swering via sparse transformer matching retrieval.
arXiv preprint arXiv:2009.13013.

Mantong Zhou, Zhouxing Shi, Minlie Huang, and
Xiaoyan Zhu. 2020. Knowledge-aided open-
domain question answering. arXiv preprint
arXiv:2006.05244.

https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/N18-1059
https://www.aclweb.org/anthology/N18-1059
https://openreview.net/forum?id=rJl3yM-Ab
https://openreview.net/forum?id=rJl3yM-Ab
https://openreview.net/forum?id=rJl3yM-Ab
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.1162/tacl_a_00021
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1
https://www.aclweb.org/anthology/N19-4013
https://www.aclweb.org/anthology/N19-4013
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259

3610

A Data processing

In this section, we describe how we process the
English Wikipedia and the SQuAD dataset for
training and evaluating IRRR.

For the standard benchmarks (SQuAD Open and
HotpotQA fullwiki), we use the Wikipedia corpora
prepared by Chen et al. (2017) and Yang et al.
(2018), respectively, so that our results are com-
parable with previous work on these benchmarks.
Specifically, for SQuAD Open, we use the pro-
cessed English Wikipedia released by Chen et al.
(2017) which was accessed in 2016, and contains
5,075,182 documents.9 For HotpotQA, Yang et al.
(2018) released a processed set of Wikipedia in-
troductory paragraphs from the English Wikipedia
originally accessed in October 2017.10

While it is established that the SQuAD dev set
is repurposed as the test set for SQuAD Open for
ease of evaluation, most previous work make use
of the entire training set during training, and as a
result a proper development set for SQuAD Open
does not exist.11 We therefore resplit the SQuAD
training set into a proper development set that is
not used during training, and a reduced training
set that we use for all of our experiments. As a
result, although IRRR is evaluated on the same test
set as previous systems, it is likely disadvantaged
due to the reduced amount of training data and
hyperparameter tuning on this new dev set. We
split the training set by first grouping questions and
paragraphs by theWikipedia entity/title they belong
to, then randomly selecting entities to add to the
dev set until the dev set contains roughly as many
questions as the test set (original SQuAD dev set).
The statistics of our resplit of SQuAD can be found
in Table 6. We make our resplit publicly available
to the community at https://beerqa.github.io/.
For the unified benchmark, we started by pro-

cessing the English Wikipedia12 with the WikiEx-
tractor (Attardi, 2015). We then tokenized this
dump and the supporting context used in SQuAD
and HotpotQA with Stanford CoreNLP 4.0.0 (Man-
ning et al., 2014) to look for paragraphs in the

9https://github.com/facebookresearch/DrQA
10https://hotpotqa.github.io/wiki-readme.
html

11Thus, if any hyperparameter tuning has been performed,
it is usually done to directly maximize the performance on
this held-out test set, inflating the performance on this set as a
result.

12Accessed on August 1st, 2020, which contains 6,133,150
articles in total.

Split Origin # Entities #QAs

train train 387 77,087
dev train 55 10,512
test dev 48 10,570

Table 6: Statistics of the resplit SQuAD dataset for
proper training and evaluation on the SQuAD Open
setting.

2020 Wikipedia dump that might correspond to the
context paragraphs in these datasets. Since many
Wikipedia articles have been renamed or removed
since, we begin by following Wikipedia redirect
links to locate the current title of the corresponding
Wikipedia page (e.g., the page “Madonna (enter-
tainer)” has been renamed “Madonna”). After
the correct Wikipedia article is located, we look
for combinations of one to two consecutive para-
graphs in the 2020 Wikipedia dump that have high
overlap with context paragraphs in these datasets.
We calculate the recall of words and phrases in
the original context paragraph (because Wikipedia
paragraphs are often expanded with more details),
and pick the best combination of paragraphs from
the article. If the best candidate has either more
than 66% unigrams in the original context, or if
there is a common subsequence between the two
that covers more than 50% of the original context,
we consider the matching successful, and map the
answers to the new context paragraphs. The main
causes of mismatches are a) Wikipedia pages that
have been permanently removed (due to copyright
issues, unable to meet notability standards, etc.);
b) significantly edited to improve presentation (see
Figure 7(a)); c) significantly edited because the
world has changed (see Figure 7(b)).

As a result, 20,182/2,146 SQuAD train/dev ex-
amples (that is, 17,802/2,380/2,146 train/dev/test
examples after data resplit) and 15,806/1,416/1,427
HotpotQA train/dev/fullwiki test examples have
been excluded from the unified benchmark. To un-
derstand the data quality after converting SQuAD
Open and HotpotQA to the newer version of
Wikipedia, we sampled 100 examples from the
training split of each dataset. We find that 6% of
SQuAD questions and 10% of HotpotQA questions
are no longer answerable from their context para-
graphs due to edits in Wikipedia or changes in the
world, despite the presence of the answer span. We
also find that 43% of HotpotQA examples contain
more than the minimal set of necessary paragraphs

https://beerqa.github.io/
https://github.com/facebookresearch/DrQA
https://hotpotqa.github.io/wiki-readme.html
https://hotpotqa.github.io/wiki-readme.html

3611

Madonna Louise Ciccone (born August 16, 1958) is
an American singer, songwriter, actress, and business-
woman. She achieved popularity by pushing the bound-
aries of lyrical content in mainstream popular music
and imagery in her music videos, which became a fix-
ture on MTV.Madonna is known for reinventing both
her music and image, and for maintaining her autonomy
within the recording industry. Music critics have ac-
claimed her musical productions, which have generated
some controversy. Referred to as the “Queen of Pop”,
Madonna is often cited as an influence by other artists.

Madonna Louise Ciccone (born August 16, 1958) is an Amer-
ican singer-songwriter, author, actress and record executive.
She has been referred to as the “Queen of Pop” since the 1980s.
Madonna is noted for her continual reinvention and versatility
in music production, songwriting, and visual presentation. She
has pushed the boundaries of artistic expression in popular
culture, while remaining completely in charge of every aspect
of her career. Her works, which incorporate social, political,
sexual, and religious themes, have made a cultural impact
which has generated both critical acclaim and controversy.
Madonna is often cited as an influence by other artists.

(a) The Wikipedia page about Madonna, on December 20, 2016 (on the left, which is in the version SQuAD Open used) versus
July 31, 2020 (on the right, which is in the version BeerQA used).

Peter Langkjær Madsen (born 12 January 1971) is a Danish
aerospace engineering enthusiast, “art engineer”, submarine
builder, entrepreneur, co-founder of the non-profit organization
Copenhagen Suborbitals, and founder and CEO of RML Spacelab
ApS. He was arrested in August 2017 for involvement in the death
of Swedish journalist Kim Wall; the investigation is ongoing.

Peter LangkjærMadsen (]; born 12 January 1971) is a
Danish convicted murderer. In April 2018 he was
convicted of the 2017 murder of Swedish journalist
Kim Wall on board his submarine, UC3 Nautilus,
and sentenced to life imprisonment. He had pre-
viously been an engineer and entrepreneur.

(b) The Wikipedia page about Peter Madsen, on September 27, 2017 (on the left, which is in the version HotpotQA used) versus
July 26, 2020 (on the right, which is in the version BeerQA used).

Figure 7: Changes in Wikipedia that present challenges in matching them across years. We highlight portions of
the text that have been deleted in red underlined text, that have been added in green boldface text, and that have
been significantly paraphrased in orange italics, and leave near-verbatim text in the normal font and color.

to answer the question as a result of the mapping
process.

B Elasticsearch Setup

We set up Elasticsearch in standard benchmark
settings (SQuAD Open and HotpotQA fullwiki)
following practices in previous work (Chen et al.,
2017; Qi et al., 2019), with minor modifications to
unify these approaches.
Specifically, to reduce the context size for the

Transformer encoder in IRRR to avoid unneces-
sary computational cost, we primarily index the
individual paragraphs in the English Wikipedia.
To incorporate the broader context from the entire
article, as was done by Chen et al. (2017), we also
index the full text for each Wikipedia article to help
with scoring candidate paragraphs. Each paragraph
is associated with the full text of the Wikipedia
article it originated from, and the search score is
calculated as the summation of two parts: the simi-
larity between query terms and the paragraph text,
and the similarity between the query terms and the
full text of the article.
For query-paragraph similarity, we use the stan-

dard BM25 similarity function (Robertson et al.,
1994) with default hyperparameters (:1 = 1.2, 1 =

0.75). For query-article similarity, we find BM25
to be less effective, since the length of these arti-
cles overwhelm the similarity score stemming from
important rare query terms, which has also been
reported in the information retrieval literature (Lv
and Zhai, 2011). Instead of boosting the term fre-
quenty score as considered by Lv and Zhai (2011),
we extend BM25 by taking the square of the IDF
term and setting the TF normalization term to zero
(1 = 0), which is similar to the TF-IDF implemen-
tation by Chen et al. (2017) that is shown effective
for SQuAD Open.
Specifically, given a document � and query &,

the score is calculated as

score(�,&) =
=∑
8=1

IDF2
+(@8) ·

5 (�, @8) · (1 + :1)
5 (�, @8) + :1

,

(1)

where IDF+(@8) = max(0, log((# − =(@8) +
0.5)/(=(@8) + 0.5)), with # denoting the total num-
berr of documents and =(@8) the document fre-
quency of query term @8, and 5 (@8 , �) is the term
frequency of query term @8 in document �. We set
:1 = 1.2 in all of our experiments. Intuitively, com-
pared to the standard BM25, this scoring function
puts more emphasis on important, rare term over-

3612

Parameter Value

Learning rate 3 × 10−5

Batch size 320
Iteration 10,000
Warming-up 1,000
Training tokens 1.638 × 109

Reranker Candidates 5

Table 7: Hyperparameter setting for IRRR training.

laps while it is less dampened by document length,
making it ideal for an initial sift to find relevant
documents for open-domain question answering.

C Further Training and Prediction
Details

We include the hyperparameters used to train the
IRRR model in Table 7 for reproducibility.
For our experiments using SQuAD for training,

we also follow the practice of Asai et al. (2020) to
include the data for SQuAD 2.0 (Rajpurkar et al.,
2018) as negative examples for the reader compo-
nent. Hyperparameters like the prediction threshold
of binary classifiers in the query generator are cho-
sen on the development set to optimize end-to-end
QA performance.
We also include how we use the reader model’s

prediction to stop the IRRR pipeline for complete-
ness. Specifically, when the most likely answer is
yes or no, the answerability of the reasoning path
is the difference between the yes/no logit and the
NOANSWER logit. For reasoning paths that are not
answerable, we further train the span classifiers to
predict the [CLS] token as the “output span”, and
thus we also include the likelihood ratio between
the best span and the [CLS] span if the positive
answer is a span. Therefore, when the best pre-
dicted answer is a span, its answerability score is
computed by including the score of the “[CLS]
span” as well, i.e.,

Answerabilityspan(?) = logitspan − logitNOANSWER

+
logitstartB − logitstart[CLS]

2

+
logitend4 − logitend[CLS]

2
, (2)

where logitspan is the logit of predicting span an-
swers from the 4-way classifier, while logitstart and
logitend are logits from the span classifiers for se-
lecting the predicted span from the reasoning path.

Question What team was the AFC champion?

Step1
(Non-Gold)

However, the eventual-AFC Champion Cincinnati Bengals,
playing in their first AFC Championship Game, defeated the
Chargers 27-7 in what became known as the Freezer Bowl. ...

Step2
(Non-Gold)

Super Bowl XXVII was an American football game be-
tween the American Football Conference (AFC) champion
Buffalo Bills and the National Football Conference (NFC)
champion Dallas Cowboys to decide the National Football
League (NFL) champion for the 1992 season. ...

Gold Super Bowl 50 was an American football game to determine
the champion of the National Football League (NFL) for
the 2015 season. The American Football Conference (AFC)
champion Denver Broncos defeated the National Football
Conference (NFC) champion Carolina Panthers 24-10 to earn
their third Super Bowl title. ...

Figure 8: An example where there are false negative
answers in Wikipedia for the question from SQuAD
Open.

D Further Analyses of Model Behavior

In this section, we perform further analyses and
introduce further case studies to demonstrate the
behavior of the IRRR system. We start by analyzing
the effect of the dynamic stopping criterion for
reasoning path retrieval, then move on to the end-
to-end performance and leakages in the pipeline,
and end with a few examples to demonstrate typical
failure modes we have identified that might point
to limitations with the data.

Effect of Dynamic Stopping. We begin by study-
ing the effect of using the answerability score as
a criterion to stop the iterative retrieval, reading,
and reranking process within IRRR. We compare
the performance of a model with dynamic stop-
ping to one that is forced to stop at exactly
steps of reasoning, neither more nor fewer, where
 = 1, 2, . . . , 5. As can be seen in Table 8, IRRR’s
dynamic stopping criterion based on the answer-
ability score is very effective in achieving good
end-to-end question answering performance for
questions of arbitrary complexity without having to
specify the complexity of questions ahead of time.
On both SQuAD Open and HotpotQA, it achieves
competitive, if not superior question answering per-
formance, even without knowing the true number of
gold paragraphs necessary to answer each question.

Aside from this, we note four interesting findings:
(1) the performance of HotpotQA does not peak
at two steps of reasoning, but instead is helped by
performing a third step of retrieval for the average
question; (2) for both datasets, forcing the model to
retrieve more paragraphs after a point consistently
hurt QAperformance; (3) dynamic stopping slightly
hurts QA performance on SQuAD Open compared
to a fixed number of reasoning steps (= 1);

3613

Steps SQuAD Open HotpotQA
EM F1 EM F1

Dynamic 49.92 60.91 65.74 78.41
1 step 51.07 61.74 13.75 18.95
2 step 38.74 48.61 65.12 77.75
3 step 32.14 41.66 65.37 78.16
4 step 29.06 38.33 63.89 76.72
5 step 19.53 25.86 59.86 72.79

Table 8: SQuAD and HotpotQA performance using
adaptive vs. fixed-length reasoning paths, as measured
by answer exact match (EM) and F1. The dynamic
stopping criterion employed by IRRR achieves compa-
rable performance to its fixed-step counterparts, without
knowledge of the true number of gold paragraphs.

(4) when IRRR is allowed to select a dynamic
stopping criterion for each example independently,
the resulting question answering performance is
better than a one-size-fits-all solution of applying
the same number of reasoning steps to all examples.
While the last confirms the effectiveness of our
answerability-based stopping criterion, the cause
behind the first three warrants further investigation.
We will present further analyses to shed light on
potential causes of these in the remainder of this
section.

Case Study for Failure Cases. Besides model
inaccuracy, one common reason for IRRR to fail
at finding the correct answer provided with the
datasets is the existence of false negatives (see
Figure 8 for an example from SQuAD Open). We
estimate that there are about 9% such cases in the
HotpotQA part of the training set, and 26% in the
SQuAD part of the training set.
These false negatives hurt the quality of data

generation as well, especially when generating the
SQuAD part of the training set. We investigate
randomly selected question-context pairs in the
training set and find 24% of our SQuAD training
set and 13% of GRR’s SQuAD training set are
false negatives. This means our methods find better
candidate documents but true answers in those
documents become false positives. That results in
worse performance for our model when it is trained
with only the SQuAD part of training set as shown
in Table 2.

E Three+ Hop Challenge Set Analysis

Although SQuAD Open and HotpotQA probe our
model’s ability on single and two-hop questions,
we lacked insight into the ability of our model to

of Documents to
answer the question

3 4 5 6 7 8

of questions 495 17 8 0 9 1

Table 9: Distribution of reasoning steps for questions
in Three+ Hop Challenge Set.

Reasoning Type %

Comparison 25.6
Bridge-Comparison 25.3
Bridge 49.1

Table 10: Reasoning types required for Three+ Hop
Challenge Set.

generalize to questions that require three or more
reasoning steps/hops, which is more than what our
model is trained on. Therefore, we built a challenge
set comprised of questions that require at least three
hops of reasoning to answer (see Table 9 for a
breakdown of the number of documents required to
answer each question in the challenge set). While
the vast majority of challenge set questions require
three documents, questions that require four or more
documents are also present, hence the “Three+ Hop
Challenge Set” name. Although we intend to use
the challenge set for testing only, we will share a
few key insights into the question sourcing process,
the reasoning types required, and the answer types
present.

Question Sourcing Process. We annotated 530
examples that require three or more paragraphs to
be answered on the 2020 Wikipedia dump. We
developed roughly 50–100 question templates that
cover a diverse set of topics, including science,
literature, film, music, history, sports, technology,
politics, and geography. We then annotated ap-
proximately ten to twenty examples from each of
these question templates to ensure that the resulting
challenge set contained a diverse set of topics and
questions.

Reasoning Types. During the annotation process
for the challenge set, we recorded the types of
reasoning required to answer each question (Ta-
ble 10). Roughly half of the questions require
chain reasoning (Bridge), where the reader must
identify bridge entities that link the question to
the first context paragraph, the first context para-
graph to the second, and finally the second to the
third where the answer can be found. In the case

3614

Answer Type % Example(s)

Person 29 Kate Elizabeth Winslet
Number 20 388,072, 5.5 million
Yes / No 15 —
Group / Org 11 CNN
Date 8 March 28, 1930
Other Proper Noun 7 Boeing 747-400
Creative Work 5 “California Dreams”
Location 4 New York City
Common Noun 1 comedy-drama

Table 11: Types of answers in Three+ Hop Challenge
Set. These statistics are based on 100 randomly sampled
examples.

that four or more hops of reasoning are required,
this chain of reasoning will extend past the third
paragraph to the =-th paragraph where the answer
can be found. Additionally, approximately 25% of
the questions require the comparison of three or
more entities (Comparison). For these questions,
the reader needs to retrieve three or more context
paragraphs identified in the question that are not
directly connected to each other and then compare
them on certain aspects specified in the question,
similar to the comparison questions in HotpotQA.
The remaining 25% of the questions require both
chain reasoning and the comparison of two or more
entities (Bridge-Comparison). For these questions,
the reader must first identify a bridge entity that
links the question to the first context paragraph.
They then must identify two or more entities to
compare within the first context paragraph. After-
wards, they retrieve context paragraphs for each of
the aforementioned entities and compare them on
certain aspects specified in the question.

Answer Types. We also analyze the types of an-
swers present in the challenge set. As shown in
Table 11, the challenge set features a diverse set of
answers. We find that roughly half of the questions
ask about people (29%) and numeric quantities
(20%). Additionally, we find a considerable num-
ber of questions that require a yes or no answer
(15%), ask about groups or organizations (11%),
dates (8%), and other proper nouns (7%). The
challenge set also contains a non-negligible amount
of questions that ask about creative works (5%),
locations (4%), and common nouns (1%).

