
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3395–3404
November 7–11, 2021. c©2021 Association for Computational Linguistics

3395

GraphMR: Graph Neural Network for Mathematical Reasoning

Weijie Feng†, Binbin Liu†, Dongpeng Xu∗, Qilong Zheng†, Yun Xu†
†University of Science and Technology of China

∗University of New Hampshire
{fengwj, robbertl}@mail.ustc.edu.cn

dongpeng.xu@unh.edu
{qlzheng, xuyun}@ustc.edu.cn

Abstract

Mathematical reasoning aims to infer satisfi-
able solutions based on the given mathemat-
ics questions. Previous natural language pro-
cessing researches have proven the effective-
ness of sequence-to-sequence (Seq2Seq) or re-
lated variants on mathematics solving. How-
ever, few works have been able to explore
structural or syntactic information hidden in
expressions (e.g., precedence and associativ-
ity). This dissertation set out to investigate
the usefulness of such untapped information
for neural architectures. Firstly, mathemati-
cal questions are represented in the format of
graphs within syntax analysis. The structured
nature of graphs allows them to represent rela-
tions of variables or operators while preserv-
ing the semantics of the expressions. Hav-
ing transformed to the new representations, we
proposed a graph-to-sequence neural network
GraphMR, which can effectively learn the hier-
archical information of graphs inputs to solve
mathematics and speculate answers. A com-
plete experimental scenario with four classes
of mathematical tasks and three Seq2Seq base-
lines is built to conduct a comprehensive anal-
ysis, and results show that GraphMR outper-
forms others in hidden information learning
and mathematics resolving.

1 Introduction

Mathematical reasoning aims to infer satisfactory
solutions for the given mathematical problem based
on logical rules. It plays a pivotal role in com-
puter algebra (Risch, 1970; Bronstein, 2005; Ged-
des et al., 1992) (e.g., automated theorem prov-
ing), design formulas in numerical programs, and
complete scientific computations. With the cre-
ation of massive data of logical expressions, neu-
ral networks (NNs) based on statistical learning
(Rumelhart and McClelland, 1986) have shown
success on mathematical reasoning tasks countered
to rule-based approaches. For example, Evans et al.
(2018); Allamanis et al. (2017) applied tree neural

networks to process logic entailment and boolean
arithmetic problems. (Lample and Charton, 2019;
Piotrowski et al., 2019) released elaborated NNs
for symbolic integration and differential equations,
shown greater competitiveness than algebra sys-
tems.

However, much of the sequence-to-sequence
(Seq2Seq) methods up to now (Kushman et al.,
2014; Ling et al., 2017; Piotrowski et al., 2019; Sax-
ton et al., 2019) have not explored the structural in-
formation behind expressions, such as precedence
and associativity. For example, modern Seq2Seq
models treat structured symbolic expressions with
specific syntax as serialized natural language sen-
tences, which result treat x+y and y+x as different
expressions. Moreover, most of these works focus
on single tasks (Kaiser and Sutskever, 2016; Trask
et al., 2018), lack the capability to handle complex
computation.

This study seeks to excavate the implicit informa-
tion hidden in mathematical problems and examine
the capacities of graph-to-sequence architecture
to solve large-scope mathematical problems, such
as algebra, arithmetic, and polynomial. The first
step in this study was to investigate efficient graph
substitutes of mathematical expressions. We dis-
cuss the representation ability of Abstract Syntax
Tree (AST) and Directed Acyclic Graph (DAG)
(Thulasiraman and Swamy, 1992), which reveal
the structural information of expressions while pre-
serving the semantics of operators and arithmetic
entities. Then numeral decomposition strategy is
presented to replace graph node normalization of
AST/DAG. Subsequently, we introduce GraphMR,
a graph-to-sequence approach, which can effec-
tively learn preserved information in graph inputs.
To display the performance and generalization abil-
ity of our proposal, we conduct complete exper-
iments on four classes of tasks: POLY1, POLY6,
MBASIM, and MATHEMATICS. The large-scale
evaluations show that GraphMR achieves a better

3396

performance than state-of-the-art Seq2Seq mod-
els. Furthermore, the experiment result shows that
DAG achieves the same accuracy on benchmarks
with a smaller graph size than AST.

To summarize, main contributions of this disser-
tation are as follows:

• We discussed two effective graph representa-
tions of mathematical problems, i.e., AST and
DAG, and proposed a strategy to reduce node
feature complexity.

• We introduced GraphMR, a Graph2Seq-based
model, to do symbolical reasoning. To
the best of our knowledge, this is the first
work to analyze mathematical expression with
Graph2Seq.

• Detailed and comprehensive experiments on
various mathematics tasks were performed.
The results showed that GraphMR outper-
forms state-of-the-art Seq2Seq models.1

2 Background

2.1 Mathematical Reasoning with Neural
Networks

In recent years, there has been an increasing
amount of research on mathematical reasoning us-
ing sequence-to-sequence neural networks. Alla-
manis et al. (2017) tried to use parse trees to rep-
resent symbolic expressions and solved them by
tree neural networks. A major problem with the
parse tree is that it limits the representation capa-
bility of the model. Their method can only handle
small-size expressions and has an exponential ex-
plosion of semantic space to be represented. Evans
et al. (2018) proposed a framework called Possible-
WorldNet and have shown its ability to solve log-
ical entailment problems. The main disadvantage
is that they failed to prove the model’s generaliza-
tion ability in other mathematical problems such as
polynomials or arithmetics.

More recently, Lample and Charton (2019); Pi-
otrowski et al. (2019) released elaborated synthe-
sized datasets for symbolic integration and differ-
ential equations. Their experiments have shown
that Seq2Seq models outperform commercial CAS
such as Matlab or Mathematica. However, they
considered expressions as sequences of indepen-
dent symbols, which missed structural information
hidden in symbolic expressions.

1All code and datasets are available at https://github.com/
nhpcc502/GraphMR.

Conversely, other Seq2Seq related works (Kush-
man et al., 2014; Ling et al., 2017; Saxton et al.,
2019) are more focused on natural language un-
derstanding. Their tasks are represented as mathe-
matical query, which is more like neural machine
translation.

2.2 Graph-to-Sequence Learning

Up to now, a number of studies have demon-
strated the effectiveness of graph neural networks
(GNNs) (Kipf and Welling, 2017; Gilmer et al.,
2017; Hamilton et al., 2017) on non-Euclidean
structured data. Bastings et al. (2017) conducted
English-German and English-Czech translations
with Graph2Seq. They formulate a natural sentence
to a dependency tree and encode it with various
GNNs to obtain different context vectors. Simi-
larly, Beck et al. (2018) proposed Gated GNN to
conduct syntax-based natural machine translation
and abstract meaning representations generation.

Recently researchers have applied GNNs to non-
graph structured data, such as pictures, videos, and
words (Norcliffe-Brown et al., 2018; Liu et al.,
2019; Chen et al., 2019). Gao et al. (2019) ex-
tended Graph2Seq application scenarios to medical
diagnostics to make health stage predictions. Chen
et al. (2020) applied the Graph2Seq to natural ques-
tion generation, which aims to generate a human-
readable query based on the given question-answer
pair. Shen et al. (2020); Xu et al. (2018) showed the
ability of Graph2Seq in video processing, which
task aims to generate more grounded and accurate
descriptions by linking the generated words with
the regions in video frames. However, to the best
of our knowledge, there is no systematic research
on mathematical reasoning with Graph2Seq.

3 Methodology

To bring out the structural information of mathemat-
ics, we firstly introduced two effective graph repre-
sentations, namely AST and DAG. A numeral de-
composition strategy was then discussed to reduce
node feature complexity. Following the graph gen-
eration process was then briefly described. Finally,
GraphMR was depicted to collect and learn the hid-
den information from input graphs with its encoder
and to give out a satisfactory solution through its
decoder.

3397

x y

+ x

∗

x y

+

+

(a) Abstract Syntax Tree

x y

+∗

+

(b) Directed Acyclic Graph

Figure 1: Different representations for expression (x+
y) ∗ x+ (x+ y).

3.1 Graph Representation of Mathematics

Traditionally, a mathematical question was repre-
sented as a character string, which major advantage
is straightforward for humans to read and under-
stand. However, the main problem of the plain
approach is that sequence concealed the structural
information (e.g., precedence associativity), and
Seq2Seq models were unable to utilize them di-
rectly. One effective way is to represent expression
as Abstract Syntax Tree (AST), in which nodes
denote operators, constants, or variables, and edges
map the relationship between nodes, as shown in
Figure 1(a).

The major problem of representing expressions
with AST is that nodes or sub-expressions with the
same semantics are repeated in trees, which tends
to generate bloated trees when representing long ex-
pressions. In order to avoid repetitions, we merged
all equal-semantic subtrees or nodes in AST to gen-
erate a Directed Acyclic Graph (DAG) version of
the mathematical expressions, as shown in Figure
1(b), which merged the subtree x+ y and variable
x. Similar to AST, operators in DAG with higher
precedence order appeared as parents of lower ones.
This feature enables AST/DAG to reduce the am-
biguity of precedence and associativity, keep the
semantics of expressions unchanged, and eliminate
assistant characters such as parentheses.

For the purpose of thoroughly compare the per-
formance difference between AST and DAG, we
modeled mathematics expressions as these two
graphs and performed controlled experiments, re-
spectively.

3.2 Numeral Decomposition

Due to the small total number of characters (al-
phabet, ten figures, and few operators), Seq2Seq
methods are able to encode each character of an

24 m

∗

2 10

∗ 4

+ m

∗

Figure 2: An illustration of numeral decomposition.

expression as a one-hot vector. In contrast, the
value domain of constant nodes in graphs is the
whole real number, which limits the vectorization
of graphs and the normalization of nodes. Fur-
thermore, directly representing different values as
different one-hot vectors will weaken the similarity
between them. For example, the cosine similarity
of the one-hot vector of any two different numerals
is zero.

In order to surmount this obstacle, we applied a
numeral decomposition strategy during graph gen-
eration, which decomposes a big number or deci-
mal into several different parts by adding few bases
(e.g., 10, 0.1), as shown in Figure 2. This strategy
has two main advantages: i) Effectively narrowed
the value domain of constant nodes to [0, 9]. ii)
Made correlations between different figures and
allowed NNs to learn the relationship. Although
the application of numerical decomposition led to
an increase in the size of the graph, subsequent
experiments showed that its effectiveness in both
model learning and accuracy improvement.

3.3 Graph Generation Process

Two types of mathematical questions were used
in experiments: i) Purely symbolic expressions
were our primary concern for their easy conver-
sion to graphs. ii) More common mathematics
described by natural language was also examined,
and we designed an extractor with numerous regu-
lar rules to extract symbolic expressions from ques-
tions first. Considering the representation ability
of AST/DAG, few specific types of questions such
as series, comparison, and sorting were omitted in
experiments.

Once symbolic expressions were obtained, there
are a number of tools available for transforming
them into AST (e.g., AST module2). To generate
the DAG, we rewritten the AST module to traverse
the AST and compared its subtrees or leaves to

2https://docs.python.org/3/library/ast.html

3398

Answer : 3 * x + y

3,⋯, y, < eos >

x

y

+

2

⇤
�

+

.
;`�T?
+QMpR

x

y

+

2

⇤
�

+

>
;`�T?
+QMpk

x

y

+

2

⇤
�

+

>
;`�T?
+QMpj

x

y

+

2

⇤
�

+

TQQHBM;

;�i?2`2/ bi`m+@
im`2 BM7Q`K�iBQM

1
2K#2//BM;

+QM+�i2M�iBQM
Q7 72�im`2b �M/

2K#2//BM;

>
_LL

x y

+2

⇤

�

+

Question : Simplify x − y + 2 * (x + y) assuming x and y are positive

Figure 3: Framework of GraphMR. It includes an encoder and a decoder. The encoder is composited by multiple
graph convolutional layers and a global pooling layer. The decoder is composited by an embedding layer and an
RNN layer.

perform a merger. It is worth noticing that there
are usually special operators in expressions that
were regarded as both unary and binary operators,
and we counted them as different operators and
assign corresponding node features according to
their in-degree in AST/DAG.

3.4 Architecture of GraphMR

Based on the graph representation of expression,
GraphMR was developed for symbolic reasoning
based on Graph2Seq. The primary insight of the
proposal resides in the information gathering strate-
gies in existing deep learning models. A general
overview of the model is shown in Figure 3. Sim-
ilar to Seq2Seq, GraphMR was composited by a
graph encoder and a sequence decoder.

Graph convolutional encoder For a directed
graph, an inductive node embedding algorithm was
applied to generates bi-directional node embed-
dings by aggregating information from nodes’ local
forward and backward neighborhoods (i.e., parents
and children) within k hops. More formally, given
G = (V,E), its structural information for each
node v ∈ V was collected from two different direc-

tions according to the equations below:

h`k = A({σ(W(l) ·Xk
u` + b(l)), u ∈ N`(v)})

hak = A({σ(W(l) ·Xk
ua + b(l)), u ∈ Na(v)})

where N`(v) represents the set of forward neigh-
bors of node v, and Na represents the set of back-
ward neighbors. W(l) and b(l) are randomly initial-
ized learnable parameters for graph convolutional
layer l. Xk

u` and Xk
ua are feature vectors of node u.

σ(·) represents the non-linear activation function
of the model (e.g., ReLU), and A(·) is an aggrega-
tor used for collecting information from neighbors.
Figure 4 illustrates the process of node embedding
in graph encoder by an example. In the subsequent
experiments, k was set to 1 considering the fact
that each internal operator is naturally directed cor-
relates to its children and parents only.

Considering neighborhoods of one node have no
natural ordering, the aggregation function should
be invariant to the ordering of its inputs, ensuring
that models can be trained to an arbitrarily ordered
set of node-neighborhood features. Besides, the
strategy for aggregating information can affect the

3399

x y

+2

⇤

�

+

1

Backward

Forward

h⊢0
h⊢1
⋮

h⊢
n ⋯

pooling

h0

C = [C0 C1 ⋯ Ch]T

aggregate

concat

h1 hn

k = 1

k = 2

h⊣0
h⊣1
⋮

h⊣
n

h⊢0
h⊢1
⋮

h⊢
n

h⊢0
h⊢1
⋮

h⊢
n

h⊣0
h⊣1
⋮

h⊣
n

h⊣0
h⊣1
⋮

h⊣
n

Figure 4: Illustration for node embedding in encoder
with different k hops. The encoder collects information
from its descendants (blue flow) and ancestors (pur-
ple flow), then concatenates those information to form
node embedding for the current node (orange one). In
graph level, a global pooling operation is applied to
generate graph level representation C.

results of one model to some degree. In this work,
structural information was aggregated by

hv =
1

|N (v)|
∑

hu, u ∈ N (v)

After aggregating node information, we concate-
nated them to produce an embedding for current
node v as follow:

hv = concat(h`v ,h
a
v)

To convey high-level graph information to the
downstream decoder, aggregating node level em-
beddings to graph level is essential for a graph task.
We used a global sum pooling to obtain this graph
level information, which was formulated as:

C =
∑
v

hv

in which hv was the embedded node feature matrix
generated by the strategy described above. The
generated graph-level embedding C would be sent
to the decoder to guide the prediction process.

Sequence decoder Once the convolutional en-
coder aggregated node information and captured
the entire graph to generate graph-level embed-
ding, its output tensor C would be treated as
heuristic information and fed into the sequence
decoder. In the decoding stage, an embedding layer
was used to embed all previous token sequences
y = y0y1 · · · yt−1 and generate an embedding vec-
tor e. With the graph embedding C and sequence

embedding e(t) in time step t, the decoder was able
to predict next tokens yt by:

h(t) = RNN(concat(e(t),C),h(t−1))

yt = FC(e(t),h(t),C)

where h(t) represents hidden state in time step t,
and FC(·) represents the fully connected layer. No-
tably, we initialize the hidden state with the global
graph representation C, i.e., h(0) = C, as mostly
Seq2Seq models do.

4 Experiments

4.1 Experimental Setup
Baselines We compared the following peer
Seq2Seq works in experiments: i) GRU-based
Seq2Seq model (Cho et al., 2014). As the same
as the original work, we reproduced its encoder
and decoder with a one-layer GRU unit. ii)
Seq2Seq model based on Long Short-Term Mem-
ory (Sutskever et al., 2014), we implemented the
encoder and decoder with four LSTM layers, as
the original paper did. iii) Transformer, a dominant
architecture in natural language translation. It is
entirely made up of linear layers, attention mech-
anisms, and normalization. We realized a light
version of BERT (Devlin et al., 2018), the most
popular variant of Transformer.

Tasks Experimental mathematics was catego-
rized into purely symbolic expressions and non-
structured mathematical problems.

Three datasets for the symbolic task were col-
lected. The first two came from POLY (Piotrowski
et al., 2019), a symbolic rewriting dataset aiming
to represent symbolic expression in another form.
We selected different complexity levels tasks in
POLY to evaluate all models. The easiest one
(POLY1) involves only addition and multiplica-
tion operations, whereas the most complicated one
(POLY6) contains various mathematical tasks, such
as the expansion and the combination of expres-
sions. The third dataset intends to simplify Mixed
Boolean-Arithmetic (MBA). MBA expressions in-
volve mixed usage of arithmetic and Boolean opera-
tions, making it be NP-hard for human and modern
symbolic algebra systems to solve. We used the
method contributed by (Feng et al., 2020) to gener-
ate the MBASIM dataset.

MATHEMATICS Saxton et al. (2019) is a
question-answer dataset from a range of question
types at roughly school-level difficulty. It contains

3400

Length # Variables # Operators

scale mean Std. scale mean Std. scale mean Std.

POLY1
Q 15.00±12.00 21.87 4.25 5.00±3.00 6.72 1.06 4.00±3.00 5.72 1.06
A 11.00±10.00 3.13 2.69 6.00±5.00 2.07 1.35 5.00±5.00 1.07 1.35

POLY6
Q 24.00±23.00 26.45 10.89 7.00±6.00 7.86 2.72 6.00±6.00 6.86 2.72
A 50.00±49.00 10.51 12.07 25.50±24.50 5.76 6.03 24.50±24.50 4.76 6.03

MBASIMP
Q 57.00±50.00 47.95 14.58 18.00±16.00 14.57 4.04 23.00±21.00 19.14 5.74
A 18.00±17.00 10.01 5.21 5.50±4.50 3.26 1.38 7.00±7.00 4.21 2.19

MATHEMATICS
Q 65.00±62.00 19.68 16.71 26.00±24.00 6.44 6.56 25.50±25.50 5.60 6.56
A 15.00±14.00 5.18 3.20 6.00±5.00 1.73 1.02 5.00±5.00 0.99 1.09

Table 1: Statistic of the experimental datasets. Q indicates input expressions, and A indicates expected results.
Three metrics of experimental datasets are the length of expressions, the number of variables (including constants,
repeat counted), and the number of operators, respectively. Note that arithmetic-independent words in MATHE-
MATICS are not counted.

numerous types of non-structured mathematical
problems, in which we filtered the comparison
and probability part and selected graph-convertible
mathematical problems (11 types in total) as our ex-
periments materials, such as linear equation, poly-
nomial roots, surds, and differentiation.

These four datasets coverage most types of math-
ematical problems and are differentiated in terms of
solution difficulty. Ten thousand samples were pre-
pared for each symbolic expression task, and a total
of one billion samples were generated for Mathe-
matics. Table 1 illustrates the summary statistics,
and Table 2 given examples for each dataset. It can
be seen that the number of variables and operators
fluctuates considerably, which reflects the difficulty
of problem-solving to some extent.

Settings All models were implemented with Py-
Torch (Paszke et al., 2019) and PyTorch Geomet-
ric (Fey and Lenssen, 2019). All baselines were
parameterized as their authors did, whereas the
hyper-parameters of GraphMR were determined by
grid search. Adam (Kingma and Ba, 2014) was im-
ported to optimized all models, with an initial learn-
ing rate of 1e− 3, and dynamic strategies (e.g., Re-
duceLROnPlateau) were applied to adjust the learn-
ing rate. All models were trained for 100 epochs
with 128 batch sizes and repeated three times to
achieve a reliable result. For each prediction, we
used Z3 (De Moura and Bjørner, 2008) to deter-
mine whether it is semantically equivalent to the
standard answer. All experiments were conducted
on a 64-bit Linux machine with 16 AMD Ryzen
Threadripper 1900X 8-Core CPUs (3.80GHz), 64
GB RAM, and 12GB NVIDIA RTX 2080 GPU.

Question Answer

POLY1

((x+ x) ∗ x) ∗ 1 2 ∗ x2

((0 ∗ 0) ∗ (1 + 1))
0∗(1 + (1 + 0))

POLY6

x2 + 2xy
(x+ y + z)2+y2 + 2yz

+z2 + 2zx

(x+ y + z)3

x3 + y3 + z3

+3x2y + 3xy2

+3x2z + 3xz2

+3y2z + 3yz2

+6xyz

MBASIM

4(x ∧ ¬y)− ¬x
3x− 2y

+2(¬(x⊕ y)) + 1

2(¬x ∨ ¬y ∨ z)
x ∨ y ∨ z−(¬x ∧ ¬z)

+(¬x ∧ ¬y ∨ ¬z)
−(¬x ∧ ¬z)− ¬y

MATHEMATICS

Put together -9562 and 0.5 −9561.5

Expand (24 ∗ t/12)
−306 ∗ t ∗ ∗3∗153 ∗ sqrt(t ∗ ∗4),

assuming t is positive.

Table 2: Examples from each dataset.

4.2 Result and Analysis

In this subsection, the results of the experiments
are discussed along within different running phases,
i.e., static analysis of models size and their inputs
before program execution, dynamic analysis of the
efficiency and cost during the model training and
predict phase, and accuracy statistics of models
prediction results.

3401

Length NodesAST NodesDAG EdgesAST EdgesDAG

POLY1

5

10

15

20

25

Length NodesAST NodesDAG EdgesAST EdgesDAG

POLY6

0

10

20

30

40

50

Length NodesAST NodesDAG EdgesAST EdgesDAG

MBASIM

20

40

60

80

100

Length NodesAST NodesDAG EdgesAST EdgesDAG

MATHEMATICS

20

40

60

80

100

120

140

160

Figure 5: Comparison of the number of nodes and edges when representing four tasks as AST and DAG, where
Length denotes the number of characters of raw questions.

POLY1 POLY6 MBASIM MATHEMATICS

Ttrain Tinfer Ttrain Tinfer Ttrain Tinfer Ttrain Tinfer

GRU 59.7845 0.0076 217.1197 0.0051 45.3663 0.0076 245.6895 0.0053
LSTM 127.9761 0.0088 316.9887 0.0051 118.8923 0.0253 308.9164 0.0040
Transformer 85.5273 0.0227 169.7207 0.0713 64.2762 0.0522 463.7099 0.0265

GraphMRAST 71.2991 0.0057 101.8027 0.0048 41.1873 0.0062 71.1183 0.0031
GraphMRDAG 62.8040 0.0037 93.5846 0.0045 41.5992 0.0063 57.6448 0.0030

Table 3: Statistic of training time (second per epoch) and inference time (second per sample) for each model on
different tasks.

4.2.1 Size of Inputs and Models
Prior to train models, we compared the number of
nodes and edges between AST and DAG (with
numeral decomposition strategy) and presented
the result in Figure 5. It is apparent that DAG
can effectively minimize the size of input graphs,
which makes it more competitive when the prob-
lem complexity in terms of the number of nodes
does not allow to use AST anymore. Moreover,
compared to baselines, the size of GraphMR’s in-
put matrixes (with DAG) are reduced by 52.07%,
48.26%, 32.50%, and 40.55% for POLY1, POLY6,
MBASIM, and MATHEMATICS respectively. On
the other hand, we piled up multiple GNN layers as
the encoder of GraphMR, which allows GraphMR
to achieve relative performance with fewer learn-
able parameters compared to baselines 3.

3In this experiments, GRU, LSTM, BERT, and GraphMR
have 3.18, 7.38, 4.03, and 2.53 million learnable parameters,

4.2.2 Models Efficiency and Cost
With smaller inputs and non-recurrent encoder,
training time (second per epoch) and inference time
(second per sample) of GraphMR are also much
less than baselines, as shown in Table 3.

4.2.3 Prediction Results
Accuracy Table 4 shows the evaluation results
on accuracy comparing GraphMR against other
state-of-the-art baselines. As we can see, graph-
based methods outperform other baselines on all
symbolic and non-structural tasks. There has no
significant difference between baselines and our
proposal on the simplest POLY1. AST of this task
only contains 15.64 nodes on average, indicates
that small-size graphs may lack adequate structural
information for exploiting graph-based methods’
advantages to the full. In contrast, GraphMR per-

respectively.

3402

POLY1 POLY6 MBASIMP MATHEMATICS

Baselines
GRU 99.02 75.50 47.97 39.90
LSTM 93.20 78.23 52.55 41.05
BERT 98.49 81.07 61.72 76.83

Ours GraphMRAST 99.57 83.41 79.70 77.49
GraphMRDAG 99.61 84.05 80.40 78.54

Table 4: Comparative accuracy between GraphMR and baselines on various tasks.

forms better on complex tasks, such as MBASIMP,
which has 33.72 nodes on average. For non-
structured dataset MATHEMATICS, GraphMR has
a marked promotion than baselines, which can
be attributed to the fact that GraphMR only fed
computation-relevant characters.

The accuracy results for different graph repre-
sentations show that GraphMR with DAG have the
same accuracy as AST, which implies that DAG
holds similar information entropy and more com-
pact graph size compared to AST. This finding sug-
gests that DAG is a more appropriate representation
of mathematics.

The other interesting finding is that BERT has a
similar performance to GraphMR on all tasks. With
attention mechanisms, a sentence can be deemed
as a fully connected graph and words are treated
as nodes. This characteristic makes BERT behaves
like a fully connected graph neural network.

Impact of numeral decomposition Turning
now to the experimental evidence on the effect
of numeral decomposition. It can be seen from
Figure 6 that the strategy makes a significant boost
on accuracy.

A possible explanation for this phenomenon
might be that numeral decomposition reduces the
diversity of nodes’ features, increases each fea-
ture’s frequency, and allows the model to sample
features more smoothly.

5 Conclusion

This essay has studied the symbolic reasoning prob-
lem through graph neural networks. AST and
DAG were discussed to represent mathematical
questions, which can preserve the structural and
semantic information of the expressions. Then
we introduced a novel method, GraphMR, based
on Graph2Seq to address mathematical reasoning
problems. Evaluation results show that GraphMR
outperforms state-of-the-art Seq2Seq methods in

POLY1 POLY6 MBASIMP MATHEMATICS
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AST
DAG
AST
DAG

Figure 6: Comparison of accuracies of GraphMR un-
der different configuration. AST† and DAG† represents
prediction accuracies without numeral decomposition.

model size and accuracy. Moreover, it can cope
with various mathematics tasks. A limitation of this
work is that the answers of mathematical problems
were treated as character sequences. Further re-
search could also be conducted to model serialized
answers as graphs.

Acknowledgments

We thank team members from AnHui Province
Key Laboratory of High Performance Computing
(USTC) and UNH SoftSec group for their helpful
suggestions.

References
Miltiadis Allamanis, Pankajan Chanthirasegaran, Push-

meet Kohli, and Charles Sutton. 2017. Learning
continuous semantic representations of symbolic ex-
pressions. In ICML, volume 70 of Proceedings of
Machine Learning Research, pages 80–88. PMLR.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In EMNLP, pages 1957–1967. As-
sociation for Computational Linguistics.

http://dblp.uni-trier.de/db/conf/icml/icml2017.html#AllamanisCKS17
http://dblp.uni-trier.de/db/conf/icml/icml2017.html#AllamanisCKS17
http://dblp.uni-trier.de/db/conf/icml/icml2017.html#AllamanisCKS17
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2017.html#BastingsTAMS17
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2017.html#BastingsTAMS17
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2017.html#BastingsTAMS17

3403

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273–283, Melbourne, Australia. Association
for Computational Linguistics.

Manuel Bronstein. 2005. Symbolic integration i-
transcendental functions.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2019.
Deep iterative and adaptive learning for graph neural
networks. CoRR, abs/1912.07832.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2020.
Reinforcement learning based graph-to-sequence
model for natural question generation. In ICLR.
OpenReview.net.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-
decoder for statistical machine translation. Cite
arxiv:1406.1078Comment: EMNLP 2014.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3:
An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Cite arxiv:1810.04805.

Richard Evans, David Saxton, David Amos, Pushmeet
Kohli, and Edward Grefenstette. 2018. Can neural
networks understand logical entailment? In ICLR
(Poster). OpenReview.net.

Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng,
and Yun Xu. 2020. Neureduce: Reducing mixed
boolean-arithmetic expressions by recurrent neural
network. In EMNLP (Findings), pages 635–644. As-
sociation for Computational Linguistics.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning
on Graphs and Manifolds.

Yuyang Gao, Lingfei Wu, Houman Homayoun, and
Liang Zhao. 2019. Dyngraph2seq: Dynamic-graph-
to-sequence interpretable learning for health stage
prediction in online health forums. In ICDM, pages
1042–1047. IEEE.

Keith Geddes, S. Czapor, and George Labahn. 1992.
Algorithms for Computer Algebra.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Ri-
ley, Oriol Vinyals, and George E. Dahl. 2017. Neu-
ral message passing for quantum chemistry. In

Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page
1263–1272. JMLR.org.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 1025–1035, Red Hook, NY,
USA. Curran Associates Inc.

Lukasz Kaiser and Ilya Sutskever. 2016. Neural gpus
learn algorithms. In ICLR (Poster).

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International
Conference on Learning Representations, ICLR ’17.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 271–281, Baltimore, Maryland. Association
for Computational Linguistics.

Guillaume Lample and François Charton. 2019.
Deep learning for symbolic mathematics. CoRR,
abs/1912.01412.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai,
Yancheng He, Haojie Wei, and Yu Xu. 2019. Learn-
ing to generate questions by learning what not to
generate. CoRR, abs/1902.10418.

Will Norcliffe-Brown, Stathis Vafeias, and Sarah
Parisot. 2018. Learning conditioned graph struc-
tures for interpretable visual question answering. In
NeurIPS, pages 8344–8353.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Bartosz Piotrowski, Josef Urban, Chad E. Brown, and
Cezary Kaliszyk. 2019. Can neural networks learn
symbolic rewriting? CoRR, abs/1911.04873.

https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-07832
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-07832
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#0022WZ20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#0022WZ20
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#EvansSAKG18
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#EvansSAKG18
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020f.html#FengLXZX20
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020f.html#FengLXZX20
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020f.html#FengLXZX20
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
http://dblp.uni-trier.de/db/conf/icdm/icdm2019.html#GaoWH019
http://dblp.uni-trier.de/db/conf/icdm/icdm2019.html#GaoWH019
http://dblp.uni-trier.de/db/conf/icdm/icdm2019.html#GaoWH019
https://doi.org/10.2307/3620124
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#KaiserS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#KaiserS15
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://www.aclweb.org/anthology/P14-1026
http://www.aclweb.org/anthology/P14-1026
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-01412
http://dblp.uni-trier.de/db/journals/corr/corr1902.html#abs-1902-10418
http://dblp.uni-trier.de/db/journals/corr/corr1902.html#abs-1902-10418
http://dblp.uni-trier.de/db/journals/corr/corr1902.html#abs-1902-10418
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#Norcliffe-Brown18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#Norcliffe-Brown18
http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-04873
http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-04873

3404

Robert Risch. 1970. The solution of the problem of
integration in finite terms. Bulletin of The American
Mathematical Society - BULL AMER MATH SOC,
76.

D. E. Rumelhart and J. L. McClelland. 1986. Paral-
lel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, Vol. 1: Foundations. MIT
Press.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathemati-
cal reasoning abilities of neural models. Cite
arxiv:1904.01557.

Kai Shen, Lingfei Wu, Fangli Xu, Siliang Tang, Jun
Xiao, and Yueting Zhuang. 2020. Hierarchical atten-
tion based spatial-temporal graph-to-sequence learn-
ing for grounded video description. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, pages 941–947.
International Joint Conferences on Artificial Intelli-
gence Organization. Main track.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112.

K. Thulasiraman and M. N. S. Swamy. 1992. Graphs:
Theory and Algorithms. John Wiley & Sons, Inc.,
USA.

Andrew Trask, Felix Hill, Scott E. Reed, Jack W. Rae,
Chris Dyer, and Phil Blunsom. 2018. Neural arith-
metic logic units. In NeurIPS, pages 8046–8055.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong
Feng, Michael Witbrock, and Vadim Sheinin.
2018. Graph2seq: Graph to sequence learn-
ing with attention-based neural networks. Cite
arxiv:1804.00823Comment: 16 pages, 3 figures, 4
tables.

https://doi.org/10.1090/S0002-9904-1970-12454-5
https://doi.org/10.1090/S0002-9904-1970-12454-5
http://arxiv.org/abs/1904.01557
http://arxiv.org/abs/1904.01557
https://doi.org/10.24963/ijcai.2020/131
https://doi.org/10.24963/ijcai.2020/131
https://doi.org/10.24963/ijcai.2020/131
http://dblp.uni-trier.de/db/conf/nips/nips2014.html#SutskeverVL14
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#TraskHRRDB18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#TraskHRRDB18
http://arxiv.org/abs/1804.00823
http://arxiv.org/abs/1804.00823

