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Abstract

Chinese Spelling Check (CSC) is to detect and
correct Chinese spelling errors. Many mod-
els utilize a predefined confusion set to learn a
mapping between correct characters and its vi-
sually similar or phonetically similar misuses
but the mapping may be out-of-domain. To
that end, we propose SpellBERT, a pretrained
model with graph-based extra features and in-
dependent on confusion set. To explicitly cap-
ture the two erroneous patterns, we employ a
graph neural network to introduce radical and
pinyin information as visual and phonetic fea-
tures. For better fusing these features with
character representations, we devise masked
language model alike pre-training tasks. With
this feature-rich pre-training, SpellBERT with
only half size of BERT can show competitive
performance and make a state-of-the-art result
on the OCR dataset where most of the errors
are not covered by the existing confusion set 1.

1 Introduction

Spelling Check is to detect and correct Chinese
spelling errors in sentences. However, it is a non-
trivial task for Chinese spelling check because of
the nature of ideographic language. Chinese has a
large vocabulary including at least 3,500 common
characters which leads to huge search space and an
unbalanced distribution of errors.

Though hard to cover most of the misuses, their
patterns could be roughly reduced to visual or pho-
netic errors (Chang, 1995) as shown in Figure 1.
The former type of errors have similar shapes as
correct ones and they are often caused by optical
character recognition (OCR) or morphology-based
input method. The other type of errors have similar
pronunciation as original ones and they are usually
caused by automatic speech recognition (ASR) or
phonetic-based input method.

∗Corresponding Author.
1The source codes are available at https://github.

com/benbijituo/SpellBERT/

我喜欢吃蛋高 糕 我喜欢吃蛋达 挞

Pinyin:               g   ao Radical :   ⿺ 辶 大 ⿰ 扌

(a) (b)✔️❌ ❌ ✔️

Figure 1: The two erroneous patterns. (a) is a phonetic
error and its pinyin have overlap with the correct ones.
(b) is a visual error and its radicals also have overlap

Previous work (Hsieh et al., 2013; Yu and Li,
2014; Wang et al., 2019a; Cheng et al., 2020) tend
to employ a predefined confusion set to find and
filter correction candidates. Confusion set is con-
structed by incorrect stats (Liu et al., 2010) and
it has a mapping between visually similar pairs
and phonetically similar pairs in accord with erro-
neous patterns. However, these models only learn
a shallow mapping from confusion set and their
performance is heavily dependent on the quality of
confusion set. But it is hard to find an up-to-date
and in-domain confusion set.

In this paper, we devise two pre-training tasks
to model the two aforementioned erroneous pat-
terns explicitly. To model visual errors, we intro-
duce radical features. Chinese characters can be
decomposed into various components namely rad-
ical. As for phonetic errors, we employ pinyin
as features which are descriptions of pronuncia-
tion. We fuse these visual and phonetic features
with character representations by relational graph
convolutional network (Schlichtkrull et al., 2018).
Likewise masked language model in BERT (Devlin
et al., 2019), we randomly replace some characters
and then predict the original visual and phonetic
features with false input. Our model, SpellBERT,
can intrinsically learn to correct errors based on
visual or phonetic patterns rather than simple map-
ping. On the OCR dataset, where only a few errors
are covered by confusion set, we make a state-of-
the-art result and this indicates that SpellBERT can
generalize well without depending on confusion
set.

On resource-constrained scenarios for deploy-
ment, making a model lightweight is necessary.

https://github.com/benbijituo/SpellBERT/
https://github.com/benbijituo/SpellBERT/
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SpellBERT only has half size of BERT and is more
efficient for these scenarios.

In summary, SpellBERT is independent on con-
fusion set in training and inference phase. With
only half size of BERT, SpellBERT can show com-
petitive performance and generalize well.

2 Related Work

Current methods consider CSC as sequence gener-
ation problem or sequence labeling problem. Wang
et al. (2019b) introduce copy mechanism to gen-
erate corrected sequence. Bao et al. (2020) unify
single-character and multi-character correction by
a chunk-based generative model.

Pretrained models (PTMs) have made a suc-
cess on sequence labeling tasks (Qiu et al., 2020).
Masked language model (MLM) is introduced as
pre-training task to predict masked or replaced
words conditioned on context. The mode of MLM
is intuitively appropriate to be transformed to pre-
dict spelling errors and correct them. Significant
progress has been made by power of PTM (Hong
et al., 2019). Based on MLM, confusion set is ap-
plied to narrow search space for predicting correct
characters. Cheng et al. (2020) constructed a graph
by confusion set to help final prediction. Nguyen
et al. (2020) raised an adaptable confusion set but
its training process is not end-to-end.

Ideally, CSC corpus can be infinitely constructed
by replacing words based on confusion set. Wang
et al. (2018) generated 270k data by OCR- and
ASR-based approaches. Zhang et al. (2020) cre-
ated 5 million augmented data and Li et al. (2021)
created 9 million augmented data by substitution-
based method. Zhang et al. (2021) corrupted input
sentence by randomly replacing characters with
noisy-pinyin and the new pre-training task fitted
well for CSC.

More recently, some methods also utilized pho-
netic and visual features in CSC. Liu et al. (2021)
employed a GRU(Bahdanau et al., 2014) to encode
pinyin sequence and Chinese strokes sequence as
extra features. Xu et al. (2021) had similar de-
sign but they encoded pictures of characters to get
visual features. Huang et al. (2021) enriched char-
acter representations by knowledge of audio and
visual modalities. Our method is different from all
of these work. For phonetic features, we regard
pinyin as a whole but not a sequence. For visual
features, we used radicals which are higher-level
features than strokes. And we incorporate these

extra features by graph neural network.

3 Approach

We treat CSC as a sequence labeling problem. An
input sequence with n characters is represented as
X = {x1, x2, · · · , xn}. Our goal is to transform it
into a target sequence Y = {y1, y2, · · · , yn}. Dur-
ing which, incorrect characters will be detected and
corrected. Obviously, the input and output share the
same vocabulary and most of the output characters
can be directly copied from input. The framework
of our model is shown in Figure 2. It contains three
parts, i.e., a BERT-based encoder, a feature-fusing
module and a component for pretraining. We will
progressively elaborate our design in detail.

3.1 An MLM-based Backbone
Many attribute the success of BERT (Devlin et al.,
2019) to its MLM pre-training task. BERT ran-
domly masked or replaced some tokens and then
predict the original tokens. Regarding the masked
and replaced tokens as spelling errors, BERT is
properly adapted to be a spelling checker. Each
input character xi is indexed to its embedding rep-
resentation ei by the BERT-embedding-layer. Then
ei will be passed to BERT-encoder-layers to get a
representation hi as follows:

ei = BERTEmbedding(xi), (1)

hi = BERTEncoder(ei), (2)

where ei,hi ∈ R1×d and d is the hidden dimension.
After that, the hi will be computed similarities
with all character embeddings to get a predicted
distribution ŷi over vocabulary as follows:

ŷi = Softmax(hiE
T ), (3)

where E ∈ RV×d; ŷi ∈ R1×V and V is the vocab-
ulary size. Here E refers to the BERT-embedding-
layer and the ith row of E corresponds to ei in
Equation 1. Finally we use the character xk as the
correction result for xi whose ek has the highest
similarity with hi.

3.2 Fusing Visual and Phonetic Features
The above backbone lacks special modeling for
this task. Chinese spelling errors can be roughly
classified into two patterns. Visual errors have sim-
ilar shapes as correct characters while phonetic
errors have similar pronunciation. Some work uti-
lize an external confusion set that has predefined
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Figure 2: The architecture of SpellBERT. Green
denotes correct characters while red denotes errors.
Pinyin and radical features are fused by graph and then
passed to a 4-layer BERT. We expect the model to do
MLM, pinyin prediction and radical prediction of cor-
rect characters with false input.

mappings between visually similar pairs and pho-
netically similar pairs (Yu and Li, 2014; Wang et al.,
2019a; Cheng et al., 2020). These models relied on
confusion set to filter candidates but the confusion
set might be out-of-date or out-of-domain.

To model the two erroneous patterns, we infuse
character representations ei with visual and pho-
netic features by incorporating radical and pinyin
information. Chinese characters can be decom-
posed into components namely radicals and visual
errors often have overlap radicals with the correct
character. Pinyin is a sequence of pronunciation
descriptions for Chinese characters and phonetic
errors often have overlap pinyin. Based on the
extra features, our model can automatically learn
visually similar and phonetically similar mappings.

We employ a relational graph convolutional net-
work (Schlichtkrull et al., 2018) short as R-GCN
to infill multiple types of features into character
representations ei in Equation 1. We view charac-
ters as nodes and input sequence X can be orga-
nized as a line graph naturally. Both radicals and
pinyin are viewed as nodes of graph as well. If
a radical or pinyin belong to a certain character,
we construct connections between them as edges.

We regard these connections as different depend-
ing on the pair of nodes between them. Besides,
we construct edges between neighboring characters
because local context information is beneficial for
better-incorporating pinyin and radical features. As
a result, We define the following types of edges:

• An edge between a character and a radical

• An edge between a character and a pinyin

• An edge between a character and a neighbor-
ing character within a fixed-length context

• An edge between a character and itself
We initialize feature of character-node by character-
embedding ei in Euqation 1. To represent and
update features of radical-node and pinyin-node,
we also construct an extra embedding table which is
initialized by averaging their most related character-
embeddings. As shown in Figure 2, these features
diffuse on a relational graph as following:

êi = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
Wrej +W0ei

 , (4)

where ei means character-embedding of xi and ej
means feature of connected node j; r denotes the
type of edge; N r

i refers to the set of connected
nodes for edge type r; Wr is the transformation
layer of edge type r and ci,r is a problem-specific
normalization constant which is set as |N r

i | here.
The final êi can be viewed as character represen-
tation enhanced by radical and pinyin information.
Finally, we combine enhanced representation and
original character-embedding and Equation 3 can
be updated as following:

hi = BERTEncoder(ei + êi), (5)

where hi denote the final representation of each
character.

3.3 Enhanced Pretraining Tasks for CSC
It has been shown that external information can be
better integrated into BERT by pre-training alike
tasks (Peters et al., 2019; Zhang et al., 2019; Sun
et al., 2020; Ma et al., 2020). Considering the
radical and pinyin features are externally added by
design, we devise two more pre-training alike tasks
which are radical prediction and pinyin prediction.

In MLM, Devlin et al. (2019) randomly masked
a percentage of input tokens and then predict these
tokens. In radical and pinyin prediction, we ran-
domly mask connections from characters to their
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radicals and pinyin and then predict the masked
connections. Through reconstructing connections,
the model can learn a better representation that
contains not only contextual information but also
visual and phonetic information.

Same as MLM, we randomly choose 15% of
characters to process. If a character is chosen, our
potential practices are shown below:

• Keep it unchanged 10% of the time. Then
predict the character itself, its radicals, and
its pinyin. This is to match downstream fine-
tuning where each character can directly see
all of its radicals and pinyin.

• Replace it with [MASK] 60% of the time and
mask all of its connections with a probability
of 80%. Then predict the masked character
and the masked connections.

• Replace it with a confusing word sampled
from confusion set 30% of the time and mask
all of its connections with a probability of
80%. Then predict the original character and
its connections. This is to force our model to
correct characters based on false radicals and
pinyin of errors. Note that we only use confu-
sion set in this stage to construct misspellings.

In our graph, edges have no representations and the
graph is utilized only between BERT-embedding-
layer and BERT-encoder-layers. So we transform
the task of edge-prediction into token-classification.
For each character xi, we take one of its pinyin
and radicals as ground-truth and negatively sample
other pinyin and radicals that do not belong to the
character. We use feature-embeddings of these
pinyin and radicals as a classified layer to compute
their similarities with hi from BERT-encoder-layer
in Equation 2. Related embeddings will be drawn
close to each other, and unrelated embeddings will
be pulled away from each other.

3.4 Reducing Parameters

Given the need of computational efficiency for
deployment, it is necessary to get a lightweight
model. We only use 4 layers of BERT to initial-
ize, pre-train, and fine-tune our model and which
reduces the total number of parameters from 110M
to 55M. We also measure the inference speed of
our lightweight model and the experiments result
show that it has better time-efficiency compared
with a 12-layer BERT.

4 Experiments

4.1 Pre-training Setup
We use BERT (Devlin et al., 2019) base as initial-
ization and only the first 4 layers are utilized. Our
model is implemented by PyTorch (Paszke et al.,
2019) and DGL (Wang et al., 2019c). We randomly
select 1M sentences provided by Xu (2019) as pre-
training corpus and pad the sentences to a max
length of 128. We set the learning rate as 5e-5,
batch size as 1024, and pre-train 10K steps on 4
RTX 3090 for around 2 days.

4.2 Dataset and Fine-tuning Setup
We conduct CSC experiments on three widely
used datasets SIGHAN14 (Yu et al., 2014),
SIGHAN15 (Tseng et al., 2015), OCR (Hong et al.,
2019) and mark them as csc14, csc15 and ocr.

The original corpus of csc14 and csc15 was col-
lected from essays written by learners of Chinese
as a foreign language and it was in Traditional Chi-
nese. Wang et al. (2019a), Zhang et al. (2020),
and Nguyen et al. (2020) transformed it into Sim-
plified Chinese and used augmented data provided
by Wang et al. (2018). Because our pre-training
corpus was in Simplified Chinese, we use the lat-
ter setting. We directly use the corpus provided
by Cheng et al. (2020). Under this setting, the
training set of csc14, csc15 and the augmented data
provided by Wang et al. (2018) are combined as a
new training set. We fine-tune our model on the
test set of csc14 and csc15 separately.
ocr is a Simplified Chinese dataset of which the

sentences are much shorter and extracted from the
entertainment domain. We only use the data from
ocr to train and test and it has 4575 sentences in
total.

For different datasets, we find the following
ranges of hyperparameters work well: the batch
size is set to among {32, 64}, the learning rate is
set to among {1e-5, 2e-5, 3e-5} and the number of
epochs is ranging from 5 to 20.

On csc14 and csc15, we evaluate our model in
sentence-level by the official tool (Tseng et al.,
2015). And on ocr, the metric is in edit-level by a
different official tool (Wu et al., 2013).

4.3 Results and Analysis
Main Results As shown in Table 1, we compare
SpellBERT with recent work and a 4-layer BERT
baseline. All of them are BERT-based which means
that their number of parameters are at least twice
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Model
Detection Level Correction Level

ocr csc14 csc15 ocr csc14 csc15
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Hong et al. (2019) (BERT 12 layers) 78.5 18.6 30.1 - - - - - - 73.4 17.4 28.1 - - - - - -
Zhang et al. (2020) (BERT 12 layers) - - - - - - 73.7 73.2 73.5 - - - - - - 66.7 66.2 66.4
Nguyen et al. (2020) (BERT 12 layers) - - - 82.5 61.6 70.5 84.5 71.8 77.6 - - - 82.1 60.2 69.4 84.2 70.2 76.5
Bao et al. (2020) (BERT 12 layers) 77.6 63.3 69.7 - - - - - - 46.5 37.9 41.7 - - - - - -

BERT (4 layers) 67.8 35.2 46.4 82.6 59.0 68.8 85.2 68.9 76.2 43.2 22.4 29.5 82.4 58.0 68.1 84.8 66.9 74.8
SpellBERT (4 layers) 83.5 60.4 70.1 83.1 62.0 71.0 87.5 73.6 80.0 66.0 47.7 55.4 82.9 61.2 70.4 87.1 71.5 78.5

w/o graph 81.2 61.4 69.9 81.8 62.0 70.5 87.8 73.1 79.8 61.1 46.2 52.6 81.5 60.5 69.4 87.5 71.1 78.4
w/o pre-training 67.6 36.1 47.1 81.3 60.5 69.3 86.4 70.7 77.8 51.7 27.6 36.0 81.0 59.3 68.5 86.0 68.0 75.9

Table 1: Results in detection-level and correction-level. For baselines, we use their reported results. Hong et al.
(2019) and Bao et al. (2020) used the Traditional Chinese corpus on csc14 and csc15, and which makes their results
incomparable to ours.

Dataset Noises Errors covered by confusion sets
ocr test 0/1000 (0%) 302/1303 (23.2%)
csc14 test 16/1062 (1.5%) 663/792 (83.7%)
csc15 test 10/1100 (0.9%) 605/715 (84.6%)

Table 2: Stats of datasets. Noises denote the noisy data
when converting data to Simplified Chinese. The right-
most column refers to the number of errors covered by
confusion set (Wu et al., 2013) on test data

as many as ours. However, by fusing pinyin and
radical features and the feature-rich pre-training,
SpellBERT still has the best performance on all of
the three datasets.

Effectiveness of Modules We also remove graph
and pre-training stage respectively to test their ef-
fectiveness. The results showed that pre-training
can generally bring significant improvements on all
datasets which suggests that pre-training is an ef-
fective way on CSC. The contribution of the graph
mechanism is not that impressive but this makes it
possible to only transfer our encoder parameters to
other architectures.
Impact of Confusion Set Notice that our im-
provements over previous work are more obvious
on ocr than that on csc14 and csc15. Firstly, there
are inevitable noises when converting data into Sim-
plified Chinese and the noisy ratio is 1.5% and
0.9% for csc14 and csc15. The other reason is that
previous work such as Nguyen et al. (2020) and
Bao et al. (2020) relied on confusion set to filter
candidates. 83.7% and 84.6% of test errors in csc14
and csc15 are covered by confusion set which is an
ideal and infrequent situation. On ocr which has
much fewer errors covered by confusion set, they
naturally performed worse.

On ocr, confusion set can simply cover 23.2%
of errors and the average length of sentences are
much shorter. The confusion set can be viewed
as out-of-domain on ocr. SpellBERT substantially

Dataset Ave Length Time per Sent SpeedupOurs 12-layer BERT
ocr test 10.2 48 76 1.58x
csc14 test 50.0 98 153 1.56x
csc15 test 30.6 77 119 1.54x

Table 3: Speed comparison (ms/sentence). Pre-
processing time is excluded. We set batch size as 1 and
do experiments on 4 cores of a Intel(R) Xeon(R) Silver
4114T CPU following Hong et al. (2019).

improves the performance on this dataset which
indicates that SpellBERT can generalize well on
different corpus without dependence on confusion
set. The ablation studies further demonstrate that
our proposed modules help deal with unseen errors.

Efficiency Analysis With only half the number
of parameters of a 12-layer BERT, SpellBERT has
the best space efficiency compared to BERT-based
work. To verify time efficiency, we incorporate a
speed measure in terms of absolute time consump-
tion per sentence mentioned in Hong et al. (2019).
Results in Table 3 indicate that SpellBERT can
speed up at least 1.5 times.

5 Conclusion

In this work, we propose a lightweight pretrained
model, SpellBERT, for Chinese spelling check. We
incorporate pinyin and radicals as phonetic and
visual features and design two pre-training tasks
to encourage the pre-trained model to explicitly
capture erroneous patterns. Experiments show that
SpellBERT has competitive performance compared
to the large pretrained models. Besides, SpellBERT
can be directly used without confusion set in the
fine-tuning and inference phase, which is more
convenient to use and easier to deal with the errors
uncovered by the existing confusion sets.
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