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Abstract

Recent metaphor identification approaches
mainly consider the contextual text features
within a sentence or introduce external lin-
guistic features to the model. But they usu-
ally ignore the extra information that the data
can provide, such as the contextual metaphor
information and broader discourse informa-
tion. In this paper, we propose a model aug-
mented with hierarchical contextualized rep-
resentation to extract more information from
both sentence-level and discourse-level. At the
sentence level, we leverage the metaphor infor-
mation of words that except the target word in
the sentence to strengthen the reasoning ability
of our model via a novel label-enhanced con-
textualized representation. At the discourse
level, the position-aware global memory net-
work is adopted to learn long-range depen-
dency among the same words within a dis-
course. Finally, our model combines the repre-
sentations obtained from these two parts. The
experiment results on two tasks of the VUA
dataset show that our model outperforms ev-
ery other state-of-the-art method that also does
not use any external knowledge except what
the pre-trained language model contains.

1 Introduction

Metaphor is a type of figurative language and its
essence is understanding and experiencing one kind
of thing in terms of another(Lakoff and Johnson,
1980). As a common language expression, we of-
ten use metaphors to express our thoughts vividly
and concisely in daily communication. For exam-
ple, in the sentence It is one of the keys for suc-
cess of a commercial product, keys is used to help
understand the importance of It. However, this
characteristic of metaphor makes it challenging to
identify metaphors in texts. But the identification
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of metaphors is meaningful and can help us to un-
derstand the meaning of the texts, from which many
downstream applications such as machine transla-
tion(Koglin, 2015) and opinion mining(Shutova
et al., 2013) can benefit.

Recent metaphor researches(Gao et al., 2018;
Mao et al., 2019), and ACL 2020 Metaphor Shared
Task(Leong et al., 2020) regard it as a sequence
labeling task. Although many previous works have
explored ways to enhance the contextualized repre-
sentation within a sentence(Gao et al., 2018; Mao
et al., 2019), or to introduce some external knowl-
edge(Rohanian et al., 2020; Chen et al., 2020; Wan
and Xing, 2020), most of them do not make full
use of the information in the dataset, from which
the metaphor identification process may benefit.

Firstly, when considering the metaphoricity of
the target word, the metaphor information of other
words in the sentence can also be helpful. E.g.,
in the sentence He find himself in the position of
the gambler who gambled all and lost, gambler
and gambled are metaphors. The word gambled
is the action of the gambler, and it’s reasonable
for a gambler to gamble. Thus, the model might
prefer to classify gambled as literal. However, if
we know that gambler is a metaphoric word, then it
is obvious that gambled is also a metaphoric word
that refers to the risky thing he did. Based on this
observation, we propose a novel label-enhanced
contextualized representation method to introduce
the contextual metaphor information. It embeds
the label of each word(i.e. metaphoric or literal)
in the same space as the output of the encoder
first and then takes both the output of the encoder
and the label embedding as the input of a trans-
former(Vaswani et al., 2017). We believe it could
enhance the reasoning ability of the model by at-
tending to metaphor information of other words
in the sentence. Besides, marking the metaphoric
words in context could also help the target word
understand the context better, especially in the com-
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Figure 1: An example that shows the two occurrences
of word gambled within a discourse

plicated sentence, because metaphorical words are
not used as their literal meaning, increasing the dif-
ficulty of understanding the context. To the best of
our knowledge, we are the first that proposes this
method.

Secondly, Some existing benchmark metaphor
datasets, such as VUAMC, contain sentences from
long articles, and the contextual information in the
articles will be very useful for metaphor identifi-
cation. Some previous work used paragraph em-
bedding(Mu et al., 2019) or neighbouring sentence
representation(Dankers et al., 2020). Based on this,
we use a discourse-level attention architecture that
could capture both global and local features in the
whole discourse for the target word. First, we intro-
duce the work of Dankers et al. (2020) to extract
local information. Then, we propose an improved
method of Global Attention(Zhang et al., 2018),
which is called position-aware global memory net-
work, to represent global information of the target
word. It is based on the observation that a metaphor
brings another domain/frame into the discourse, so
it is likely that metaphors mapping to the same
domain/frame reoccur throughout the discourse, es-
pecially among the same words. Specifically, our
model uses an attention mechanism between the
target word and its other occurrences in the dis-
course. Figure 1 shows the two occurrences of
word gambled in two sentences within a discourse.

Based on the above sentence-level and discourse-
level methods, we propose a novel hierarchical con-
textualized representation model for metaphor iden-
tification, as shown in Figure 2. To verify the effec-
tiveness of our model, we conduct experiments on
the ALL POS and Verbs tasks of the VU Amster-
dam Metaphor Corpus (VUA)(Steen, 2010). Our
model outperforms several baseline models with
1.1% (VUA ALL POS) and 1.0% (VUA Verbs) im-
provement in F1 score. In addition, the results of
our model surpass DeepMet(Su et al., 2020), which
is the state-of-the-art model in metaphor identifica-
tion, with the same experiment setup.

Our contributions in this paper can be summa-

rized as follows.

• We propose a novel label-enhanced contex-
tualized representation method to enhance
the model’s ability to reason about contex-
tual metaphoric relationships and better under-
stand the meaning of context.

• At the discourse level, we use an improved
position-aware global memory network to in-
troduce the long-range discourse information.

• Experiment results on the two tasks of the
VUA dataset show that our model outperforms
the state-of-the-art methods that also do not
use external knowledge.

2 Related work

2.1 Metaphor Identification

Most of the early metaphor identification works
employed machine learning approaches using lin-
guistic features(Turney et al., 2011; Tsvetkov et al.,
2013; Mohler et al., 2013; Klebanov et al., 2016;
Bulat et al., 2017a). In recent years, neural
metaphor identification has become highly pop-
ular for its end-to-end fashion and better perfor-
mance. Wu et al. (2018) combined CNN and
LSTM to obtain local and long-range information
and achieved the best performance in the NAACL
2018 VUA Shared Task(Leong et al., 2018). Gao
et al. (2018) applied the combined embedding of
GloVe(Pennington et al., 2014) and ELMo(Peters
et al., 2018) as the input of a Bi-LSTM, which intro-
duced the contextualized word embedding. Based
on the model of Gao et al. (2018), Mao et al. (2019)
proposed RNN_HG and RNN_MHCA inspired
by MIP(Group, 2007) and SPV(Wilks, 1978) the-
ory respectively and gained certain improvements.
Multi-task learning(Dankers et al., 2019; Le et al.,
2020)and linguistic features(Rohanian et al., 2020;
Wan and Xing, 2020) have also been explored
to applied to the deep learning model. Su et al.
(2020) achieved the best performance in ACL 2020
Metaphor Shared Task(Leong et al., 2020) by tak-
ing global text context, local text context, query
word, General POS, and fine-grained POS as the
input of a RoBERTa model(Liu et al., 2019).

There are also some works done on the relation-
level metaphor identification. The early works
employed machine learning models using linguis-
tic features as well, including conceptual seman-
tic features(Tsvetkov et al., 2014), visual fea-
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tures(Shutova et al., 2016), and attribute-based se-
mantics(Bulat et al., 2017b). The recent works
mainly used deep learning model. Rei et al.
(2017) proposed a supervised similarity network
for relation-level metaphor identification. Zayed
et al. (2020) introduced a novel architecture for
identifying relation-level metaphoric expressions
of certain grammatical relations based on contex-
tual modulation, which achieved state-of-the-art
results.

In this paper, we consider the token-level
metaphor identification task for long discourse, and
different from these previous works, we start from
the known information that the data can provide,
and use the label-enhanced contextualized represen-
tation to strengthen the model’s reasoning ability
by introducing contextual metaphor information.

2.2 Discourse-level Representation

Considering the datasets contain discourse infor-
mation, some researchers enhanced word contex-
tualized representation by introducing discourse
features. Jang et al. (2015) used hand-crafted
discourse-level features such as topical informa-
tion and semantic relatedness. Mu et al. (2019)
obtained the discourse contextual information by
embedding the surrounding paragraph. Dankers
et al. (2020) applied general attention and hierar-
chical attention on both the target sentence and its
neighbouring sentences to get discourse representa-
tion. However, Mu et al. (2019) and Dankers et al.
(2020) only considered the context close to the tar-
get word and used the same method as processing a
sentence, which is not suitable for long context. To
adapt to longer context of discourse, we consider
the occurrences of words to avoid processing texts
that are too long and capture the consistency in the
use of metaphors in discourse. The work of Jang
et al. (2017) had a similar idea with us, which paid
attention to the similar words that appear globally
in the discourse. However, their method must pre-
define frame and know what frame the target word
belongs to. This limitation of their method in scala-
bility makes it inapplicable to the general metaphor
datasets, such as VUA.

In the field of Named Entity Recognition re-
search, where document-level tasks are more com-
mon, there are some document representation meth-
ods that we can use for reference. Zhang et al.
(2018) proposed Global Attention that establishes
the relationship among the occurrences of the word

within a document. Luo et al. (2020) adopted a
key-value memory network to record the history
hidden states. Based on their works, we propose an
improved position-aware global memory network.

3 Methodology

3.1 Baseline Model

Given a sentence with a sequence of words
{x1, x2, ..., xn} , our goal is to predict its metaphor
label {y1, y2, ..., yn} as accurately as possible.
Since many previous works(Dankers et al., 2020;
Chen et al., 2020; Neidlein et al., 2020) have proven
the effectiveness of the pre-trained language model
in metaphor identification, we use BERT(Devlin
et al., 2019) as our baseline model. Specifically,
we follow the work of Dankers et al. (2020). That
is, a word is considered metaphoric if any of its
sub-word units tokenized by the Byte Pair Encod-
ing(BPE) algorithm used in BERT is predicted as
metaphoric. Thus, we can get the output hidden
states of BERT:

(h1, ..., hn) = BERT (x1, ..., xn)

3.2 Discourse-level Representation

Sentences in some metaphor datasets, such as VUA,
come from long texts. The semantic meaning of the
sentences needs to be accurately obtained by con-
sidering the context at the discourse level. There-
fore, we use hierarchical attention to extract the
neighbouring sentence representation and position-
aware discourse-level attention for capturing long-
range dependency.
Neighbouring sentence representation Here we
follow the work of Dankers et al. (2020). We use
a context window of size 2k + 1 sentences, which
comprises k preceding sentences, the target sen-
tence, and k succeeding sentences. Then they are
fed into a hierarchical attention architecture(Yang
et al., 2016), where the first encoder is BERT, and
the second encoder is a transformer(Vaswani et al.,
2017). At last, we concatenate the neighbouring
representation N obtained by the hierarchical at-
tention with the output hidden states hi of BERT.
Position-aware global memory network To uti-
lize the information of the whole discourse, we bor-
row the strategy of Global Attention(Zhang et al.,
2018) to capture long-range dependency among the
same words within a discourse. The main idea is
to employ a global attention mechanism between
the target word and other occurrences within the
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Figure 2: The overview of our model. The BERT encoder generates representations hi. Then the Position-aware
Global Memory Network and Neighbouring Sentence Hierarchical Attention generates discourse-level represen-
tations. The Label-Enhanced Contextualized Representation module introduced the contextual metaphor informa-
tion, where Early Prediction is trained in the training phase and used in the testing phase. For clarity, only the
operation of one word is shown.

discourse. Considering the time cost, we adopt
the method of Luo et al. (2020), which records the
history hidden states of other occurrences for each
word instead of recalculating them. Thus, we call
it global memory network.

Specifically, we record hidden states hi produced
by the baseline model BERT for each word xi in
sentences. Then, we put the hidden states of the
xi’s occurrences in the discourse into one group.
The group containing word xi could be represent
as follows:

G = {hm1 , hm2 , ..., hmV }

where V is the number of the occurrences of xi,
and hmj (j ∈ [1, V ]) is the hidden states of xi’s
occurrences. For each token xi and its output hid-
den states hi in the given sentence, we can get the
corresponding group G.

Although there is no explicit sequence relation
inside G, the position of words in G still affects
their contribution to the target word. For example,
the words close to the target word may influence it
more. Therefore, based on the global memory net-
work, we add position embedding to G. Assuming
that xi is located at the tth place in G, we remove

the record of xi in G and then get a matrix:

Mt = [hm1 , ..., h
m
(t−1), h

m
(t+1), ..., h

m
V ]

The position embedding is denoted as pos =
[pos1, pos2, ..., posV ], then:

MPt = [hm1 + pos1, ..., h
m
V + posV ]

ei = hi + post

We use hpj = hmj + posj , so the MPt can be
represent as:

MPt = [hp1, ..., h
p
(t−1), h

p
(t+1), ..., h

p
V ]

A dot-product attention is applied on ei and hpj ∈
MPt to get the response of the global memory
network:

αj =
exp(eih

p
j )∑j=V

j=1,j 6=t exp(eih
p
j )

ri =

j=V∑
j=1,j 6=t

αjh
m
j

Finally, hi is used to update G by replacing hmt .
Then, we can get the final representation by fusing
hi, N and ri:

di = Concat(λhi + (1− λ)ri, N)
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where N is the neighbouring sentence representa-
tion.

3.3 Sentence-level Representation

In this section, we propose a novel label-enhanced
contextualized representation that explicitly intro-
duces contextual metaphor information, which is
useful for understanding because the Specifically,
the label embedding is adopted to represent each la-
bel, and then the early prediction is used to provide
reference metaphor labels for the label embedding
module.
Label embedding To fuse contextualized represen-
tation of words with label information, we use label
embedding to map labels to the same space as the
contextualized representation’s. That is, every type
of label(i.e. metaphoric or literal) corresponds to
a vector via the label embedding. Therefore, we
can obtain the label embedding li of the word xi
according to its label yi. Then we take the sum
of di and li as the input of a transformer encoder
layer. Considering the particularity of label embed-
ding, we modified the Q, K, and V in the standard
transformer architecture(Vaswani et al., 2017):

Q = [q1, ..., qn] = [d1 + lpad, ..., dn + lpad]

K = V = [d1 + l1, ..., dn + ln]

where the lpad is a padding embedding which has
the same dimension as li. This is because the li in
the training steps comes from the golden label yi,
which will lead to leakage of the label ifQ contains
the label information of the word itself. That is,
the output of target word would contain its own
golden label information. Similarly, Ki and Vi will
introduce the label information of word xi when
we calculate the attention of qi to K and V . So we
add a mask matrix to the self-attention mechanism:

AttentionMask =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


where the diagonal elements are all 0. It means
each word ignores itself when calculating attention.
Then we take Q, K, V and AttentionMask as
the input of the transformer encoder:

s = Transformer(Q,K, V,Attention Mask)

ŷi = Classifierle(s)

#text #sents #tokens % M

ALL POS train 90 12122 72611 15.2
test 27 4080 22196 17.9

Verbs train - - 17240 27.8
test - - 5873 30.0

Table 1: Statistics of the VUA dataset.

We use ŷi as the final prediction in the testing
stage.
Early prediction The strategy of introducing con-
textual labels we adopt above uses contextual
golden labels but not the labels predicted by the
model in the training phase, which is similar to the
teacher forcing strategy that is widely used in text
generation tasks. However, it will be invalid in the
testing stage since the golden label of the test set
cannot be used as known information. To address
this deficiency, we add an early prediction module:

ŷepi = Classifierep(di)

In this way, the model can predict the label of
xi in advance. In the testing stage, the predicted
metaphor label ŷepi is provided to the label embed-
ding phase as a substitute for the golden label.

3.4 Training Details
The final training objective of our model consists
of two parts: (1) the early prediction ŷepi and (2) the
final prediction ŷi, both of which use cross-entropy
loss function:

LEP = −
∑
D

i=n∑
i=1

wyi log(ŷ
ep
ic )

LLE = −
∑
D

i=n∑
i=1

wyi log(ŷic)

where the ŷepic and ŷic are the predicted probabilities
for the true label yi, and the wyi is the loss weight
of yi. The D represents the whole dataset. The
final loss is defined as the weighted summation of
LEP and LLE :

L = LLE + γLEP

where γ denotes the weighting parameter.

4 Experiment

4.1 Dataset
VU Amsterdam Metaphor Corpus (VUA)(Steen,
2010) consists of 117 fragments sampled across
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Method VUA ALL POS VUA Verbs
P R F1 P R F1

(Wu et al., 2018) 60.8 70.0 65.1 60.0 76.3 67.1
(Gao et al., 2018) 68.4 59.7 63.8 - - -
(Mao et al., 2019) 71.7 60.2 65.5 - - -
(Dankers et al., 2020) 73.5 69.6 71.5 - - 75.7
(Dankers et al., 2020)† 75.1 69.1 71.9 76.6 75.2 75.8
BERT 77.2 66.6 71.4 78.8 71.9 75.2
Ours 75.9 70.4 73.0∗ 77.5 76.1 76.8∗

Table 2: The Precision, Recall and F1 score on the VUA ALL POS and VUA Verbs tasks. † denotes the model we
implement according to their paper. ∗ denotes p < 0.05 on a two-tailed t-test against the best competing model.

Method VUA ALL POS VUA Verbs
P R F1 P R F1

DeepMet 73.4 73.2 73.3 75.7 78.2 76.9
Ourscv 75.4 73.3 74.3∗ 77.4 79.1 78.3∗

Table 3: The comparison between DeepMet and our
model. Ourscv is obtained by training our model ac-
cording to the settings of DeepMet. ∗ denotes p < 0.05
on a two-tailed t-test against the best competing model.

four genres from the British National Corpus: Aca-
demic, News, Conversation, and Fiction. Every
word in the corpus is labeled, guided by MIP.
The corpus was used by the ACL 2020 Metaphor
Shared Task(Leong et al., 2020). Similar to the
shared task, we conduct experiments on the VUA
ALL POS and VUA Verbs tasks. We do not
choose TroFi(Birke and Sarkar, 2006) and MOH-
X(Mohammad et al., 2016) datasets which are com-
monly used in the previous works. This is because
neither of these two datasets contains discourse in-
formation, and words other than the target word
within a sentence are all annotated as literal, which
is useless for our model. Nonetheless, we believe
that the results on the two tasks of the VUA dataset
can well demonstrate the superiority of our model
in both ALL POS and Verbs metaphor identifica-
tion.

Table 1 shows the descriptive characteristics of
the VUA dataset: the number of texts, sentences,
tokens, and class distribution information for All
POS and Verbs tasks.

4.2 Setup
We try to keep the hyper-parameters consistent
with previous works which used BERT in metaphor
identification. Our model is trained with a batch
size of 16 for 4 epochs using the AdamW optimizer
with a linear learning rate scheduler and a warm-
up period of 10%. The maximum learning rate is

5e-5. We apply dropout to our model with a rate
of 0.1. The weight in the loss function wyi = 2
if yi = 1 (metaphor), otherwise wyi = 1. The
λ used in discourse-level representation is set as
0.8 empirically. The k in neighbouring sentence
representation is 2 as same as Dankers et al. (2020).
The γ used in early prediction is set as 0.2.

4.3 Results and Discussion

We compare our model with existing approaches
which do not use external knowledge. We do not
compare with the works that divided the dataset
into the train set and test set by themselves, such as
Wan and Xing (2020). Since Gao et al. (2018) and
Mao et al. (2019) used a different subset of VUA,
we use the results reported by Neidlein et al. (2020)
on VUA ALL POS and VUA Verbs for compari-
son. Since the F1 score(71.4) of our BERT baseline
is higher than that(70.3) in Dankers et al. (2020)
even though the two models are basically the same,
we re-implement their method. Our experimen-
tal results are obtained by averaging the results of
five random runs. Table 2 shows that our model
surpasses the highest results by 1.1% and 1.0% on
VUA ALL POS and VUA Verbs tasks, respectively.

The current state-of-the-art model is Deep-
Met(Su et al., 2020), which takes global text con-
text, local text context, query word, general POS,
and fine-grained POS as the input. To make the
comparison fairer, firstly, we removed their ensem-
ble module, because simply modifying the hyper-
parameters to vote is of little research significance,
though it is helpful for the performance. Secondly,
the DeepMet after removed the ensemble part is a
10-fold voting model, so we also adopt this strategy
and remove our discourse-level module because
DeepMet divides the training and validating sets at
the sentence level, which will cause the sentences
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Genre Model P R F1

Academic
BERT 84.7 68.7 75.6

D-BERT 82.7 72.2 77.1
Ours 82.3 74.9 78.4

News
BERT 79.0 64.7 71.1

D-BERT 77.3 66.5 71.5
Ours 77.5 68.9 72.9

Fiction
BERT 70.1 67.6 68.8

D-BERT 67.0 69.8 68.4
Ours 68.7 68.7 68.7

Conversation
BERT 63.8 63.3 63.5

D-BERT 62.2 65.6 63.8
Ours 62.7 66.1 64.3

Table 4: Model performance on four different genres
of VUA. D-BERT denotes the model we implement ac-
cording to Dankers et al. (2020), which is the same as
the model in Table 2.

in the same discourse to be scattered in the training
set and validating sets. This will lead to incomplete
discourse information in the training and validating
sets. Finally, we use RoBERTa(Liu et al., 2019)
as the baseline model same as DeepMet instead of
BERT. This type of our model is marked as Ourscv.
We rerun the code of DeepMet and compare the
results which are shown in Table 3. The F1 score of
our model are 1% and 1.4% higher than DeepMet
on ALL POS and Verbs, respectively.

As is shown in Table 2 and Table 3, both Deep-
Met and the proposed model show more gain for re-
call rather than for precision compared with BERT.
In general, advanced pre-trained models, such as
RoBERTa(Gong et al., 2020), or more semantic
information(Dankers et al., 2020) will improve re-
call and worsen precision. Because the metaphor
is a special(or high-level) way to use, it is difficult
to identify complicated metaphorical expressions
when the model cannot fully understand the mean-
ing. Our model introduces contextual metaphorical
information to enhance the model’s ability to un-
derstanding complicated contexts. Meanwhile, by
using the global memory network, the model might
benefit from another well-understood context that
contains the target word when processing the same
word in a context that is difficult to understand.
DeepMet used RoBERTa and reduced the thresh-
old of classifying a word as a metaphor, making
the model inclined to predict words as metaphors.

Table 4 reports the performance on the four gen-
res of VUA dataset. Our model achieves better or

ALL POS Verbs
Ours 73.0 76.8
w/o label-enhance 72.2 76.1
w/o neighbour sentence 72.8 76.2
w/o global memory 72.5 76.4
w/o position 72.8 76.6

Table 5: Ablation study on VUA ALL POS and VUA
Verbs.

Figure 3: The performance of the model with different
memory size T on VUA ALL POS task.

comparable results against the baselines. It can be
seen that our model performs well on news and
academic genres. This is because each discourse in
the two genres mainly describes one single event
or stuff, which has strong logic internally. Thus,
it is likely that the same metaphor appears in the
discourse, which has a certain metaphorical con-
sistency. Meanwhile, the label-enhanced represen-
tation module can enhance the ability to identi-
fying the metaphorical expressions in long sen-
tences which are common in these two genres. The
improvement obtained on conversation is mainly
because our model introduces more discourse in-
formation, which is important for understanding
sentences in conversations.

4.4 Ablation Study

In this experiment, we remove the label-enhanced
contextualized representation, neighbouring sen-
tence representation, and position-aware global
memory network modules from our model sep-
arately, and the experiment results are shown in
Table 5. The last row in the table w/o position in-
formation refers to remove the position embedding
from the position-aware global memory network.
It turns out that each module of our model is useful,
and removing any part of our model will cause the
result to drop.
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Figure 4: The performance of the model with different
neighboring sentences number k on VUA ALL POS
task.

4.5 Influence of Hyper-parameters

Memory size In the position-aware global mem-
ory network module, if a word occurs more than T
times, we only record its first T occurrences. Fig-
ure 3 shows the effect of T on the performance of
our model. when T is 10, the result of our model
is the best. Since the meaningful words are hard to
appear many times, the performance of our model
declines when T is greater than 10, which may
record more meaningless stop words.
The effect of k We use k to control the number
of neighboring sentences. Figure 4 shows that the
performance grows with k, and becomes stable
when k ≥ 2. Considering the time and memory
cost, we choose k = 2 in the model.

4.6 Effectiveness Discussion

Table 6 shows the effectiveness experiment results
of our model. To make the results more convinc-
ing, we remove the neighbouring sentence repre-
sentation module from our model and denote it
as Ours−nei. We compare our model with BERT
and DeepMet. Firstly, we compare the F1 scores of
words in the test set that appear only once (OO) and
more than once (MO) in their discourse. The results
show that our model is 1.0% and 1.9% higher than
BERT on OO and MO, respectively. The higher
improvement obtained on MO suggests that the
position-aware global memory network is indeed
effective, which attends to other occurrences of the
target word in the discourse to assist the identifi-
cation process. Since the discourse representation
module is removed from Ourscv, we do not com-
pare it with DeepMet. Secondly, we compare the
F1 score of words in the sentences where there are
multiple metaphoric words (M>1), or only one or

Word Num Metaphor Num
MO OO M>1 M≤1

BERT 71.4 71.4 75.2 57.9
Ours−nei 73.3 72.4 77.1 57.4
DeepMet - - 77.8 56.8
Ourscv - - 79.3 57.5

Table 6: The F1 score of BERT, DeepMet, and our
model. The first experiment calculates F1 scores for
words that appear only once/more than once in the dis-
course. The second one is for words in the sentences
where there are multiple metaphoric words (M>1), or
only one or fewer metaphoric words (M≤1).

fewer metaphoric words (M≤1). The results show
that our model is 1.9% and 1.5% higher in F1 score
than BERT and DeepMet respectively when M>1.
This shows the effectiveness of our label-enhanced
contextualized representation, because when a sen-
tence contains multiple metaphoric words, it may
be able to provide richer contextual metaphor in-
formation for the reasoning process. Moreover, we
notice that the F1 scores of all models are very
low when M≤1. This may be because there are
many short sentences, which makes it difficult to
understand the meaning of the words in the sen-
tences. This needs further attention for metaphor
identification research.

4.7 Error Analysis
Although introducing wider discourse information
and label information, our model has limitations as
well. If a word only appears once in the discourse,
the global memory module will be invalid. In some
cases, it is also difficult to judge the metaphoricity
of some words even if they appear several times in
the discourse. E.g., in the sentences Tyson is not
a gambling man(VUA ID: aa3-fragment08-215)
and If you were a gambling man it would not af-
fect you(VUA ID: aa3-fragment08-232) where our
model fails, the two gambling have similar context
and usage, so it is difficult for our model to make
the word benefit from another occurrence. More-
over, short sentences are also challenging because
there are little contextual label information and se-
mantic information, e.g., No, but getting(VUA ID:
kb7-fragment48-13446), where there is not enough
information for inference.

5 Conclusion

In this paper, we propose a hierarchical contextual-
ized representation model to strengthen the model’s



3541

ability to leverage contextual information. Our
model makes use of the contextual metaphor in-
formation in the sentence level and the long-range
relation of the words in the discourse level. We
improve the ability of the model to reason the con-
textual metaphoric relationships and understand
the meaning of context by introducing contextual
label representation for the target word. To ob-
tain broader discourse information, we adopt a
position-aware global memory network to extract
relations among the occurrences of words in dis-
course. The results of our model on the two tasks
of VUA dataset surpass the state-of-the-art models
which also do not use external knowledge.

In future work, we will explore changing the
golden label used in the label embedding stage to
the iterative prediction result, which may avoid the
deviation caused by the absence of golden labels
during testing. Meanwhile, albeit limited, the work
of Jang et al. (2017) could provide further direction
for this research, such as using words belonging to
the same topic/frame/domain instead of only the
same words.
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